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SUMMARY

In order to image complex geological structures, seismic sur-
veys acquire an increasingly large amount of data. While the
resulting data sets enable higher-resolution images of the sub-
surface, they also contain redundant information and require
large computational resources for processing. One approach
for mitigating this trend is blended imaging, which combines
the original shot records into a smaller number of blended
shots at the expense of crosstalk in the final image. Since the
cost of imaging is roughly proportional to the number of shots,
blended imaging directly leads to a faster imaging process. In
contrast to the existing shot encoding schemes, we establish
a novel connection between blended imaging and dimension-
ality reduction using the Johnson-Lindenstrauss lemma. We
introduce three new shot encoding schemes based on random
projections and evaluate their performance. Our experiments
on three data sets show that our random shot encoding schemes
are competitive with existing shot encoding schemes and out-
perform decimated shot encoding for small numbers of shots.

INTRODUCTION

With the increasing amount of data collected in seismic sur-
veys, imaging the resulting data sets becomes a considerable
computational challenge. For many migration methods such as
reverse-time migration (RTM), the computational cost scales
linearly with the number of shots. Hence, one promising ap-
proach to decreasing the cost of imaging is to decrease the
number of shots used for migration. However, simply discard-
ing a significant fraction of the available shots also leads to
a loss of information and consequently image quality. There-
fore, blended imaging combines several original shot records
into a smaller number of blended shot records before migra-
tion. The goal is to achieve a small number of blended shots
while minimizing the resulting crosstalk.

In the past, several shot encoding schemes have been proposed
for blended imaging. Overall, shot encoding schemes try to
minimize the crosstalk between the original shot records which
have been combined into a single, encoded shot. Since this
crosstalk is the main source of unwanted noise in blended imag-
ing, minimizing the crosstalk leads to a final image that is
close to the result of migrating each original shot individu-
ally. In order to achieve this, shot encoding schemes vary var-
ious properties of the shot records such as amplitude, phase or
time delay. Examples for shot encoding schemes are phase-
encoding (Romero et al., 2000) and modulated-shot migration
(Soubaras, 2006). A recent survey contains an overview of
many shot encoding schemes (Godwin and Sava, 2011).

The main goal of our work is to study the performance of ran-
dom projections as shot encoding schemes. Random projec-
tions are a powerful tool for reducing the dimensionality of a

data set while approximately preserving relevant properties of
the data, such as lengths of vectors or inner products. Ran-
dom projections are widely used in the design of algorithms,
machine learning and compressive sensing. We use three dif-
ferent random projection schemes in order to reduce the di-
mensionality of a seismic data set along the source axis, which
corresponds to blending the original shot records.

BACKGROUND

Here, we briefly review the mathematical formulation of blen-
ded imaging, which we then use to formally define our random
shot-encoding schemes in the following section. Moreover, we
introduce an important concept from the field of dimensional-
ity reduction as a justification for our choice of shot-encoding
schemes.

Conventional imaging
Let WS(x, t,s) and WR(x, t,s) be the source and receiver wave-
fields for location x, time t and shot s. Using the conventional
cross-correlation imaging condition, the final image R(x) is
given by

R(x) =
∑

s

∑

t
WS(x, t,s)WR(x, t,s). (1)

Since the image values at different locations are independent,
we drop the location parameter and focus on a single location.
Moreover, let W S

t and W R
t be the column vectors containing

the source and receiver wavefields from the different shots at
time t. Then we can write the image value as a sum of inner
products:

R =
∑

t
(W S

t )
HW R

t , (2)

where (W S
t )

H denotes the conjugate transpose. In this for-
mulation, blended imaging can be seen as a way of reducing
the dimensionality of W S

t and W R
t while preserving their inner

products.

Blended imaging
For Ns original shots and Ne blended shots, a linear shot encod-
ing scheme can be described by a Ne×Ns encoding matrix E.
Each row of E corresponds to one blended shot and the entry
Ei j contains the coefficient of original shot j in blended shot i.
The main computational advantage of blended imaging comes
from the following observation: for linear migration schemes
(e.g. RTM), we can compute the blended wavefield

BS
t = EW S

t (3)

with only Ne migrations by first blending the source data ac-
cording to E and then migrating the blended data. By using the
same approach for the receiver wavefields, we get an overall
speedup of Ns/Ne compared to migrating all Ns original shots
individually. Since migration is usually the computationally

DOI  http://dx.doi.org/10.1190/segam2013-1260.1© 2013 SEG
SEG Houston 2013 Annual Meeting Page 3979

D
ow

nl
oa

de
d 

10
/1

6/
13

 to
 1

92
.5

4.
22

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Shot encoding with random projections

most expensive part of imaging, this speedup can reduce the
overall cost significantly.

Using the conventional imaging condition on the blended wave-
fields gives the folllowing image:

Re =
∑

t
(BS

t )
HBR

t (4)

=
∑

t
W S

t EHEW R
t (5)

= R+
∑

t
W S

t (E
HE− I)W R

t , (6)

where I is the identity matrix. Note that for EHE = I, blended
imaging gives the same result as imaging with individual shots.
The off-diagonal entries of the crosstalk matrix C = EHE cor-
respond to unwanted noise introduced by correlating wave-
fields from different shots. Therefore, a good shot encoding
scheme should have the following two properties: Ne is small
and EHE ≈ I.

Johnson-Lindenstrauss transforms
One of the main results in the theory of dimensionality reduc-
tion is the Johnson-Lindenstrauss (JL) lemma (Johnson and
Lindenstrauss, 1984). Informally, the lemma states that there
are mappings that approximately preserve the distances be-
tween a set of points while significantly reducing the dimen-
sionality of the point set.
Theorem 1. Let x1, . . . ,xn ∈ Rd be a set of points and let 0 <
ε < 1/2. Then there exists a mapping f : Rd → Rk with k =

O
(

logn
ε2

)
such that for all i, j

(1−ε)‖xi−x j‖2≤‖ f (xi)− f (x j)‖2≤ (1+ε)‖xi−x j‖2. (7)

We call such a mapping f a JL-transform. It can be shown that
functions of the form f (x) = Mx are JL-transforms for several
types of random matrices M. The JL-lemma and JL-transforms
have many applications in the design of algorithms, machine
learning and signal processing, e.g. as measurement matrices
in compressive sensing (Baraniuk et al., 2008).

For our use case, it is worth noting that JL-transforms also
preserve inner products. Note that

‖x+ y‖2
2−‖x− y‖2

2 = 4xHy. (8)

So approximately preserving the pointwise distances ‖x+ y‖2
and ‖x− y‖2 means that we also approximately preserve the
inner product xHy.

RANDOM SHOT-ENCODING SCHEMES

We now introduce three shot-encoding schemes based on JL
transforms. In order to complement the survey of Godwin and
Sava (2011), we also analyze the distributions of the corre-
sponding crosstalk matrices.

Gaussian ensemble
Each entry in the encoding matrix E is given by a standard

normal random variable, normalized by the number of encoded
shots:

Ei j ∼ N(0,1/Ne). (9)

The diagonal entries of the crosstalk matrix are distributed ac-
cording to a χ2-distribution with Ne degrees of freedom:

Cii =

Ne∑

j=1

E2
i j

∼ χ2
Ne
.

So E[Cii] = 1 and Var(Cii) = 2/Ne.

The off-diagonal entries are sums of product-normal distribu-
tions. Hence for i 6= j, E[Ci j] = 0 and Var(Ci j) = 1/Ne. This
shows that E[EHE] = I.

Moreover, Gaussian ensembles give JL transforms (Indyk and
Motwani, 1998; Dasgupta and Gupta, 2003).

Rademacher matrices
Each entry in the encoding matrix E is given by a ±1 fair coin
flip with normalized outcome:

Ei j =

{
+1/
√

Ne with p = 1/2
−1/
√

Ne with p = 1/2
. (10)

Since Cii =
∑Ne

j=1 E2
i j = 1, the diagonal entries of the crosstalk

matrix are always 1.

Note that Ei j ∼ (2Ber(1/2)− 1)/
√

Ne, where Ber(p) is the
Bernoulli distribution with success probability p. For i 6= j,
Eik and E jk are independent and we get

Ci j =

Ne∑

k=1

EikE jk (11)

∼ (2Bin(Ne,1/2)−Ne)/Ne, (12)

where Bin(n, p) is the Binomial distribution with n trials and
success probability p. So for the off-diagonal entries, we have
E[Ci j] = 0 and Var(Ci j) = 1/Ne.

Finally, Rademacher matrices are also JL transforms (Achliop-
tas, 2003).

Sparse random matrices
We consider sparse random matrices with an entrywise distri-
bution similar to Rademacher matrices but with an additional
sparsity parameter q:

Ei j =





+1/
√

Neq with p = q/2
0 with p = 1−q
−1/
√

Neq with p = q/2
. (13)

Due to the similarity with Rademacher matrices, we omit the
calculations for the distribution of Ci j . The mean and variance
of Ci j are the same as for Rademacher matrices.

For q down to 1/3, this type of sparse random matrix is known
to give JL transforms (Achlioptas, 2003).
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Shot encoding with random projections

RESULTS

In order to evaluate our random shot-encoding schemes, we
study the trade-off between the number of blended shots Ne
and the final image quality on two small synthetic models and
the Sigsbee2A data set.

Evaluation baseline
We compare our shot-encoding schemes with the images com-
puted from Ne equidistant original shots. This selection of
original shots is also called decimated shot encoding. We use
this baseline for two reasons:

• The computational cost of migrating Ne original shots
is the same as that of migrating Ne blended shots.

• Decimated shot encoding performs better than most
other shot-encoding schemes reported in the literature
(Godwin and Sava, 2011).

Hence, our random shot encoding schemes would ideally pro-
duce a better image than the result of decimated shot encoding
with the same number of shots.

Image quality comparison
In order to assess the quality of an image computed with a cer-
tain shot encoding scheme, we compare the it to a correspond-
ing reference image. For all our models, we use the result of
imaging with a large number of individual shots as reference
image. The rationale behind this comparison method is that we
use shot-encoding in order to approximate the result of imag-
ing with individual shots.

The first measure we consider is the normalized `2-error:

Err2(Re,R) =
‖R−Re‖2

‖R‖2
. (14)

Moreover, we consider the structural similarity index (SSIM),
which is a standard measure in the evaluation of image and
video codecs (Wang et al., 2004). The SSIM is designed to
quantify similarity as perceived by the human visual system.
It is defined on windows (e.g. 8×8 blocks) of the two images:

SSIM(a,b) =
(2µaµb + c1)(2σab + c2)

(µ2
a +µ2

b + c1)(σ2
a +σ2

b + c2)
, (15)

where

• µx is the average of window x
• σx is the variance of window x
• σxy is the covariance of windows x and y
• c1 and c2 are stabilization constants.

The final SSIM value is the average over all windows. The
SSIM of two identical images is 1.

Small synthetic models
We now apply the evaluation methods outlined above on two
small synthetic models. Both models consist of 100×100 grid
points and the reference images are computed from 100 indi-
vidual shots. Figures 2 and 1 show the velocity models and
reference images. Figures 5 to 4 contain the corresponding
results. For the random encoding schemes, each point is the
average of 20 runs.

(a) Velocity model (b) Reference image

Figure 1: The horizontal reflector model.

(a) Velocity model (b) Reference image

Figure 2: The fault model.

While decimated shot encoding gives better results for larger
number of shots (ten or more), random shot encoding schemes
perform better for small number of shots.

Sigsbee2A
For the Sigsbee2A model (figure 7(a)), we use a reference im-
age computed from all 500 shots. In order to focus the quality
comparison on the relevant features below the salt structure,
we compute our quality measures only on the lower-left trian-
gular part of the image. Figure 7(b) contains the relevant part
of the final reference image.

Figures 8 and 9 show the results of the Sigsbee2A experiments.
Due to the size of the data set, each data point of the random
schemes now correponds to only a single run. As before, deci-
mated shot encoding performs better for larger number of shots
while random shot encoding has a small advantage for a small
number of shots.
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Figure 3: `2-error results for the horizontal reflector model.
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Figure 4: SSIM results for the horizontal reflector model.
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Figure 5: `2-error results for the fault model.
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Figure 6: SSIM results for the fault model.

(a) Velocity model

(b) Reference image. We use only the part below the red line
for comparing final images.

Figure 7: The Sigsbee2A model.
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Figure 8: `2-error results for the Sigsbee2A model.
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Figure 9: SSIM results for the Sigsbee2A model.

CONCLUSIONS

We have established a novel connection between blended imag-
ing and dimensionality reduction with the JL lemma. Fol-
lowing this approach, we have proposed three shot encoding
schemes based on random projections. Our experiments on
three data sets demonstrate that our random encoding schemes
are competitive with decimated shot encoding (and hence also
with other shot encoding schemes). For small numbers of
shots, random shot encoding performs at least as good as dec-
imated shot encoding and significantly better on some veloc-
ity models. Since the cost of blending shot records is usu-
ally much smaller than the cost of migration, the computa-
tional overhead incurred by random shot encoding is negli-
gible. Moreover, random shot encoding has the potential to
preserve more information of the blended shots, which can en-
able more sophisticated approaches to recovering the original
wavefields from blended data. This direction is the focus of
our current work.
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