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Abstract

The goal of sparse recovery is to recover a k-sparse signal x ∈ Rn from (possibly noisy)
linear measurements of the form y = Ax, where A ∈ Rm×n describes the measurement process.
Standard results in compressive sensing show that it is possible to recover the signal x from
m = O(k log(n/k)) measurements, and that this bound is tight. The framework of model-
based compressive sensing [BCDH10] overcomes the lower bound and reduces the number of
measurements further to O(k) by limiting the supports of x to a subsetM of the

(
n
k

)
possible

supports. This has led to many measurement-efficient algorithms for a wide variety of signal
models, including block-sparsity and tree-sparsity.

Unfortunately, extending the framework to other, more general models has been stymied by
the following obstacle: for the framework to apply, one needs an algorithm that, given a signal
x, solves the following optimization problem exactly :

arg min
Ω∈M

‖x[n]\Ω‖2

(here x[n]\Ω denotes the projection of x on coordinates not in Ω). However, an approximation
algorithm for this optimization task is not sufficient. Since many problems of this form are
not known to have exact polynomial-time algorithms, this requirement poses an obstacle for
extending the framework to a richer class of models.

In this paper, we remove this obstacle and show how to extend the model-based compressive
sensing framework so that it requires only approximate solutions to the aforementioned optimiza-
tion problems. Interestingly, our extension requires the existence of approximation algorithms
for both the maximization and the minimization variants of the optimization problem.

Further, we apply our framework to the Constrained Earth Mover’s Distance (CEMD) model
introduced in [SHI13], obtaining a sparse recovery scheme that uses significantly less than
O(k log(n/k)) measurements. This is the first non-trivial theoretical bound for this model, since
the validation of the approach presented in [SHI13] was purely empirical. The result is obtained
by designing a novel approximation algorithm for the maximization version of the problem and
proving approximation guarantees for the minimization algorithm described in [SHI13].



1 Introduction
Over the last decade, a new “linear” approach for obtaining a succinct approximate representation of
n-dimensional vectors (or signals) has been discovered. For any signal x, the representation is equal
to Ax, where A is an m × n matrix, or possibly a random variable chosen from some distribution
over such matrices. The vector Ax is often referred to as the measurement vector or linear sketch
of x. Although m is typically much smaller than n, the sketch Ax often contains plenty of useful
information about the signal x.

A particularly useful and well-studied problem is that of robust sparse recovery. We say that a
vector x′ is k-sparse if it has at most k non-zero coordinates. The robust sparse recovery problem is
typically defined as follows: given the measurement vector y = Ax+ e, where x is a k-sparse vector
and e is the “noise” vector,1 the recovery algorithm reports x∗ such that:

‖x− x∗‖2 ≤ C‖e‖2 . (1)

Sparse recovery has a tremendous number of applications in areas such as compressive sensing of
signals [CRT06, Don06], genetic data analysis [KBG+10], and data stream algorithms [Mut05, GI10].

It is known [GI10] that there exist matrices A and associated recovery algorithms that pro-
duce approximations x∗ satisfying Equation (1) with a constant approximation factor C, and
sketch length m = O(k log(n/k)) . It is also known that the bound on the number of measure-
ments is asymptotically optimal for some constant C, see [BIPW10] and [FPRU10] (building
on [GG84, Glu84, Kas77]). The necessity of the “extra” logarithmic factor multiplying k is quite
unfortunate: the sketch length determines the “compression rate”, and for large n any logarithmic
factor can worsen that rate tenfold. However, more careful modeling offers a way to overcome
the aforementioned limitation. In particular, after decades of research in signal modeling, signal
processing researchers know that not all supports (i.e., sets of non-zero coordinates) are equally
common. For example, if a signal is a function of time, large coefficients of the signal tend to occur
consecutively. This phenomenon can be exploited by assuming that the support of the measured
vector x belongs to a given “model” family of supports Mk (i.e., x is Mk-sparse). The original
k-sparse recovery problem corresponds to the case whenMk is the family of all k-subsets of [n].

An elegant model-based sparse recovery scheme was recently provided in the work of Baraniuk
et al. [BCDH10]. The scheme has the property that, for any “computationally tractable” family of
supports of “small” size, it guarantees a near-optimal sketch length m = O(k), i.e., without any
logarithmic factors. The framework is general but relies on two model-specific conditions:

1. Model-based Restricted-Isometry Property (RIP): the mapping A must approximately preserve
the norm of allM-sparse vectors, and

2. Model projection oracle: the model must be supported by an efficient algorithm that, given an
arbitrary vector x, finds theM-sparse vector x′ that is closest to x, i.e., minimizes the “tail”
error ‖x− x′‖2.

By constructing mappings A satisfying (1) and algorithms satisfying (2), several algorithms were
developed for a wide variety of signal models, including block-sparsity and tree-sparsity. In fact, it

1The robust sparse recovery problem is the most general version of sparse recovery. In particular, it subsumes the
so-called stable sparse recovery problem, where the measured vector x is not assumed to be k-sparse, the measurement
vector is equal to Ax, and the goal is to recover an approximation x∗ such that ‖x−x∗‖p ≤ C(k)mink-sparse x′ ‖x−x′‖q
for some norm parameters p, q. This is because for the vector x′ that minimizes the expression, we have x = x′+(x−x′)
where x′ is k-sparse, and the measurement vector is equal to Ax = Ax′ + A(x − x′) = Ax′ + e. As a result we will
not specifically consider stable sparse recovery in this paper, but refer the reader to Appendix B of [IP11] for details.
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is known that the condition (1) holds for a much more general class of signal models [BCDH10].
Unfortunately, extending the whole framework to other models faces a considerable obstacle: for
the framework to apply, the model projection algorithm has to be exact.2 This excludes many
useful design paradigms employed in approximation algorithms, such as greedy approaches, LP
and SDP rounding, etc. As a result, most of the existing algorithms are based on exact dynamic
programming [BCDH10], solving LPs without an integrality gap [HDC09], etc.

1.1 Our results
The contributions of this paper are two-fold. First, we extend the model-based compressive sensing
framework so that it tolerates approximation algorithms. Second, we apply the new framework
to a signal model called Constrained Earth Mover’s Distance Model, obtaining the first theoretical
bounds on its measurement complexity.

Approximate model projection oracles We extend the model-based framework to support
approximatemodel projection oracles. Our extension allows approximation, but requires two oracles:
the tail oracle, which approximates minΩ∈M ‖x[n]\Ω‖2, as well as the head oracle, which approximates
maxΩ∈M ‖xΩ‖2. For any model, given these two oracles as well a matrix A that satisfies the model-
based RIP, our framework leads to an algorithm satisfying Equation 1 (see Corollary 14 for details).

Sparse recovery for the Constrained Earth Mover’s Distance Model We employ the
new framework to obtain a model-based compressive sensing algorithm for the Constrained Earth
Mover’s Distance (CEMD) model introduced in [SHI13]. In this model, the signal coordinates form
an h × w grid and the support of each column has size at most s, for n = hw and k = sw. For
each pair of consecutive columns (say c and c′), we define the EMD distance between them to be
the minimum cost of matching the sets supp(c) and supp(c′) viewed as point-sets on a line. The
support set is said to belong to the CEMD model with budget B if the sum of all EMD distances
between the consecutive columns is at most B. See Section 3 for the formal definition.

We design approximation algorithms for both the head and the tail oracles for the CEMD model.
Both algorithms have bicriterion approximation guarantees. Specifically, we develop:

1. An approximate tail oracle, which outputs a support set with the tail value at most O(1)
larger than the optimum and with the budget cost of O(B) (Theorem 18), and

2. An approximate head oracle, which outputs a support set with the head value at least Ω(1)
of the optimum and with the budget cost of O(B log n) (Theorem 16).

The tail oracle is obtained using min-cost max-flow techniques and Lagrangian relaxation. The
head oracle is obtained using a greedy algorithm that iteratively selects s paths forming the matching
with varying budgets. We then instantiate the approximate model-based framework with these al-
gorithms to obtain a compressive sensing scheme for the CEMD model that uses O(k log(Bk log( kw )))

measurements. For slowly varying supports, i.e., B = O(k), the bound specializes toO(k log log( kw )).

1.2 Related work
There has been a large of body of work dedicated to algorithms for model-based compressive sensing
(see, for example, the survey [DE11]). Unfortunately, the success of most of these algorithms relies
on the availability of an exact model-projection oracle. The only works on approximate projection

2This fact might appear quite surprising, given that the framework ultimately produces an approximation al-
gorithm. However, as we show in Appendix B, the framework provably leads to incorrect recovery if the model
projection algorithm is not exact. Of course, this does not exclude the possibility that for specific models the original
algorithm produces correct results, either in theory or in practice.
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oracles that we are aware of either provide additive approximation guarantees [Blu11, KC12], or make
very strong assumptions about the measurement matrix A or the projection oracle [GE13, DNW13].
Specifically, [Blu11] discusses a Projected Landweber-type method that succeeds even when the
projection oracle is approximate; however, they assumed that the projection oracle provides an ε-
additive tail approximation factor. Under such conditions, there exists an algorithm that returns a
solution within an O(ε)-neighborhood of the optimal solution. However, approximation algorithms
with low additive approximation factors are rather rare. On the other hand, [KC12] assumes the
existence of a variant of the approximate head oracle (called PMAPε), but provides approximation
guarantees with an additive term of O(

√
ε ‖xΩ‖) where Ω is the set of the k largest coefficients in

x (cf. Theorem 4.3). The paper [GE13] present a sparse recovery algorithm that succeeds with
multiplicative approximation guarantees. However, their framework uses only the tail oracle and
therefore is subject to the lower bound outlined in Appendix B. In particular, their guarantees need
to make very stringent assumptions on the singular values of the sensing matrix. Finally, while the
paper [DNW13] also assumes the existence of multiplicative approximate oracles, our approach in
comparison succeeds with considerably weaker assumptions.

The Constrained Earth Mover’s Distance model was introduced in [SHI13]. The model was
motivated by the task of reconstructing time sequences of spatially sparse signals,3 e.g. seismic
measurements. The paper introduced a tail oracle algorithm for the problem and empirically evalu-
ated the performance of the scheme. Although the use of the oracle was heuristic, the experiments
demonstrate substantial reduction in the number of measurements needed to recover slowly varying
signals. In this paper we present approximation guarantees for the tail oracle from [SHI13], a novel
algorithm for the head oracle, as well as the framework for showing that these two sub-routines
yield a model-based compressive sensing scheme with a non-trivial measurement bound.

Another related paper is [IP11], whose authors propose the use of the EMD to measure the
approximation error of the recovered signal in compressive sensing. In contrast, we are using the
EMD to constrain the support set of the signals.

2 Preliminaries
A vector x ∈ Rn is said to be k-sparse if at most k ≤ n coordinates are nonzero. The support of x,
supp(x) ⊆ [n], is the set of indices with nonzero entries in x. For a matrix X ∈ Rh×w, the support
supp(X) ⊆ [h] × [w] is the set of indices corresponding to nonzero entries. We denote the support
of a column in X with col-supp(X, c) = {r | (r, c) ∈ X}.

Often, some prior information is available about the support of a sparse signal x; for example,
in the case of “bursty” signals, the nonzeros of x may occur as a small number of blocks. A more
general way to model such prior information is to consider all possible k-sparse signals with only
a few permitted configurations of supp(x). This restriction motivates the notion of a structured
sparsity model, which is geometrically equivalent to a subset of the

(
n
k

)
canonical subspaces of Rn.

Definition 1 (Structured sparsity model4). A structured sparsity model Mp ⊆ Rn is the set of
vectors Mp = {x ∈ Rn | supp(x) ⊆ S, S ∈ Mp} , where Mp = {Ω1, . . . ,Ωap} is the set of allowed
structured supports with Ωi ⊆ [n]. We call ap = |Mp| the size of the modelMp.

The above definition utilizes the concept of a model parameter, p ∈ P, where P is the set of
possible parameters for a given model. This parameter is model dependent, and quantitatively

3There has been a substantial amount of work devoted to such signals (e.g., [VL10, DSB+05]). We refer the
reader to [SHI13] for a more detailed discussion about the model and its applications.

4Definition 2 in [BCDH10].
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encodes the additional structure of Mp (for example, for the case of block-sparsity, p can denote
the block size). For two model parameters p and q, the structured sparsity modelMp⊕ q is defined
by the set of supports Mp⊕ q = {Ω ∪ Γ |Ω ∈Mp and Γ ∈Mq}.

The framework of model-based compressive sensing [BCDH10] leverages the above notion of
a structured sparsity model to design robust sparse recovery schemes that improve upon existing
approaches. Specifically, the framework states that it is possible to recover a structured-sparse
signal x ∈Mp from linear measurements y = Ax+ e, provided that two conditions are satisfied: (i)
the matrix A satisfies a type of restricted isometry property known as the model-RIP, and (ii) there
exists an oracle that can efficiently project an arbitrary signal in Rn onto the modelMp. Formally:

Definition 2 (Model-RIP5). The matrix A ∈ Rm×n has the (δ, p)-model-RIP if the following in-
equalities hold for all x ∈Mp:

(1− δ)‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + δ)‖x‖22 . (2)

Definition 3 (Model projection oracle6). A model projection oracle is a function M : Rn×P → Rn
such that the following two properties hold for all x ∈ Rn and p ∈ P. (i) Output model sparsity:
M(x, p) ∈Mp. (ii) Optimal model projection: ‖x−M(x, p)‖2 = minx′∈Mp‖x− x′‖2.

The authors of [BCDH10] show that if the above two conditions are satisfied, then a simple
modification of CoSaMP [NT09], or IHT [BD09a] (popular, iterative algorithms for sparse recovery)
can be tailored to work for robust sparse recovery for any arbitrary structured sparsity model.
We focus on IHT in this paper, and refer to the modified algorithm as Model-IHT. The potential
benefit of such an approach stems on the model-RIP assumption: the following result indicates that
with high probability, a large class of measurement matrices A can satisfy the model-RIP with a
near-optimal number of rows:

Fact 4 ([BD09b, BCDH10]). Let Mp be a structured sparsity model and let k be the size of the
largest support in the model, i.e., k = maxΩ∈Mp |Ω|. Let A ∈ Rm×n be a matrix with i.i.d. Gaussian
entries. Then there is a constant c such that for fixed δ, any t > 0 and m ≥ c (k + log ap), A has
the (δ, p)-model-RIP with probability at least 1− e−t.

If the number of permissible supports (equivalently, subspaces) ap is asymptotically smaller than(
n
k

)
, then m can be as small as O(k) and this behavior is order-optimal. However, the efficiency of

the above framework crucially depends on the running time of the model-projection oracle, since the
overall recovery algorithm (Model-IHT) involves several invocations of the model projection oracle.
See [DE11] for a discussion of several models that admit efficient projection algorithms.

3 The CEMD model
Before proceeding to our main results, we discuss a special structured sparsity model known as the
Constrained EMD model [SHI13]. A key ingredient in the model is the Earth Mover’s Distance
(EMD), also known as the Wasserstein metric or Mallows distance [LB01]:

Definition 5 (EMD). The EMD of two sets A,B ⊂ N with |A| = |B| is defined as EMD(A,B) =
minπ:A→B

∑
a∈A|a− π(a)|, where π ranges over all one-to-one mappings from A to B.

Observe that EMD(A,B) is the cost of a min-cost matching between A and B. Now consider
the case where the sets A and B correspond to the supports of two exactly k-sparse signals, so that

5Definition 3 in [BCDH10].
6Section 3.2 in [BCDH10].
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|A| = |B| = k. In this case, the EMD not only measures how many indices change, but also how far
the supported indices move. This intuition for pairs of signals can be generalized to an ensemble of
sparse signals.

Definition 6 (Support-EMD of a matrix). Let A ⊆ [h] × [w] be the support of a matrix with
exactly s-sparse columns, i.e., |col-supp(A, c)| = s for c ∈ [w]. Then the EMD of A is defined as
EMD(A) =

∑w−1
c=1 EMD(col-supp(A, c), col-supp(A, c+ 1)).

If the columns of A are not exactly s-sparse, we define the EMD of A as the minimum EMD
of any support that contains A and has exactly s-sparse columns. Let s = maxc∈[w]|col-supp(A, c)|.
Then EMD(A) = minB EMD(A ∪ B), where B ⊆ [h] × [w] and A ∪ B is a support with exactly
s-sparse columns, i.e., |{r | (r, c) ∈ A ∪B}| = s for c ∈ [w].

The above definitions motivate a natural structured sparsity model that, in essence, characterizes
ensembles of sparse signals with correlated supports. Suppose we interpret the signal x ∈ Rn as
a matrix X ∈ Rh×w with n = hw. For given dimensions of the signal X, our model has two
parameters: (i) k, the total sparsity of the signal. For simplicity, we assume here and in the rest of
this paper that k is divisible by w. Then the sparsity of each column X∗,i is s = k/w. (ii) B, the
support EMD of X. We call this parameter the EMD budget. Formally, we have:

Definition 7 (Constrained EMD model). The Constrained EMD (CEMD) model is the struc-
tured sparsity model Mk,B defined by the set of supports Mk,B = {Ω ⊆ [h] × [w] |EMD(Ω) ≤
B and |col-supp(Ω, c)| = s for c ∈ [w]}.

The parameter B controls how much the support can vary from one column to the next. Setting
B = 0 forces the support to remain constant across all columns, which corresponds to block sparsity
(the blocks are the rows of X). A value of B ≥ kh effectively removes the EMD constraint because
each supported element is allowed to move across the full height of the signal. In this case, the
model demands only s-sparsity in each column. It is important to note that we only constrain the
EMD of the column supports in the signal, not the actual amplitudes. Figure 4 in Appendix C
illustrates the CEMD model with an example.

We show that the sum of two signals in the CEMD model also belongs to the CEMD model (with
reasonably adjusted parameters). To see this, let X,Y ∈ Rh×w. Moreover, assume that X ∈Mk1,B1

and Y ∈ Mk2,B2 . Then X + Y ∈ Mk1+k2,B1+B2 . Each column of X + Y is k1+k2
w sparse. Also, we

can use the matchings in X and Y to construct a matching for X + Y with support-EMD at most
B1 +B2. Further, this means that for our model,Mp1⊕ p2 ⊆Mp1+p2 .

Suppose that our objective is to develop a sparse recovery scheme for the Constrained EMD
model. As the first ingredient, we establish the Model-RIP for Mk,B, i.e., we characterize the
number of permissible supports (or equivalently, the number of subspaces) ak,B in the model and
invoke Fact 4. For simplicity, we will assume that w = Ω(log h), i.e., the following bounds apply for
all signals X, excluding very thin and very tall matrices X. The following result is novel:

Theorem 8. The number of subspaces satisfies log ak,B = O
(
k log B

k

)
.

Proof. For given h, w, B and k, the support is fixed by the following three decisions: (i) The
choice of the supported elements in the first column of X. (ii) The distribution of the EMD budget
B over the k supported elements. This corresponds to distributing B balls into k bins. (iii) For
each supported element, the direction (up or down) to the matching element in the next column
to the right. Multiplying the choices above gives

(
h
s

)(
B+k−1

k

)
2k, an upper bound on the number of
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supports. Using the inequality
(
a
b

)
≤
(
a e
b

)b, we get

log ak,B ≤ log

((
h

s

)(
B + k − 1

k

)
2k
)

≤ s log
h

s
+ k log

B + k

k
+O(s+ k)

= O

(
k log

B

k

)
.

If we allow each supported element to move a constant amount from one column to the next,
we get B = O(k) and hence, from Fact 4, m = O(log ak,B + k) = O(k). As mentioned above, this
bound is information-theoretically optimal. Furthermore, for B = kh (i.e., allowing every supported
element to move anywhere in the next column) we get m = O(k log n), which almost matches the
standard compressive sensing bound of O(k log n

k ).

4 Approximate Model-IHT
As the second ingredient in our proposed sparse recovery scheme, we require a model projection
oracle that, for any arbitrary signal x, returns a signal x′ ∈ Mk,B with the optimal tail error.
In Sections 5 and 6, we develop algorithms that perform such a projection; however, they are only
approximate and not necessarily optimal. Therefore, we extend the model-based compressive sensing
framework to work with approximate projection oracles (formalized in the definitions below). This
extension enables model-based compressive sensing in cases where optimal model projections are
beyond our reach, but approximate projections are still efficiently computable. Since this extension
can be of independent interest, we present the results in a very general setting.

Definition 9 (Head approximation oracle). Let c ∈ R and f : P → P. A (c, f)-head approximation
oracle is a function H : Rn×P → Rn such that the following two properties hold for all x ∈ Rn and
p ∈ P:
Output model sparsity: H(x, p) = xΩ for some Ω ∈Mf(p).
Head approximation: ‖H(x, p)‖2 ≥ c‖xΩ‖2 for all Ω ∈Mp.

Definition 10 (Tail approximation oracle). Let c ∈ R and f : P → P. A (c, f)-tail approximation
oracle is a function T : Rn × P → Rn such that the following two properties hold for any x ∈ Rn
and p ∈ P:
Output model sparsity: T (x, p) = xΩ for some Ω ∈Mf(p).
Tail approximation: ‖x− T (x, k)‖2 ≤ c‖x− x′‖2 for all x′ ∈Mp.

We sometimes write Hp(x) instead of H(x, p), and Tp(x) instead of T (x, p) for clarity of presen-
tation. We trivially observe that a head approximation oracle with approximation factor cH = 1 is
equivalent to a tail approximation oracle with factor cT = 1, and vice versa. Further, we observe
that for any model Mp, if x ∈ Mp then T (x, p) = x regardless of the choice of tail approxima-
tion oracle; however, H(x, p) need not necessarily return the signal x. An important feature of
the above definitions of approximate oracles is that they allow for projections into larger models.
In particular, the oracle can potentially return a signal that belongs to a model Mf(p) specified
by the model parameter f(p); for instance, a tail-approximation oracle for the CEMD model with
parameters (k,B) is allowed to return a signal with parameters (2k, 2B). We exploit this feature in
our algorithms below.

Equipped with these notions of approximate oracles, we introduce a sparse recovery algorithm for
model-based compressive sensing that we call Approximate Model-IHT (AM-IHT); see Algorithm 1.
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Algorithm 1 Approximate model-IHT
function AM-IHT(y,A,p,t)

x1 ← 0
for i← 1, . . . , t do

xi+1 ← Tp(x
i +Hp⊕ fT (p)(A

T (y −Axi)))
return xt+1

Note that we use both a (cH , fH)-head approximation oracle H and a (cT , fT )-tail approximation
oracle T in every iteration of AM-IHT. This is in contrast with the usual version of IHT (and its
model-based extension) which uses only one oracle projection.7 Our central result (Theorem 13)
states that if a matrix A satisfies the model-RIP with parameters (δ, fH(p ⊕ fT (p)) ⊕ p ⊕ fT (p)),
and approximation oracles H and T are available, then AM-IHT exhibits provably robust recovery.

We make the following assumptions in the analysis of AM-IHT: (i) x ∈ Rn and x ∈ Mp. (ii)
y = Ax + e for an arbitrary e ∈ Rm (the measurement noise). (iii) A has (δ, t)-model-RIP for
t = fH(p ⊕ fT (p)) ⊕ p ⊕ fT (p). Moreover, we define the following quantities as shorthands: (i)
ri = x− xi . (ii) ai = xi +Hp⊕ fT (p)(A

T (y −Axi)) . (iii) bi = AT (y −Axi) . (iv) Ω = supp(ri) ., and
(v) Γ = supp(Hp⊕ fT (p)(b

i)) .
As a preliminary lemma, we show that we can use the RIP of A on relevant vectors.

Lemma 11. For all x ∈ Rn with supp(x) ∈ Ω ∪ Γ we have

(1− δ)‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + δ)‖x‖22 .

Proof. By the definition of T , we have supp(xi) ∈ MfT (p). Since supp(x) ∈ Mp, we have supp(x−
xi) ∈ Mp⊕ fT (p) and hence Γ ∈ Mp⊕ fT (p). Moreover, supp(Hp⊕ fT (p)(b

i)) ∈ MfH(p⊕ fT (p)) by the
definition of H. Therefore Ω ∪ Γ ∈ MfH(p⊕ fT (p))⊕ p⊕ fT (p), which allows us to use the model-RIP
of A on x with supp(x) ∈ Ω ∪ Γ.

As a result of Lemma 11, we can use the standard consequences of the RIP, such as the approx-
imate orthogonality defined in Section A.1. Just as in IHT, we use the residual proxy AT (y −Axi)
as update in each iteration. We show that H preserves the relevant part of the residual proxy.

Lemma 12.

∥∥∥ATΩ\ΓAri∥∥∥
2
≤

√
1− c2

H (1 + δ) + δ

cH

∥∥ri∥∥
2

+
√

1 + δ


√

1− c2
H + 1

cH
+ 1

‖e‖2 .
Proof. For the rest of this proof, we will denote ‖·‖ to denote the `2-norm. The head approximation

7In fact, we show that signal recovery using conventional model-IHT fails in cases where, instead of an exact
projection oracle, only a tail approximation oracle is employed in every step; see Appendix B.
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guarantee of H gives us the following series of results:∥∥biΓ∥∥2 ≥ c2
H

∥∥biΩ∥∥2∥∥biΓ∩Ω

∥∥2
+
∥∥∥biΓ\Ω∥∥∥2

≥ c2
H

∥∥biΓ∩Ω

∥∥2
+ c2

H

∥∥∥biΩ\Γ∥∥∥2

(1− c2
H)
∥∥biΓ∩Ω

∥∥2
+
∥∥∥biΓ\Ω∥∥∥2

c2
H

≥
∥∥∥biΩ\Γ∥∥∥2

‖
√

1− c2
H biΓ∩Ω + biΓ\Ω‖
cH

≥
∥∥∥biΩ\Γ∥∥∥ .

We then expand bi = AT (y − Axi) and apply consequences of the RIP, as well as the triangle
inequality, several times:

1

cH
‖
√

1− c2
H ATΓ∩ΩAr

i +
√

1− c2
H ATΓ∩Ωe+

ATΓ\ΩAr
i +ATΓ\Ωe‖ ≥

∥∥∥ATΩ\ΓAri +ATΩ\Γe
∥∥∥ ,√

1− c2
H

cH

∥∥ATΓ∩ΩAr
i
∥∥+

√
1− c2

H

cH

∥∥ATΓ∩Ωe
∥∥+

1

cH
‖TΓ\ΩAr

i‖+
1

cH

∥∥∥ATΓ\Ωe∥∥∥ ≥ ∥∥∥ATΩ\ΓAri∥∥∥− ∥∥∥ATΩ\Γe∥∥∥ ,√
1− c2

H (1 + δ)

cH

∥∥ri∥∥+

√
1− c2

H

√
1 + δ

cH
‖e‖+

δ

cH

∥∥ri∥∥+

√
1 + δ

cH
‖e‖ ≥

∥∥∥ATΩ\ΓAri∥∥∥− √1 + δ ‖e‖ .

Rearranging and grouping terms gives the statement of the lemma:

∥∥∥ATΩ\ΓAri∥∥∥ ≤
√

1− c2
H (1 + δ) + δ

cH

∥∥ri∥∥
+
√

1 + δ


√

1− c2
H + 1

cH
+ 1

‖e‖ .

We now prove the main theorem: geometric convergence for approximate model-IHT.

Theorem 13 (Convergence of AM-IHT).

∥∥ri+1
∥∥

2
≤ (1 + cT )


√

1− c2
H (1 + δ) + δ

cH
+ 2δ

∥∥ri∥∥
2

+ (1 + cT )
√

1 + δ


√

1− c2
H + 1

cH
+ 4

‖e‖2 .
8



Proof. Again, we use ‖·‖ to denote the `2-norm. The triangle inequality gives us∥∥ri+1
∥∥ =

∥∥x− xi+1
∥∥

≤
∥∥x− ai∥∥+

∥∥xi+1 − ai
∥∥

≤ (1 + cT )
∥∥x− ai∥∥ ,

where the last line follows because T is a (cT , fT )-tail approximation oracle. We now bound
∥∥x− ai∥∥:∥∥x− ai∥∥ =

∥∥x− xi −Hp⊕ fT (p)(b
i)
∥∥

=
∥∥ri −Hp⊕ fT (p)(b

i)
∥∥

≤
∥∥ri − biΩ∥∥+

∥∥Hp⊕ fT (p)(b
i)− biΩ

∥∥ .
Looking at each term individually, we have:∥∥ri − biΩ∥∥ =

∥∥ri −ATΩAri +ATΩe
∥∥

≤
∥∥(I −ATΩAΩ

)
ri
∥∥+

∥∥ATΩe∥∥
≤ δ
∥∥ri∥∥+

√
1 + δ ‖e‖ ,

and ∥∥Hp⊕ fT (p)(b
i)− biΩ

∥∥ =
∥∥biΓ − biΩ∥∥

=
∥∥ATΓAri −ATΓe−ATΩAri −ATΩe∥∥

≤
∥∥ATΓAri −ATΩAri∥∥+ 2

√
1 + δ ‖e‖

=
∥∥∥ATΓ\ΩAri −ATΩ\ΓAri∥∥∥+ 2

√
1 + δ ‖e‖

≤
∥∥∥ATΓ\ΩAri∥∥∥+

∥∥∥ATΩ\ΓAri∥∥∥+ 2
√

1 + δ ‖e‖

≤ δ
∥∥ri∥∥+

∥∥∥ATΩ\ΓAri∥∥∥+ 2
√

1 + δ ‖e‖ .

Using Lemma 12 gives us:

‖Hp⊕ fT (p)(b
i)− biΩ‖

≤


√

1− c2
H (1 + δ) + δ

cH
+ δ

∥∥ri∥∥
+
√

1 + δ


√

1− c2
H + 1

cH
+ 3

‖e‖ .
Combining the inequalities above, we get

∥∥ri+1
∥∥ ≤ (1 + cT )


√

1− c2
H (1 + δ) + δ

cH
+ 2δ

∥∥ri∥∥
+ (1 + cT )

√
1 + δ


√

1− c2
H + 1

cH
+ 4

‖e‖ .
9



Corollary 14. For δ = 0.01, cT = 1.5 and cH = 0.95 we get

‖x−AM-IHT(y,A, p, t)‖2 ≤ 0.91t‖x‖2 + 150.34‖e‖2 .

Proof. We iterate Theorem 13 and use 13.53
∑∞

i=0 0.91i ≤ 150.34.

These results show that AM-IHT exhibits an overall recovery guarantee that is comparable to
the existing model-based compressive sensing results of [BCDH10], despite using only approximate
projection oracles. This has the potential to significantly extend the scope of efficient model-based
sparse recovery methods. We instantiate this in the context of the CEMD model as follows.

5 Head Approximation Algorithm
First, we develop a head approximation oracle for the CEMD model. Ideally, we would have an
exact projection algorithm H mapping arbitrary signals to signals in Mk,B with the guarantee
‖Hk,B(x)‖2 = maxΩ∈Mk,B

‖xΩ‖2 . However, this appears to be a hard problem. Instead, we propose
an efficient, greedy algorithm satisfying the (somewhat looser) properties of a head approximation
oracle (Definition 9). Specifically, we develop an algorithm that performs the following task: given
an arbitrary signal x and an approximation ratio c, find a support Ω ∈ MO(k),O(B log k) such that
‖xΩ‖2 ≥ cmaxΓ∈Mk,B

‖xΓ‖2 .
As before, we will interpret our signal x as a matrix X ∈ Rh×w. For a signal x ∈Mk,B, we may

interpret each support of x as a set of s = k/w paths from the leftmost to the rightmost column
in X. Hence the goal of our algorithm is to find a set of s such paths that cover a large amount of
amplitudes in the signal. Let OPT denote the largest amplitude sum achievable with a support in
Mk,B, i.e., OPT = maxΩ∈Mk,B

‖xΩ‖1 . Our method proceeds as follows. We first describe a scheme
that allows us to get a constant fraction of the optimal amplitude sum OPT . Then, we repeat this
algorithm several times in order to boost the approximation ratio while increasing the sparsity and
EMD budget of the result only moderately.

Consider the closely related problem where Xi,j ≥ 0 for all i, j and we are interested in the
`1-guarantee

‖xΩ‖1 ≥ c max
Ω∈Mk,B

‖xΩ‖1 . (3)

We can easily convert the input signal x into a matrix satisfying these constraints by squaring each
amplitude. This modification allows us to simply add coefficient amplitudes along paths in the
analysis of the head approximation algorithm.

Definition 15 (Path in a matrix). Given a matrix X ∈ Rh×w, a path p ⊆ [h] × [w] is a set of w
locations in X with one location per column, i.e., |p| = w and

⋃
(i,j)∈p j = [w]. The weight of p is

the sum of amplitudes on p, i.e., wX(p) =
∑

(i,j)∈pXi,j . The EMD of p is the sum of the EMDs
between locations in neighboring columns. Let j1, . . . , jw be the locations of p in columns 1 to w.
Then, EMD(p) =

∑w−1
i=1 |ji − ji+1| .

Trivially, we have that a path p in X is a support with wX(p) = ‖Xp‖1 and EMD(p) =
EMD(supp(Xp)). Therefore, we can iteratively build a support Ω by finding s paths in X. Al-
gorithm 2 contains the description of HeadApproxBasic. We show that HeadApproxBasic
finds a constant fraction of the amplitude sum of the best support while only moderately increasing
the size of the model. For simplicity, denote w(p) := wX(p), and w(i)(p) := wX(i)(p). We obtain
the result:

10



Algorithm 2 Basic head approximation algorithm
function HeadApproxBasic(X, k,B)

X(1) ← X
for i← 1, . . . , s do

Find the path qi from column 1 to column w in X(i) that maximizes w(i)(qi)
and uses at most EMD-budget

⌊
B
i

⌋
.

X(i+1) ← X(i)

for (u, v) ∈ qi do
X

(i+1)
u,v ← 0

return
⋃s
i=1 qi

Theorem 16. Let Ω be the support returned by HeadApproxBasic. Let B′ = dHseB, where Hs is
the s-th harmonic number. Then Ω ∈Mk,B′ and ‖XΩ‖1 ≥

1
4OPT . Moreover, HeadApproxBasic

runs in O(s nB h) time.

Proof. We can always decompose ΩOPT into s disjoint paths in A. Let p1, . . . , ps be such a de-
composition with EMD(p1) ≥ EMD(p2) ≥ . . . ≥ EMD(ps). Note that EMD(pi) ≤

⌊
B
i

⌋
: otherwise∑i

j=1 EMD(pi) > B and since EMD(ΩOPT ) ≤ B this would be a contradiction. Since Ω is the
union of s paths in A, Ω has column-sparsity s. Moreover, we have EMD(Ω) =

∑s
i=1 EMD(qi) ≤∑s

i=1

⌊
B
i

⌋
≤ dHseB. Therefore, Ω ∈ Ak,B′ .

When finding path qi in X(i), there are two cases: (i) either w(i)(pi) ≤ 1
2w(pi), i.e., the paths

q1, . . . , qi−1 have already covered more than half of the amplitude sum of pi in X; (ii) or, w(i)(pi) >
1
2w(pi), i.e., there is still more than half of the amplitude sum of pi remaining in X(i). Since
EMD(pi) ≤

⌊
B
i

⌋
, the path pi is a candidate when searching for the optimal qi and hence we

find a path qi with w(i)(qi) >
1
2w(pi). Let C = {i ∈ [s] | case (i) holds for qi} and D = {i ∈

[s] | case (ii) holds for qi} (note that C = [s] \D). Then we have

‖AΩ‖1 =
s∑
i=1

w(i)(qi) =
∑
i∈C

w(i)(qi) +
∑
i∈D

w(i)(qi)

≥
∑
i∈D

w(i)(qi) ≥
1

2

∑
i∈D

w(pi).

(4)

For each pi with i ∈ C, let Ei = pi ∩
⋃
j<i qj , i.e., the locations of pi already covered by some pj

when searching for pi. Then we have∑
(u,v)∈Ei

Xu,v = w(pi)− w(i)(pi) ≥
1

2
w(pi),

and ∑
i∈C

∑
(u,v)∈Ei

Xu,v ≥
1

2

∑
i∈C

w(pi).

The pi are pairwise disjoint, and so are the Ei. For every i ∈ C we have Ei ⊆
⋃s
j=1 qj . Hence

‖XΩ‖1 =
s∑
i=1

w(i)(qi) ≥
∑
i∈C

∑
(u,v)∈Ei

Xu,v ≥
1

2

∑
i∈C

w(pi) . (5)
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Combining Equations 4 and 5 gives:

2‖XΩ‖1 ≥
1

2

∑
i∈C

w(pi) +
1

2

∑
i∈D

w(pi) =
1

2
OPT , i.e.,

‖XΩ‖1 ≥
1

4
OPT .

Further, observe that the running time of HeadApproxBasic depends on the running time of
finding a path in a matrix X with maximum weight for a given EMD budget. Such a path search
can be performed by dynamic programming over a graph with whB = nB states. We have one state
for each combination of location in X and amount of EMD budget currently used. At each state,
we store the largest weight achieved by a path ending at the corresponding location in X and using
the corresponding amount of EMD budget. Each state has h outgoing edges to the states in the
next column (given the current location, the decision on the next location also fixes the new EMD
amount). Hence the time complexity of finding one largest-weight path is O(nBh). Since we repeat
this procedure s times, the overall time complexity of HeadApproxBasic is O(snBh).

Finally, we can use HeadApproxBasic to get a head approximation guarantee ‖xΩ‖1 ≥
cmaxΩ∈Mk,B

‖xΩ‖1 for arbitrary c < 1. We achieve this by running HeadApproxBasic several
times to get a progressively larger support that contains a larger fraction of OPT . We call the
resulting algorithm HeadApprox. See Theorem 23 in Appendix A.2 for a rigorous proof.

6 Tail Approximation Algorithm
Next, we develop a tail approximation oracle for the CEMD model. Similar to before, we study
the `1-version of the tail approximation problem: given an arbitrary signal x and an approximation
ratio c, find a support Ω ∈Mk,O(B) such that

‖x− xΩ‖1 ≤ c min
Γ∈Mk,B

‖x− xΓ‖1 . (6)

Note that we allow a constant factor increase in the EMD budget of the result. The algorithm that
we develop is precisely the graph-based approach initially proposed in [SHI13]; however, our analysis
here is rigorous and novel. The core element of the algorithm is the notion of a flow network.

Definition 17 (EMD flow network). For a given signal X, sparsity k and a parameter λ > 0, the
flow network GX,k,λ consists of the following elements:
• The nodes are a source, a sink and a node vi,j for i ∈ [h], j ∈ [w], i.e., one node per entry in
X (besides source and sink).
• G has an edge from every vi,j to every vk,j+1 for i, k ∈ [h], j ∈ [w− 1]. Moreover, there is an
edge from the source to every vi,1 and from every vi,w to the sink for i ∈ [h].
• The capacity on every edge and node is 1.
• The cost of each node vi,j is −|Xi,j |. The cost of an edge from vi,j to vk,j+1 is λ|i− k|. The
cost of the source, the sink and all edges incident to the source or sink is 0.
• The supply at the source is s and the demand at the sink is s.

Figure 1 in Appendix C illustrates this definition with an example. Intuitively, a set of disjoint
paths through the network GX,k,λ corresponds to supports in X. Therefore, for any fixed value
of λ, a standard min-cost max-flow optimization through the flow network reveals a subset S of
the nodes that (i) corresponds to a support with exactly s indices per column, and (ii) minimizes
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−‖XΩ‖1 + λEMD(Ω) for different choices of supports Ω. In other words, the min-cost flow solves a
Lagrangian relaxation of the original problem (6).

A crucial problem is the choice of the Lagrange parameter λ, which defines a trade-off between
the size of the tail approximation error and the support-EMD. Each support Ω maps to a single point
in a 2D plane defined by EMD-cost in the x-direction and size of the tail in the y-direction, while
each choice of λ defines a line with slope −λ. The union of all possible choices of λ defines a convex
hull in the plane. A geometric perspective of this problem is illustrated in Figure 5 (Appendix C).

Therefore, finding min-cost flows corresponding to different choices of λ enables us to explore
the convex hull of achievable supports. See Algorithm 4 (TailApprox) in Appendix A.3, which
efficiently performs this exploration via a binary search over λ. While the best support for a
particular target support-EMD B does not necessarily lie on the convex hull, we can show that
we still get a near-optimal support with support-EMD O(B). In particular, we have the following
results with proofs in Appendix A.3.

Theorem 18. Let Ω be the support returned by TailApprox(X, k,B, d, δ). Let OPT be the tail
approximation error of the best support with EMD at most B, i.e., OPT = minΓ∈Mk,B

‖X −XΓ‖1.
Then at least one of the following two guarantees holds for Ω: (i) either B ≤ EMD(Ω) ≤ dB
and ‖X −XΩ‖1 ≤ OPT , or (ii) EMD(Ω) ≤ B and ‖X −XΩ‖1 ≤ (1 + δ) d

d−1OPT . Moreover,

TailApprox runs in O(snh log
‖X‖1n
xminδ

) time, where xmin = min|Xi,j |>0|Xi,j |.

Corollary 19. Let δ > 0 and d = 1 + 1
c2/(1+δ)− 1

. Then TailApprox is a (c, (k, dB))-tail approx-
imation algorithm.

To summarize, the algorithm proposed in [SHI13] satisfies the criteria of a tail approximation
oracle. This, in conjunction with the head approximation oracle proposed in Section 5, gives a fully
developed sparse recovery scheme for the CEMD model, as described below.

7 Compressive Sensing with the CEMD Model
We now bring the results from the previous sections together. Specifically, we show that AM-IHT
(Algorithm 1), equipped with HeadApprox and TailApprox, constitutes a model-based com-
pressive sensing recovery method that significantly reduces the number of measurements necessary
for recovering signals in the CEMD model. The main result is the following theoretical guarantee,
with the proof relegated to Appendix A.4.

Theorem 20. Let x ∈ Mk,B be an arbitrary signal in the CEMD model with dimension n = wh.
Let A ∈ Rm×n be a measurement matrix with i.i.d. Gaussian entries and let y ∈ Rm be a noisy
measurement vector, i.e., y = Ax+ e with arbitrary e ∈ Rm. Then we can recover a signal approxi-
mation x̂ ∈Mk,2B satisfying ‖x− x̂‖2 ≤ C‖e‖2, for some constant C, from m = O(k log(Bk log( kw )))

measurements. Moreover, the recovery algorithm runs in time O(snh log
‖x‖2
‖e‖2

(B + d log(‖x‖2n))) if
x, A and e are specified with at most d bits of precision.

Observe that for B = O(k), the bound form is only a log log k
w factor away from the information-

theoretically optimal bound m = O(k). We leave it as an open problem whether this spurious factor
can be eliminated via a more refined analysis (or algorithm).
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Algorithm 3 Head approximation algorithm
function HeadApprox(X, k,B, c)

d←
⌈

4c
1−c

⌉
X(1) ← A
for i← 1, . . . , d do

Ωi ← HeadApproxBasic(X(i), k, B)
X(i+1) ← X(i)

X
(i+1)
Ωi

← 0

return
⋃d
i=1 Ωi

Appendices
A Proofs
A.1 Near-isometry properties
A matrix with the RIP behaves like a near-isometry when restricted to a small set of columns and
/ or rows. The following properties are a direct result of the RIP.

Fact 21 (from Section 3 in [NT09]). Let A ∈ Rm×n be a matrix with (δ, p)-model-RIP. Let Ω be a
support in the model, i.e., Ω ∈Mp. Then the following properties hold for all x ∈ Rn.∥∥ATΩx∥∥2

≤
√

1 + δ ‖x‖2,∥∥ATΩAΩx
∥∥ ≤ (1 + δ)‖x‖2,∥∥(I −ATΩAΩ

)
x
∥∥

2
≤ δ‖x‖2.

Due to this near-isometry, a matrix with RIP is also “almost orthogonal” when restricted to
a small set of columns and / or rows. The following property is therefore known as approximate
orthogonality.

Fact 22 (from Section 3 in [NT09]). Let A ∈ Rm×n be a matrix with (δ, p)-model-RIP. Let Ω and Γ
be two disjoint supports with their union in the model, i.e., Ω∪Γ ∈Mp. Then the following property
holds for all x ∈ Rn: ∥∥ATΩAΓx

∥∥
2
≤ δ‖x‖2 . (7)

A.2 Head approximations
In this section, we use HeadApproxBasic to get a head approximation guarantee

‖xΩ‖1 ≥ c max
Ω∈Mk,B

‖xΩ‖1 (8)

for arbitrary c < 1. We achieve this by running HeadApproxBasic several times to get a larger
support that contains a larger fraction of OPT . We call the resulting algorithm HeadApprox (see
Algorithm 3). We use d =

⌈
4c

1−c

⌉
as a shorthand throughout the analysis.

Theorem 23. Let Ω be the support returned by HeadApproxBasic. Let k′ = dk and B′ =
ddHseB. Then Ω ∈Mk′,B′ and ‖AΩ‖1 ≥ cOPT .
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Proof. From Theorem 16 we know that for each i, Ωi ∈ Mk,dHseB. Since Ω =
⋃d
i=1 Ωi, we have

Ω ∈Mk′,B′ . Before each call to HeadApproxBasic, at least one of the following two cases holds:

Case 1: ‖X(i)
ΩOPT

‖1 < (1 − c)OPT . So the supports Ωj found in previous iterations already cover
amplitudes with a sum of at least cOPT .

Case 2: ‖X(i)
ΩOPT

‖1 ≥ (1− c)OPT . Since ΩOPT is a candidate solution with parameters k and B in

X(i), we have that ‖X(i)
Ωi
‖1 ≥ 1−c

4 OPT .

Consequently, after d iterations of the for-loop in HeadApprox, one of the following two cases
holds:

Case A: Case 1 holds for at least one iteration. Hence ‖XΩ‖1 ≥ cOPT .

Case B: Case 2 holds in all d iterations. Since we set X(i+1)
Ωi

← 0 in each iteration, we have∥∥∥X(i)
Ωj

∥∥∥ = 0 for all j < i. In particular, this means that
∥∥∥X(i)

Ωi

∥∥∥
1

+
∥∥∥X(i+1)

Ωi+1

∥∥∥
1

=
∥∥∥X(i)

Ωi∪Ωi+1

∥∥∥
1

and hence

‖XΩ‖1 =
d∑
i=1

∥∥∥X(i)
Ωi

∥∥∥
1

≥
⌈

4c

1− c

⌉
1− c

4
OPT

≥ cOPT .

So in both cases A and B, at the end of the algorithm we have ‖XΩ‖1 ≥ cOPT .

Corollary 24. HeadApprox is a
(
c,
(⌈

4c2

1−c2

⌉
k,
⌈

4c2

1−c2

⌉
dHseB

))
-head approximation algorithm.

Moreover, HeadApprox runs in O(s nB h) time for fixed c.

Proof. Let X ′ ∈ Rh×w with X ′i,j = X2
i,j . We run HeadApprox with parameters X ′, k, B and

c2. Let Ω be the support returned by HeadApprox. Let k′ =
⌈

4c2

1−c2

⌉
k and B′ =

⌈
4c2

1−c2

⌉
dHseB.

Then according to Theorem 23 we have Ω ∈ Mk′,B′ . Moreover, we get the guarantee that ‖x′Ω‖1 ≥
c2 maxΩ∈Mk,B

‖x′Ω‖1 , which directly implies that ‖xΩ‖ ≥ cmaxΩ∈Mk,B
‖xΩ‖ .

A.3 Tail Approximations
In this section, we describe the tail approximation oracle introduced in Section 6 in greater detail.
As before, recall that s is the per-column sparsity in the EMD-model, i.e., s = k/w. We first
formally define the support induced by a set of paths.

Definition 25 (Support of a set of paths). Let X ∈ Rh×w be a signal matrix, k be a sparsity
parameter and λ ≥ 0. Let P = {p1, . . . , ps} be a set of disjoint paths from source to sink in GX,k,λ
such that no two paths in P intersect vertically (i.e., if the pi are sorted vertically and i ≤ j, then
(u, v) ∈ pi and (w, v) ∈ pj implies u < w). Then the paths in P define a support

ΩP = {(u, v) | (u, v) ∈ pi for some i ∈ [s]} . (9)
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Now, we introduce the property connecting paths and supports.

Theorem 26. Let X ∈ Rh×w be a signal matrix, k be a sparsity parameter and λ ≥ 0. Let
P = {p1, . . . , ps} be a set of disjoint paths from source to sink in GX,k,λ such that no two paths in
P intersect vertically. Finally, let fP be the flow induced in GX,k,λ by sending a single unit of flow
along each path in P and let c(fP ) be the cost of fP . Then

c(fP ) = −‖XΩP
‖1 + λEMD(ΩP ) . (10)

Proof. The theorem follows directly from the definition of GX,k,λ and ΩP . The node costs of P result
in the term −‖XΩP

‖1. Since the paths in P do not intersect vertically, they are a min-cost matching
for the elements in ΩP . Hence the cost of edges between columns of X sums up to λEMD(ΩP ).

We also formalize the connection between min-cost flows in GX,k,λ and good supports in X.

Lemma 27. Let GX,k,λ be an EMD flow network and let f be a min-cost flow in GX,k,λ. Then f can
be decomposed into s disjoint paths P = {p1, . . . , ps} which do not intersect vertically. Moreover,

‖X −XΩP
‖1 + λEMD(ΩP ) = min

Ω∈Mk,B

‖X −XΩ‖1

+ λEMD(Ω) .
(11)

Proof. Note that ‖X −XΩ‖1 = ‖X‖1 − ‖XΩ‖1. Since ‖X‖1 does not depend on Ω, minimizing
‖X −XΩ‖1+λEMD(Ω) with respect to Ω is equivalent to minimizing −‖XΩ‖1+λEMD(Ω). Further,
all edges and nodes in GX,k,λ have capacity one, so f can be composed into disjoint paths P .
Since GX,k,λ has integer capacities, the flow f is integral and therefore P contains exactly s paths.
Moreover, the paths in P are not intersecting vertically: if pi and pj intersect vertically, we can
relax the intersection to get a set of paths P ′ with smaller support EMD and hence a flow with
smaller cost – a contradiction. Moreover, each support Ω ∈Mk,B gives rise to a set of disjoint, not
vertically intersecting paths Q and thus also to a flow fQ with c(fQ) = −‖XΩ‖1 +λEMD(Ω). Since
f is a min-cost flow, so c(f) ≤ c(fQ). The statement of the theorem follows.

The parameters d and δ for TailApprox quantify the acceptable tail approximation ratio
(see Theorem 18). In the algorithm, we assume that MinCostFlow(GX,k,λ) returns the support
corresponding to a min-cost flow in GX,k,λ. We now prove the main result for TailApprox: a
bicriterion-approximation guarantee that allows us to use TailApprox as a tail approximation
algorithm. We show that one of the following two cases occurs:

Case 1: We get a solution with tail approximation error at least as good as the best support with
support-EMD B. The support-EMD of our solution is at most a constant times larger than
B.

Case 2: We get a solution with bounded tail approximation error and support-EMD at most B.

Before we prove the main theorem, we show that TailApprox always returns the optimal result
for signals X ∈Mk,B, i.e., X itself.

Lemma 28. For any X ∈Mk,B, TailApprox(X, k,B, d, δ) returns X for any d and δ.
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Algorithm 4 Tail approximation algorithm
function TailApprox(X, k,B, d, δ)

xmin ← min|Xi,j |>0|Xi,j |, ε← xmin
wh2

δ
if X is s-sparse in every column then

λ0 ← xmin
2wh2

, Ω←MinCostFlow(GX,k,λ0)
if Ω ∈Mk,B then

return XΩ

λr ← 0, λl ← ‖X‖1
while λl − λr > ε do

λm ← (λl + λr)/2, Ω←MinCostFlow(GX,k,λm)
if EMD(Ω) ≥ B and EMD(Ω) ≤ dB then

return XΩ

if EMD(Ω) > B then
λr ← λm

else
λl ← λm

Ω←MinCostFlow(GX,k,λl), return XΩ

Proof. Since X ∈ Mk,B, every column of X is s-sparse. We show that the following call Min-
CostFlow(GX,k,λmin

) returns an Ω ∈ Mk,B with supp(X) ⊆ Ω. First, we prove that MinCost-
Flow(GX,k,λmin

) returns a support set covering all nonzero entries in X. As a result, supp(X) ⊆ Ω.
Let Γ be any s-column-sparse support set not covering all entries in X and let ∆ be any s-column-
sparse support set covering all entries in X. So ‖X −XΓ‖1 ≥ xmin and ‖X −X∆‖1 = 0. Hence,
we get:

−‖X∆‖1 + λ0EMD(∆) = −‖X∆‖1 +
xmin

2wh2
EMD(∆)

< −‖X∆‖1 + xmin ≤ −‖XΓ‖1
≤ −‖XΓ‖1 + λ0EMD(Γ) .

Therefore, the cost of the flow corresponding to ∆ is always less than the cost of the flow cor-
responding to Γ. Next, we show that among the support sets covering all nonzero entries in X,
MinCostFlow(GX,k,λmin

) returns a support set with minimum support-EMD. Since X ∈ Mk,B,
there is a Γ ∈ Mk,B with ‖XΓ‖1 = ‖X‖1. Moreover, Ω is the support returned by MinCost-
Flow(GX,k,λmin

), so we have ‖XΩ‖1 = ‖X‖1 and

− ‖XΩ‖1 + λ0EMD(Ω) ≤ −‖XΓ‖1 + λ0EMD(Γ) . (12)

So EMD(Ω) ≤ EMD(Γ) ≤ B. Since XΩ is also s-sparse in each column, Ω ∈Mk,B.

In order to simplify the proof of the main theorem, we use the following shorthands: Ωl =
MinCostFlow(GX,k,λl), Ωr = MinCostFlow(GX,k,λr), bl = EMD(Ωl), br = EMD(Ωr), tl =
‖X −XΩl

‖1, tr = ‖X −XΩr‖1. Moreover, we assume that h = Ω(logw), i.e., the matrix X is not
very wide and low.

Theorem 18. Let Ω be the support returned by TailApprox(X, k,B, d, δ). Let OPT be the tail
approximation error of the best support with EMD at most B, i.e., OPT = minΓ∈Mk,B

‖X −XΓ‖1.
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Then at least one of the following two guarantees holds for Ω: (i) either B ≤ EMD(Ω) ≤ dB
and ‖X −XΩ‖1 ≤ OPT , or (ii) EMD(Ω) ≤ B and ‖X −XΩ‖1 ≤ (1 + δ) d

d−1OPT . Moreover,

TailApprox runs in O(snh log
‖X‖1n
xminδ

) time, where xmin = min|Xi,j |>0|Xi,j |.

Proof. If X ∈Mk,B, TailApprox returns X, which means both guarantees hold (see Lemma 28).
If X /∈Mk,B but X is s-sparse in each column, the following call MinCostFlow(GX,k,λmin

) returns
an Ω covering all nonzero entries in X and using the minimum amount of support-EMD among all
supports covering all nonzero entries in X (again, see Lemma 28). However, since X /∈ Mk,B, we
have EMD(Ω) > B and hence Ω /∈Mk,B. So TailApprox does not terminate early for X /∈Mk,B.
In the following, we assume that X /∈Mk,B and hence OPT ≥ xmin.

In the binary search, we maintain the invariant that bl ≤ B and br > B. Note that this is true
before the first iteration of the binary search due to our initial choices of λr and λl8. Moreover, our
update rule maintains the invariant. We now consider the two ways of leaving the binary search.
If we find an Ω with EMD(Ω) ≥ B and EMD(Ω) ≤ dB, this also means ‖X −XΩ‖1 ≤ OPT due
to convexity of the convex hull of supports. Hence the first guarantee in the theorem is satisfied. If
λl−λr ≤ ε, we return Ω = Ωl and hence the EMD(Ω) ≤ B part of the second guarantee is satisfied.

We now prove the bound on ‖X −XΩ‖1 = tl. Figure 2 illustrates the geometry of the following
argument. Let POPT be the point corresponding to a support with tail error OPT and minimum
support-EMD, i.e., the optimal solution. Since the point (br, tr) was the result of the corresponding
MinCostFlow(GX,k,λr), POPT has to lie above the line with slope −λr through (br, tr). Moreover,
POPT has to have x-coordinate less than B. We can use these facts to establish the following bound
on OPT :

OPT ≥ tr + λr(br −B) . (13)

Let λ be the slope of the line through (tr, br) and (tl, bl), i.e., λ = tr−tl
br−bl . Then we have λr ≤

−λ ≤ λl. Together, with λl − λr ≤ ε, this gives λr ≥ tl−tr
br−bl − ε . We now use this bound on λr to

derive a bound on OPT :

OPT ≥ tr + λr(br −B)

≥ tr + (br −B)
tl − tr
br − bl

− ε(br −B)

≥ tr + (br −B)
tl − tr
br

− ε(wh2 −B)

≥ tl −
B

br
(tl − tr)− ε(wh2 −B)

≥ tl −
B

dB
tl −

xmin

wh2
δ(wh2 −B)

≥ d− 1

d
tl − xminδ

≥ d− 1

d
tl − δOPT .

Hence,

tl ≤ (1 + δ)
d

d− 1
OPT , (14)

8Intuitively, our initial choices make the support-EMD either very cheap or very expensive compared to the tail
approximation error.
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which shows that the second guarantee of the theorem is satisfied.
We now analyze the running time of TailApprox. We can solve our instances of the min-

cost flow problem by finding s augmenting paths because all edges and nodes have unit capacity.
Moreover, GX,k,λ is a directed acyclic graph, so we can compute the initial node potentials in linear
time. Each augmenting path can then be found with a single run of Dijkstra’s algorithm, which
costs O(wh log(wh) +wh2) time. The binary search takes at most log

‖X‖1
ε = log

‖X‖1nh
xminδ

iterations.
Using n = wh gives the stated running time.

Corollary 19. Let δ > 0 and d = 1 + 1
c2/(1+δ)− 1

. Then TailApprox is a (c, (k, dB))-tail approx-
imation algorithm.

Proof. Let X ′ ∈ Rh×w with X ′i,j = X2
i,j . We run TailApprox with parameters X ′, k, B, d and δ.

Let Ω be the support returned by TailApprox. The tail approximation guarantee follows directly
from Theorem 18. Note that we can not control which of the two guarantees the algorithm returns.
However, in any case we have EMD(Ω) ≤ dB, so Ω ∈Mk,dB. Moreover, note that (1 + δ) d

d−1 = c2.
Rearranging, we get the guarantee that ‖x− xΩ‖2 ≤ cminx∗∈Mk,B

‖x− x∗‖2 , which is precisely the
claim made in Corollary 19.

A.4 Proof of Theorem 20
Theorem 20. Let x ∈ Mk,B be an arbitrary signal in the CEMD model with dimension n = wh.
Let A ∈ Rm×n be a measurement matrix with i.i.d. Gaussian entries and let y ∈ Rm be a noisy
measurement vector, i.e., y = Ax+ e with arbitrary e ∈ Rm. Then we can recover a signal approxi-
mation x̂ ∈Mk,2B satisfying ‖x− x̂‖2 ≤ C‖e‖2, for some constant C, from m = O(k log(Bk log( kw )))

measurements. Moreover, the recovery algorithm runs in time O(snh log
‖x‖2
‖e‖2

(B + d log(‖x‖2n))) if
x, A and e are specified with at most d bits of precision.

Proof. We use AM-IHT, TailApprox and HeadApprox. The output x̂ of AM-IHT is the result
of TailApprox with parameters k, B and cT . As shown in Corollary 14, cT = 1.5 suffices for
geometric convergence of AM-IHT. With this choice of cT , TailApprox is a (1.5, (k, 2B))-tail
approximation algorithm (Corollary 19 and choosing δ = 0.1). Hence x̂ ∈ Mk,2B. We show that
m = O(k log(Bk log( kw ))) suffices for A to have the (δ, t)-model-RIP for t = fH(p ⊕ fT (p)) ⊕
p ⊕ fT (p). Note that for the EMD-model, we have p = (k,B) and Mp⊕ q ⊆ Mp+q, so we are
interested in t = fH(p + fT (p)) + p + fT (p). For cH = 0.95 (Corollary 14), HeadApprox is
a (0.95, (38k, 38dHseB))-head approximation oracle. So we get t = (k′, B′) with k′ = Θ(k) and
B′ = Θ(B log s). From Theorem 8, we get

log ak′,B′ = O

(
k′ log

B′

k′

)
= O

(
k log

(
B

k
log(s)

))
= O

(
k log

(
B

k
log

(
k

w

)))
.

Combining this with fact 4 shows that m = O(k log(Bk log( kw ))) is sufficient for A to have the desired
(δ, t)-model-RIP for fixed δ. Therefore, all assumptions in the analysis of AM-IHT are satisfied.
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Using Corollary 14 with a sufficiently large t (e.g. 25 log
‖x‖2
‖e‖2

) gives the desired approximation error
bound with C = 152.

Note that for B = O(k), the measurement bound gives m = O(k log log k
w ), which is a significant

improvement over the standard compressive sensing measurement bound m = O(k log n
k ).

B Counterexample for IHT with tail approximation oracles
In order to present a simple explanation, we look at the standard k-sparse compressive sensing
setting. Let a ∈ Rn and let T ′k(x) be a tail approximation oracle with the following guarantee:∥∥a− T ′k(a)

∥∥
2
≤ c‖a− Tk(a)‖2 , (15)

where c is an arbitrary constant and Tk is an optimal projection oracle, i.e., returns a k-sparse
vector with the k largest components of a. We now show that an “adversarial” tail approximation
oracle with T ′k(a) = 0 satisfies this definition for inputs a occurring in the first iteration of IHT with
high probability. This shows that IHT cannot make progress and consequently we cannot recover
the signal.

Recall that IHT with tail approximation oracle T ′ iterates

xi+1 ← T ′k(x
i + ΦT (y − Φxi)) , (16)

which in the first iteration gives
x1 ← T ′k(Φ

T y) . (17)

We now look at the case that the signal x is 1-sparse with x1 = 1 and xi = 0 for i 6= 1, i.e.,
x = e1. Given a measurement matrix Φ with (δ,O(1))-RIP for small δ, IHT needs to perfectly
recover x from Φx. Matrices Φ ∈ Rm×n with Φi,j = ±

√
m i.i.d. uniformly at random are known to

have this RIP for m = O(log n) with high probability (so called Rademacher matrices). We prove
that our adversarial tail approximation oracle satisfies the tail approximation guarantee for its input
a = ΦTΦe1 with high probability. Hence x1 = x0 = 0 and IHT cannot make progress. Intuitively,
in spite of the RIP, the tail of a contains so much “noise” that the adversarial tail approximation
oracle does not have to find a good sparse support for a and can get away with simply returning 0.

Consider the components of the vector a ∈ Rn: ai is the inner product of the first column of
Φ with the i-th column of Φ. We have a1 = 1 and −1 ≤ ai ≤ 1 for i 6= 1. Hence Tk(a) = e1 is
an optimal projection and so ‖a− Tk(a)‖22 = ‖a‖22 − 1 We want to show that ‖a‖22 ≥

c2

c2−1
. This

statement is equivalent to
‖a‖22 ≤ c

2(‖a‖22 − 1) , (18)

which then implies that T ′ satisfies the desired guarantee∥∥a− T ′k(a)
∥∥2

2
≤ c2‖a− Tk(a)‖22 . (19)

Note that ‖a‖22 = 1 +
∑n

i=2 a
2
i , where the ai are independent. For i 6= 1, each ai is the sum

of m independent ± 1
m random variables (p = 1/2). We have E[a2

i ] = 1
m . We can use Hoeffding’s

inequality to show that
∑n

i=2 a
2
i does not deviate from its mean n−1

m by more than O(
√
n log n )

with high probability. Since m = O(log n), this shows that

‖a‖22 = 1 +

n∑
i=2

a2
i ≥

c2

c2 − 1
(20)

with high probability for sufficiently large n.
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Figure (1): A signal X with the corresponding flow network GX,k,λ. The node
costs are the negative absolute values of the corresponding signal components.
The numbers on edges indicate the edge costs (most edge costs are omitted for
clarity). All capacities in the flow network are 1. The edge costs are the vertical
distances between the start and end nodes.

(tl, bl)

(tr, br)

B0

tail

EMD

−λr

−λl

OPT ∗

Figure (2): The local region of the convex hull during the binary search. The
point (tl, bl) corresponds to MinCostFlow(GX,k,λl) and (tr, br) corresponds to
MinCostFlow(GX,k,λr). All support points between the two points have to lie
above the dashed lines with slopes −λl and −λr. We also use the fact that the
optimal support has to have a x-coordinate between bl and B and a y-coordinate
below tl. In the proof of Theorem 18 we use only the line corresponding to λr,
which leaves the gray area. As a result, OPT ∗ is a lower bound on OPT .
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Figure (3): The support EMD for a matrix with three columns and eight rows.
The circles stand for supported elements in the columns. The lines indicate the
matching between the supported elements and the corresponding EMD cost. The
total support EMD is EMD(supp(X)) = 2 + 3 = 5.
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Figure (4): A signal X and its best approximation X∗ in the EMD modelM3,1.
A sparsity constraint of 3 with 3 columns implies that each column has to be
1-sparse. Moreover, the total support-EMD between neighboring columns in X∗

is 1. The lines in X∗ indicate the support-EMD.
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0

tail

EMD

−λ

(a) Result of a min-cost flow run.

0

tail

EMDB

(b) Optimal solution

Figure (5): Each point corresponds to a support Ω for the matrix X. The x-
coordinate of Ω is EMD(Ω) and the y-coordinate is ‖X−XΩ‖1. Finding min-cost
flows in GX,k,λ allows us to find points on the convex hull of support points.
The dashed line in figure (a) illustrates the result of MinCostFlow(GX,k,λ),
which is also the slope of the line. The point found is the first point we hit when
we move a line with slope −λ from the origin upwards (the larger dot in the
figure).
For a given EMD budget B, we want to find the support with the smallest tail.
The shaded region in figure (b) indicates the region where supports with support-
EMD at most B lie. We want to find the point in this region with minimum y-
coordinate. Note that this point (the larger dot in the figure) does not necessarily
lie on the convex hull.
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