
Sample-Optimal Density Estimation in Nearly-Linear Time

Jayadev Acharya∗

EECS, MIT
jayadev@csail.mit.edu

Ilias Diakonikolas†

CS, USC
diakonik@usc.edu

Jerry Li‡

EECS, MIT
jerryzli@csail.mit.edu

Ludwig Schmidt§

EECS, MIT
ludwigs@mit.edu

Abstract

We design a new, fast algorithm for agnostically learning univariate probability distributions whose
densities are well-approximated by piecewise polynomial functions. Let f be the density function of
an arbitrary univariate distribution, and suppose that f is OPT-close in L1-distance to an unknown
piecewise polynomial function with t interval pieces and degree d. For any γ > 0, our algorithm draws
n = Õγ(t(d+ 1)/ε2) samples from f , runs in time Õ(n), and with probability at least 9/10 outputs an
Oγ(t)-piecewise degree-d hypothesis h that is (3 + γ) · OPT + ε close to f. Our approximation factor
almost matches the best known information–theoretic (but computationally inefficient) upper bound of 3.

Our general algorithm yields (nearly) sample-optimal and nearly-linear time estimators for a wide
range of structured distribution families over both continuous and discrete domains in a unified way.
For most of our applications, these are the first sample-optimal and nearly-linear time estimators in the
literature. As a consequence, our work resolves the sample and computational complexities of a broad
class of inference tasks via a single “meta-algorithm”. Moreover, we demonstrate that our algorithm
performs very well in experiments.

Our algorithm consists of three levels: (i) At the top level, we employ an iterative greedy algorithm
for finding a good partition of the real line into the pieces of a piecewise polynomial. (ii) For each piece,
we show that the sub-problem of finding a good polynomial fit on the current interval can be solved
efficiently with a separation oracle method. (iii) We reduce the task of finding a separating hyperplane to
a combinatorial problem and design a nearly-linear algorithm for this problem. Combining these three
procedures gives a density estimation algorithm with the claimed guarantees.

∗Supported by a grant from the MIT-Shell Energy Initiative.
†Supported by a Marie Curie CIG, EPSRC grant EP/L021749/1 and a SICSA grant.
‡Supported by NSF grant CCF-1217921, DOE grant DE-SC0008923, NSF CAREER Award CCF-145326, and a NSF Graduate

Research Fellowship
§Supported by MADALGO and a grant from the MIT-Shell Energy Initiative.

Contents

1 Introduction 1
1.1 Our main result . 2
1.2 Applications of our algorithm . 3
1.3 Our techniques . 4
1.4 Related work . 6
1.5 Paper structure . 8

2 Preliminaries 8

3 Paper outline 9

4 Iterative merging algorithm 11
4.1 The histogram merging algorithm . 11
4.2 The general merging algorithm . 17
4.3 Putting everything together . 20

5 A fast Ak-projection oracle for polynomials 21
5.1 The set of feasible polynomials . 21
5.2 Separation oracles and approximately feasible polynomials 23
5.3 Bounds on the radii of enclosing and enclosed balls . 24
5.4 Finding the best polynomial . 26

6 The separation oracle and the Ak-computation oracle 29
6.1 Overview of APPROXSEPORACLE . 29
6.2 Testing non-negativity and boundedness . 30
6.3 An Ak-computation oracle . 31

7 Applications 40
7.1 Mixture of log-concave distributions . 40
7.2 Mixture of Gaussians . 41
7.3 Densities in Besov spaces . 41
7.4 Mixtures of t-monotone distributions . 42
7.5 Mixtures of discrete distributions . 42

8 Experimental Evaluation 43
8.1 Histogram hypotheses . 44
8.2 Piecewise linear hypotheses . 44
8.3 Comparison with prior work . 45

A Analysis of the General Merging Algorithm: Proof of Theorem 17 54

B Additional Omitted Proofs 57

C Learning discrete piecewise polynomials 62

D Approximating bounded polynomials with piecewise polynomials 64

1 Introduction

Estimating an unknown probability density function based on observed data is a classical problem in statis-
tics that has been studied since the late nineteenth century, starting with the pioneering work of Karl
Pearson [Pea95]. Distribution estimation has become a paradigmatic and fundamental unsupervised learn-
ing problem with a rich history and extensive literature (see e.g., [BBBB72, DG85, Sil86, Sco92, DL01]).
A number of general methods for estimating distributions have been proposed in the mathematical statistics
literature, including histograms, kernels, nearest neighbor estimators, orthogonal series estimators, maxi-
mum likelihood, and more. We refer the reader to [Ize91] for a survey of these techniques. During the past
few decades, there has been a large body of work on this topic in computer science with a focus on compu-
tational efficiency [KMR+94, FM99, FOS05, BS10, KMV10, MV10, KSV08, VW02, DDS12a, DDS12b,
DDO+13, CDSS14a, DDKT16, DKS16b].

Suppose that we are given a number of samples from an unknown distribution that belongs to (or is well-
approximated by) a given family of distributions C, e.g., a mixture of a small number of Gaussians. Our
goal is to estimate the unknown distribution in a precise and well-defined way. In this work, we focus on
the problem of density estimation (non-proper learning), where the objective is to output an approximation
of the unknown density without any constraints on its representation. That is, the output hypothesis is not
necessarily a member of the family C. In this setting, the “gold standard” is to design learning algorithms
that achieve all of the following four goals:

Statistical efficiency. For a given error tolerance, the algorithm should require a small number of samples,
ideally matching the information-theoretic minimum.

Computational efficiency. The algorithm should produce a hypothesis with the desired error tolerance as
quickly as possible. In the best case, the algorithm has a time complexity that is linear in the number
of samples provided as input.

Robustness. The algorithm should offer guarantees even if our samples do not come from a distribution in
the family C. In that case, our goal is to be close to the best approximation of the unknown distribution
with a distribution in C.

Generality. Ideally, the algorithm achieves the above goals for many families of distributions, i.e., the
algorithm is not overly specialized to the properties of a specific family of distributions C.

We give the first algorithm that achieves all four of these objectives (up to logarithmic factors in time
and sample complexity) for density estimation of univariate distributions, i.e., distributions with a density
f : Ω → R+ where the sample space Ω is a subset of the real line. While density estimation of univariate
distributions has been studied for several decades, its computational complexity was not well-understood
before this work, even for surprisingly simple classes of distributions such as mixtures of Gaussians (see
Subsection 1.4 for a comparison to prior work). Our main result is a general learning algorithm that can be
used to estimate a wide variety of structured distribution families over both continuous and discrete domains.
For each such family, our algorithm has a nearly-optimal sample complexity and runs in nearly-linear time.
Moreover, our algorithm is robust to model misspecification with nearly-optimal error guarantees.

Our approach is based on learning a piecewise polynomial function that approximates the target density.
The key idea of using piecewise polynomials for learning is that the existence of good piecewise polynomial
approximations for a family of distributions C can be leveraged for the design of efficient learning algo-
rithms for the family C. The approach of using piecewise polynomial approximation has been employed
in this context before (e.g., [WW83, Sto94, SHKT97, WN07, CDSS14a]) — our main contributions are

1

new algorithmic tools for learning with piecewise polynomials. In contrast to prior work, our algorithmic
techniques achieve all four goals outlined above. In particular, we show that an iterative greedy algorithm,
combined with an efficiently solvable convex program, yields sample-optimal and nearly-linear time esti-
mators for a wide range of structured distribution families. For most of our applications, these are the first
sample-optimal and nearly-linear time estimators in the literature. As a consequence, our work resolves the
sample and time complexity of a broad class of inference tasks via a single “meta-algorithm”. Moreover,
we demonstrate experimentally that our algorithm has very good empirical performance.

1.1 Our main result

Preliminaries. We consider univariate probability density functions (pdfs) defined over a known finite in-
terval I ⊆ R. (This assumption is without loss of generality and our results easily apply to densities defined
over the entire real line.) We focus on a standard notion of learning an unknown probability distribution
from samples [KMR+94], which is a natural analogue of Valiant’s well-known PAC model for learning
Boolean functions [Val84]. (Our definition is essentially equivalent to the notion of the L1-minimax rate
of convergence in statistics [DL01].) A distribution learning problem is defined by a class C of probability
distributions over a domain Ω. Given an error tolerance ε > 0 and sample access to an unknown distribution
with density f , the goal of an agnostic learning algorithm for C is to compute a hypothesis h such that, with
probability at least 9/10, it holds that ‖h− f‖1 ≤ C ·OPTC(f) + ε, where OPTC(f) := infq∈C ‖q− f‖1,
i.e., OPTC(f) is the L1-distance between the unknown density f and the closest distribution to it in C, and
C is a universal constant.

We say that a function f over an interval I is a t-piecewise degree-d polynomial if there is a partition of
I into t disjoint intervals I1, . . . , It such that f(x) = fj(x) for all x ∈ Ij , where each of the f1, . . . , ft is a
polynomial of degree at most d. Let Pt,d(I) be the class of all t-piecewise degree-d polynomials over I .

Our Results. Our main algorithmic result is the following:

Theorem 1 (Main). Let f : I → R+ be the density of an unknown distribution over I , where I is either
an interval on the real line or the discrete set [N]. There is an algorithm with the following performance
guarantee: Given parameters t, d ∈ Z+, an error tolerance ε > 0, and any γ > 0, the algorithm draws n =
Oγ(t(d+1)/ε2) samples from the unknown distribution, runs in time Õ(n ·poly(d)), and with probability at
least 9/10 outputs an Oγ(t)-piecewise degree-d hypothesis h such that ‖f − h‖1 ≤ (3 + γ)OPTt,d(f) + ε,
where OPTt,d(f) := infr∈Pt,d(I) ‖f − r‖1 is the error of the best t-piecewise degree-d approximation to f .

Remark. The running time stated in Theorem 1 is polynomial in the degree d. To obtain a near-linear
dependence on d, we appeal to a structural result (see Appendix D), stating that any degree-d polynomial
can be ε-approximated by an Õ(d)-piecewise degree-O(log(d/ε))-polynomial. By combining Theorem 1
with our structural result, we obtain a learning algorithm with the same approximation guarantee that has
sample complexity n = Õγ(t(d+ 1)/ε2) and runs in time Õ(n).

Our algorithm simultaneously achieves all four goals outlined above. (i) First, the algorithm is general:
for a wide range of structured distribution families over continuous and discrete domains, density estima-
tion can be reduced to learning a piecewise polynomial (see Subsection 1.2). (ii) Second, this reduction is
statistically efficient. In essentially all cases, the sample complexity n = Õγ(t(d+ 1)/ε2) of our algorithm
matches the information-theoretic optimum for the respective family of distributions up to logarithmic fac-
tors. (iii) Moreover, our algorithm makes this reduction computationally efficient. More specifically, our
running time Õ(n) has only logarithmic overhead compared to the information-theoretically optimal sam-
ple complexity. In other words, our algorithm runs in nearly-linear time, and this is our main improvement

2

over prior work [CDSS14a]. (iv) Finally, our algorithm is agnostic and its approximation ratio 3 + γ almost
matches the approximation ratio 3 of the natural information-theoretic upper bound [CDSS14a]. We note
that a lower bound of 2 is known for the case of histograms (d = 0) [CDSS14b], and in this important
special case our algorithm achieves an approximation ratio of 2 + γ. For any degree d, our algorithm only
has a mild (inverse linear) dependence on γ in the sample complexity.

As a result, our new algorithmic techniques for learning with piecewise polynomials lead to the first
(nearly) sample-optimal and nearly-linear time estimators for a wide range of natural and well-studied dis-
tribution families. Interestingly, our algorithm shows that there is essentially no (not even a polynomial)
trade-off between the computational and statistical efficiency of these problems, i.e., it is possible to achieve
both the optimal sample and time complexity up to poly-logarithmic factors. In addition, the computational
efficiency of our algorithm for improper learning has already lead to advances in proper learning of log-
concave densities [DKS16a] and Gaussian mixtures [LS15]. It is worth noting that our new algorithm for
univariate learning also leads to progress for learning multivariate mixtures of Gaussians.

Our algorithm has a clean and modular probabilistic analysis that invokes the well-known VC Inequality
exactly once. As a result, our algorithm is not plagued by large constants or polylogarithmic factors in
the sample complexity and exhibits a very good empirical performance (see Section 8 in the full paper).
Moreover, this modularity has already lead to applications of our algorithm in private learning [DHS15].

1.2 Applications of our algorithm

Density estimation. We now explain how to use Theorem 1 in order to agnostically learn structured dis-
tribution families. Note that we do not aim to exhaustively cover all possible applications of Theorem 1, but
rather to give some selected applications that are indicative of the generality and power of our method.

Given a class C that we wish to learn, we proceed as follows: (i) Prove that any distribution in C is ε/2-
close in L1-distance to a t-piecewise degree-d polynomial, for appropriate values of t and d. (ii) Instantiate
Theorem 1 for these values of t and d to agnostically learn the target distribution up to error ε/2. Note
that t and d will depend on the desired error ε and the underlying class C. We emphasize that there are
many combinations of t and d that guarantee an ε/2-approximation of C in Step (i). To minimize the sample
complexity of our learning algorithm in Step (ii), we would like to determine the values of t and d that
minimize the product t(d + 1). This is, of course, an approximation theory problem that only depends on
the structure of the family C.

For example, if C is the family of log-concave distributions, the optimal t-histogram approximation with
accuracy ε requires Θ(1/ε) intervals. This leads to an algorithm with sample complexity Θ(1/ε3). On the
other hand, it can be shown that any log-concave distribution has a piecewise linear ε-approximation with
Θ(1/ε1/2) intervals [CDSS14a, DKS16a], which yields an algorithm with sample complexity Θ(1/ε5/2).
Perhaps surprisingly, this sample bound cannot be improved using higher degrees; one can show an information-
theoretic lower bound of Ω(1/ε5/2) for learning log-concave densities [DL01]. Hence, Theorem 1 gives a
sample-optimal and nearly-linear time agnostic learning algorithm for this fundamental problem. We remark
that piecewise polynomial approximations are “closed” under taking mixtures. As a corollary, Theorem 1
also yields an O(k/ε5/2) sample and nearly-linear time algorithm for learning an arbitrary mixture of k
log-concave distributions. Again, there exists a matching information-theoretic lower bound of Ω(k/ε5/2).

As a second example, let C be the class of mixtures of k Gaussians in one dimension. It is not difficult to
show that learning such a mixture of Gaussians up to L1-distance ε requires Ω(k/ε2) samples. By approxi-
mating the corresponding probability density functions with piecewise polynomials of degree O(log(1/ε)),
we obtain an agnostic learning algorithm for this class that uses n = Õ(k/ε2) samples and runs in time
Õ(n). Similar bounds can be obtained for several other natural parametric mixture families.

3

Note that for a wide range of structured families, the optimal choice of the degree d (i.e., the choice
minimizing t(d+ 1) among all ε/2-approximations) is at most poly-logarithmic in 1/ε. For several classes
(such as unimodal, monotone hazard rate, and log-concave distributions), the degree d is a constant. As
a consequence, Theorem 1 yields sample-optimal and nearly-linear time estimators for all these families
in a unified way. In particular, we obtain nearly-optimal estimators for natural distributions such as multi-
modal, concave, convex, log-concave, monotone hazard rate, Gaussian, Poisson, Binomial, functions in
Besov spaces, mixtures of these distributions, and others. See Table 1 for a summary of these applications.
We emphasize that many of these applications were obtained using the algorithm of [CDSS14a], but with a
polynomial, as opposed to nearly-linear, running time.

Subsequent Work. Our results and techniques have already been applied in a variety of settings:

• Proper learning. Theorem 1 has recently been used as a crucial component in the fastest known al-
gorithm for properly learning a mixture of univariate Gaussian distributions [LS15]. Moreover, [LS15]
show that our algorithm for univariate density estimation is useful for attaining some of the best known
bounds on proper learning of multivariate Gaussian mixtures. In a related direction, [DKS16a] use The-
orem 1 to obtain the first efficient agnostic algorithm for proper learning of log-concave densities.

• Private learning. Due to its stability and modularity, our algorithm can easily be adapted to other settings
that provide a similar guarantee about the input. One recent example is in the context of differentially
private distribution learning of structured distributions [DHS15].

• Regression. In addition to distribution learning, we have recently applied our techniques to the prob-
lem of segmented regression [ADLS16]. Here, a variant of our iterative greedy algorithm significantly
improves over the time complexity of prior work.

1.3 Our techniques

We now provide a brief overview of our algorithm. A key definition is the following: for any k ≥ 1 and an
interval I ⊆ R, let the Ak-norm of a function g : I → R be ‖g‖Ak

def
= supI1,...,Ik

∑k
i=1 |g(Ii)|, where the

supremum is over all sets of k disjoint intervals I1, . . . , Ik in I , and g(J)
def
=
∫
J g(x) dx for any measurable

set J ⊆ I . Our main probabilistic tool is the following well-known version of the VC inequality:

Theorem 2 (VC Inequality [VC71, DL01]). Let f : I → R+ be an arbitrary pdf over I , and let f̂ be the
empirical pdf obtained after taking n i.i.d. samples from f. Then E[‖f − f̂‖Ak] ≤ O(

√
k/n).

The probabilistic part of our analysis simply conditions on the event ‖f − f̂‖Ak ≤ O(
√
k/n) for

k = O(t(d+ 1)). The remainder of our analysis only uses implications of this Ak-guarantee. In particular,
the following two-step procedure is an agnostic learning algorithm for Pt,d:

(1) Draw a set of n = Θ(t(d+ 1)/ε2) samples from f .
(2) Output the piecewise-polynomial hypothesis h ∈ Pt,d that minimizes the quantity ‖h − f̂‖Ak up to

an additive error of O(ε).

While the optimization problem in Step (2) is non-convex, it has sufficient structure so that it can be solved
efficiently. Intuitively, an algorithm for Step (2) involves two main components:

(2.1) An efficient procedure to find a good set of t intervals.
(2.2) An efficient procedure to agnostically learn a degree-d polynomial in a given interval. The procedure

for (2.1) will use the procedure for (2.2) multiple times as a subroutine.

4

Class of distributions Sample
complexity

Time
complexity Reference Optimality

t-histograms Õ(t
ε2

) Õ(t
ε2

) [CDSS14b]

O(t
ε2

) O(t
ε2

log(1/ε) + Ts) Theorem 10 SO, T OS
t-piecewise

degree-d polynomials
Õ(t·d

ε2
) Õ

(
t3 · (d3.5

ε3.5
+ d6.5

ε2.5
)
)

[CDSS14a]

O(t·d
ε2

) Õ(t·d
ω+3

ε2
) Theorem 1 NSO

Õ(t·d
ε2

) Õ(t·d
ε2

) Theorem 1
+ Theorem 56

NSO, NT O

k-mixture of log-concave Õ(k
ε5/2

) Õ(k
3

ε5
) [CDSS14a]

O(k
ε5/2

) Õ(k
ε5/2

) Theorem 42 SO, NT O
k-mixture of Gaussians Õ(k

ε2
) Õ(k3

ε3.5
) [CDSS14a]

O(k log(1/ε)
ε2

) Õ(k
ε2

) Theorem 43 NSO, NT O
Besov space Bα

q (Lp([0, 1])) Oα

(
log2(1/ε)

ε2+1/α

)
Õα

(
1

ε6+3/α

)
[WN07]

Oα

(
1

ε2+1/α

)
Õα

(
1

ε2+1/α

)
Theorem 44 SO, NT O

k-mixture of t-monotone Õ(t·k
ε2+1/t) Õ(k3

ε3/t
· (t3.5
ε3.5

+ t6.5

ε2.5
)) [CDSS14a]

O(t·k
ε2+1/t) Õ(k·t

2+ω

ε2+1/t) Theorem 45 SO,NT O
for t = 1, 2

k-mixture of t-modal Õ(t·k log(N)
ε3

) Õ(t·k log(N)
ε3

) [CDSS14b]

O(t·k log(N)
ε3

) O(t·k log(N)
ε3

log(1/ε) + Ts) Theorem 46 SO, T OS
k-mixture of MHR Õ(k log(N/ε)

ε3
)) Õ(k log(N/ε)

ε3
)) [CDSS14b]

O(k log(N/ε)
ε3

) O(k log(N/ε)
ε3

log(1/ε) + Ts) Theorem 47 SO, T OS
k-mixture of

Binomial, Poisson,
and Poisson Binomial

Õ(k
ε3

) Õ(k
ε3

) [CDSS14b]

O(k log(1/ε)
ε2

) Õ(k
ε2

) Theorem 48 NSO, NT O

SO : Sample complexity is optimal up to a constant factor.
NSO : Sample complexity is optimal up to a poly-logarithmic factor.
T OS : Time complexity is dominated by the sorting pre-processing step.
NT O : Time complexity is optimal up to a poly-logarithmic factor.

Table 1: A list of applications to agnostically learning specific families of distributions. For each class, the
first row is the best known previous result and the second row is our result. Ts denotes the time it takes to
sort the samples. Note that for most of the examples, our algorithm runs in time that is nearly-linear in the
information-theoretically optimal sample complexity. The last three classes are over discrete sets, and N
denotes the size of the support.

Our algorithm follows this outline. It is worth noting that our techniques for both subroutines (2.1) and
(2.2) are novel. At a high-level, we implement (2.1) using an iterative greedy algorithm. The main idea is
to iteratively merge the right pairs of intervals by calling an oracle for procedure (2.2) in every step until
the number of intervals becomes O(t). Our iterative algorithm and its subtle analysis are directly inspired

5

by the VC inequality. In each iteration, the algorithm estimates the contribution to an appropriate notion of
error when two consecutive intervals are merged, and it then merges pairs of intervals with small error. This
procedure ensures that the number of intervals in our partition decreases geometrically.

Our algorithm for procedure (2.2) is based on convex programming and runs in time O(s · poly(d)),
where s is the number of samples in the current interval. To ensure that the overall running time of our
algorithm is nearly-linear for many families of distributions, it is crucial that procedure (2.2) has a time
complexity with nearly-optimal dependence on s, i.e., the time complexity must be nearly-linear in the
number of samples. At a high level, we achieve this by exploiting the problem structure inherent in the
Ak-norm in order to separate the problem dimension d from the problem dimension 1/ε. We then solve a
convex program in dimension d and access the samples only through a subroutine running in nearly-linear
time. More specifically, we consider the convex set of non-negative polynomials withAd+1-distance at most
τ from the empirical distribution. While this set is defined through a large number of constraints, we show
that it is possible to design a combinatorial separation oracle with time complexity that is nearly-linear in
the number of samples. Combined with tools from convex optimization, such as the Ellipsoid method or
Vaidya’s algorithm, this gives an efficient algorithm for procedure (2.2).

1.4 Related work

There is a long history of research in statistics on estimating structured families of distributions. For distribu-
tions over continuous domains, a very natural type of structure to consider is some sort of “shape constraint”
on the probability density function (pdf) defining the distribution. Statistical research in this area started in
the 1950’s, and the reader is referred to the book [BBBB72] for a summary of the early work. Most of the
literature in shape-constrained density estimation has focused on one-dimensional distributions, with a few
exceptions during the past decade. Various structural restrictions have been studied over the years, starting
from monotonicity, unimodality, convexity, and concavity [Gre56, Bru58, Rao69, Weg70, HP76, Gro85,
Bir87a, Bir87b, Fou97, CT04, JW09], and more recently focusing on structural restrictions such as log-
concavity and k-monotonicity [BW07, DR09, BRW09, GW09, BW10, KM10, Wal09, DW13, CS13, KS14,
BD14, HW15]. The reader is referred to [GJ14] for a recent book on the subject. Mixtures of structured
distributions have received much attention in statistics [Lin95, RW84, TSM85, LB99] and, more recently,
in theoretical computer science [Das99, DS00, AK01, VW02, FOS05, AM05, MV10, ADK15, CDGR16].

The most common method used in statistics to address density estimation problems is the Maximum
Likelihood Estimator (MLE). While the MLE is very popular and quite natural, we note that it is not agnos-
tic, and it may in general require solving an intractable optimization problem (e.g., for mixture models).

Piecewise polynomials (splines) have been extensively used as tools for inference tasks, including den-
sity estimation, see, e.g., [WW83, Sto94, SHKT97, WN07]. We note that these piecewise polynomial
estimators are fundamentally different from ours in a number of ways: they rely on a different optimization
problem (the MLE and its variants), they use polynomials whose degree is bounded by a small constant
(2 or 3), and are largely of a heuristic nature. Indeed, these works do not provide any theoretical anal-
ysis of the computational complexity of their estimators. A notable exception is the work of Willett and
Nowak [WN07], which gives a polynomial time algorithm to compute (a variant of) the MLE for continu-
ous piecewise polynomial densities. While this method yields estimators that are near-sample optimal (up
to polylogarithmic factors) for some families of distributions, the degree of their polynomial in their running
time is quite high, making it inapplicable for large datasets. We remark that our approach automatically
improves on both the sample complexity and, importantly, the running time for all their applications.

A related line of work in mathematical statistics [KP92, DJKP95, KPT96, DJKP96, DJ98] uses non-
linear estimators based on wavelet techniques to learn continuous distributions whose densities satisfy vari-

6

ous smoothness constraints, such as Triebel and Besov-type smoothness. However, these estimators do not
achieve a nearly-optimal sample complexity for some natural distributions such as mixtures of Gaussians.

Comparison to Prior Work. We now provide a detailed comparison between our algorithm and related
prior work. Two recent papers [CDSS14a, CDSS14b] study the problem of agnostically learning piecewise
polynomial densities over a continuous domain. [CDSS14a] gives an algorithm that uses n = Õ(t(d+1)/ε2)

samples, runs in Õ(t
2·d3.5

ε4.5
(1
ε +d3)) time, and outputs a hypothesis with error 14 ·OPTt,d+ ε. Subsequently,

[CDSS14b] improves the running time of the latter for the d = 0 (i.e., piecewise constant) case to Õ(n) and
has error of O(OPTt,d) + ε for an unspecified (large) constant hidden in the O(·).

At a high-level, the starting point of both our work and [CDSS14a, CDSS14b] is the notion of Ak-
distance and the related VC-inequality, a classical tool in empirical process theory [DL01, SW09]. As
explained in Section 1.3, this machinery directly implies an information-theoretic (but computationally in-
efficient) upper bound of O(t(d+ 1)/ε2) on the sample complexity of agnostic learning. The key challenge
is making this bound algorithmic, and this is where our work departs from previous approaches.

Recall that we require two main algorithmic components for solving the learning problem: (2.1), an
efficient procedure for finding a good set of O(t) intervals; and (2.2), an efficient algorithm for fitting a
degree-d polynomial to the samples in a given interval with respect to the Ak-distance. Our new algorith-
mic techniques for both components are significantly different from the aforementioned works [CDSS14a,
CDSS14b] and lead to an overall learning algorithm that improves in all four goals outlined above (statistical
efficiency, computational efficiency, robustness, and generality).

The algorithm in [CDSS14b] (for the d = 0 case) has a superficial resemblance to our greedy merging
scheme but is in fact considerably different. In particular, their algorithm proceeds by iteratively merging
pairs of intervals, but its merging decisions are solely based on the ratio between the means of two adjacent
intervals. This criterion is local and specialized to piecewise constant functions. As a result, there does
not seem to be a way to generalize this idea even to the piecewise linear case (d = 1). In contrast, our
algorithm crucially exploits global information in each iteration to decide which intervals to merge and
naturally generalizes to piecewise polynomials of any degree in a clean and modular way.

The algorithm in [CDSS14a] runs a dynamic program (DP) over the sample points in order to find a good
set of O(t) intervals that minimizes the Ak-distance between the piecewise polynomial hypothesis and the
empirical distribution. This approach requires Õ(t2/ε2) calls to a polynomial fitting subroutine. Thus, even
if we had a polynomial fitting routine that runs in sample-linear time, this DP would lead to a suboptimal
running time, both as a function of t and ε. In contrast, our novel greedy merging strategy requires only a
linear number of calls to the polynomial fitting subroutine, and thus our runtime is nearly optimal in t and ε.

To agnostically learn a single degree-d polynomial, [CDSS14a] implicitly approximates theAk-distance
by a different metric (using an adaptive interval partition of the space) and formulates a linear program that
optimizes this modified metric. This approximation step has the following consequences: (i) an inherent
loss of poly-logarithmic factors in the sample complexity, and (ii) a linear program with Ω(d/ε) variables
and Ω(d2/ε2 + d5/ε) constraints. Using the fastest known linear programming solver for their instances
[LS14] gives a time complexity of Ω(d3.5/ε3.5 + d6.5/ε2.5). Hence, the overall running time of their linear
program is a polynomial of prohibitively large degree for most applications. In contrast, our polynomial
fitting algorithm directly optimizes the Ak-distance over the set of non-negative normalized polynomials.
Naively, one would think that this approach leads to an asymptotically slower algorithm as it involves solving
an SDP with exponentially many constraints. However, by exploiting the structure of the Ak-distance, we
construct a novel combinatorial separation oracle for the problem that runs in nearly sample-linear time.

The running time improvements outlined above also lead to large empirical gains. For a medium-scale

7

problem of fitting a piecewise-linear density estimate to n = 106 samples, a simple back-of-the-envelope
calculation shows that the approach of [CDSS14a] would require more than a week of computation on a
modern CPU, while our algorithm runs in about 0.3 seconds. We remark that the back-of-the-envelope cal-
culation is in favor of [CDSS14a] (ignoring logarithmic factors and large constants in their time complexity),
and the running time of our algorithm is based on an actual implementation on a laptop computer from 2010
(see Section 8 in the full paper for further details on the experimental evaluation). Moreover, we note that
our dependence on d is better than [CDSS14a], so this gap only widens as d increases. Preliminary exper-
iments indicate that our algorithm still has a reasonable running time (i.e., at most a few minutes) for, say,
d ≤ 6, at which point the algorithm of [CDSS14a] would likely require more than a year of computation.

As a final point of comparison, we remark that our algorithm (both components) directly optimizes the
Ak-distance and exclusively relies on the Ak-distance to guide its decision-making. As a result, the proba-
bilistic part of its correctness analysis is extremely simple, using the VC inequality exactly once. This modu-
lar character of our approach makes it easily applicable in other settings, e.g., see [DHS15] for an application
in differentially private density estimation. In contrast, the previous approaches [CDSS14a, CDSS14b] rely
on a complicated probabilistic analysis involving several additional tools. As a consequence, when d > 0,
the analysis of [CDSS14a, CDSS14b] implicitly requires an anti-concentration property of the underlying
density, namely that it does not assign large probability mass on a single point. Hence, the aforementioned
approach is restricted to continuous densities and does not easily extend to discrete distributions beyond
piecewise constant approximation. Our analysis has no such requirements and easily generalizes to discrete
piecewise polynomial distributions. As a result, we achieve the first nearly sample-optimal and nearly-linear
time algorithms for learning some classical families of discrete distributions (including arbitrary mixtures
of Poisson, Binomial, and Poisson Binomial distributions).

To summarize, our algorithmic approach in this paper provides both quantitative and qualitative im-
provements over [CDSS14a, CDSS14b]. In addition to its significantly improved running time, our algo-
rithm has the following advantages: (1) It achieves the optimal sample complexity for the piecewise polyno-
mial learning problem (up to a constant factor). (2) It is more robust to noise, achieving an approximation
factor arbitrarily close to 3, matching the natural information-theoretic argument. (3) It is more general and
applies to a wider class of distributions, e.g., families of discrete distributions.

In joint work with Hegde [ADH+15], the authors of the current paper have shown that an analogous
approach yields sample optimal and efficient algorithms for agnostically learning discrete distributions with
piecewise polynomial functions under the `2-distance metric. We note that learning under the `2-distance
is easier than under the L1-distance, and that the analysis of [ADH+15] is significantly simpler than the
analysis in the current paper. Overall, we view this as an indicator for the robustness of our iterative merging
technique, which we recently also applied to segmented regression [ADLS16].

1.5 Paper structure

After some preliminaries in Section 2, we give an outline of our algorithm in Section 3. Sections 4 – 6
contain the various components of our algorithm. Section 7 gives a detailed description of our applications
to learning structured distribution families, and we conclude in Section 8 with our experimental evaluation.

2 Preliminaries

We consider univariate probability density functions (pdf’s) defined over a known finite interval I ⊆ R.
For an interval J ⊆ I and a positive integer k, we will denote by IkJ the family of all sets of k disjoint

8

intervals I1, . . . , Ik where each Ii ⊆ J . For a measurable function g : I → R and a measurable set S,
let g(S)

def
=
∫
S g. The L1-norm of g over a subinterval J ⊆ I is defined as ‖g‖1,J

def
=
∫
J |g(x)|dx. More

generally, for any set of disjoint intervals J ∈ IkI , we define ‖g‖1,J =
∑

J∈J ‖g‖1,J .
We now define a norm which induces a corresponding distance metric that will be crucial for this paper:

Definition 3 (Ak-norm). Let k be a positive integer and let g : I → R be measurable. For any subinterval
J ⊆ I , the Ak-norm of g on J is defined as

‖g‖Ak,J
def
= sup
I∈IkJ

∑
M∈I
|g(M)| .

When J = I , we omit the second subscript and simply write ‖g‖Ak .
More generally, for any set of disjoint intervals J = {J1, . . . , J`} where each Ji ⊆ I , we define

‖g‖Ak,J = sup
I

∑
J∈I
|g(J)|

where the supremum is taken over all I ∈ IkJ such that for all J ∈ I there is a Ji ∈ J with J ⊆ Ji.

We note that the definition of theAk-norm in this work is slightly different than that in [DL01, CDSS14a]
but is easily seen to be essentially equivalent. The VC inequality (Theorem 2) along with uniform conver-
gence bounds (see, e.g., Theorem 2.2. in [CDSS13] or p. 17 in [DL01]), yields the following:

Corollary 4. Fix 0 < ε and δ < 1. Let f : I → R+ be an arbitrary pdf over I , and let f̂ be the empirical
pdf obtained after taking n = Θ((k + log 1/δ)/ε2) i.i.d. samples from f . Then with probability at least
1− δ,

‖f − f̂‖Ak ≤ ε .

Definition 5. Let g : I → R. We say that g has at most k sign changes if there exists a partition of I into
intervals I1, . . . , Ik+1 such that for all i ∈ [k + 1] either g(x) ≥ 0 for all x ∈ Ii or g(x) ≤ 0 for all x ∈ Ii.

We will need the following elementary facts about the Ak-norm.

Fact 6. Let J ⊆ I be an arbitrary interval or a finite set of intervals. Let g : I → R be a measurable
function.

(a) If g has at most k − 1 sign changes in J , then ‖g‖1,J = ‖g‖Ak,J .

(b) For all k ≥ 1, we have ‖g‖Ak,J ≤ ‖g‖1,J .

(c) Let α be a positive integer. Then, ‖g‖Aα·k,I ≤ α · ‖g‖Ak,I .

(d) Let f : I → R+ be a pdf over I , and let J1, . . . ,J` be finite sets of disjoint subintervals of I , such
that for all i, i′ and for all I ∈ Ji and I ′ ∈ Ji′ , I and I ′ are disjoint. Then, for all positive integers
m1, . . . ,m`,

∑`
i=1‖f‖Ami ,Ji ≤ ‖f‖AM , where M =

∑`
i=1mi.

3 Paper outline

In this section, we give a high-level description of our algorithm for learning t-piecewise degree-d polyono-
mials. Our algorithm can be divided into three layers.

9

Level 1: General merging (Section 4). At the top level, we design an iterative merging algorithm for
finding the closest piecewise polynomial approximation to the unknown target density. Our merging al-
gorithm applies more generally to broad classes of piecewise hypotheses. Let D be a class of hypotheses
satisfying the following: (i) The number of intersections between any two hypotheses in D is bounded. (ii)
Given an interval J and an empirical distribution f̂ , we can efficiently find the best fit to f̂ from functions in
D with respect to the Ak-distance. (iii) We can efficiently compute the Ak-distance between the empirical
distribution and any hypothesis in D. Under these assumptions, our merging algorithm agnostically learns
piecewise hypotheses where each piece is in the class D.

In Section 4.1, we start by presenting our merging algorithm for the case of piecewise constant hypothe-
ses. This interesting special case captures many of the ideas of the general case. In Section 4.2, we proceed
to present our general merging algorithm that applies all classes of distributions satisfying properties (i)-(iii).

When we adapt the general merging algorithm to a new class of piecewise hypotheses, the main algo-
rithmic challenge is constructing a procedure for property (ii). More formally, we require a procedure with
the following guarantee.

Definition 7. Fix η > 0. An algorithm Op(f̂ , J, η) is an η-approximate Ak-projection oracle for D if it
takes as input an interval J and f̂ , and returns a hypothesis h ∈ D such that

‖h− f̂‖Ak,J ≤ inf
h′∈D
‖h′ − f̂‖Ak,J + η .

One of our main contributions is an efficientAk-projection oracle for the class of degree-d polynomials,
which we describe next.

Level 2: Ak-projection for polynomials (Section 5). OurAk-projection oracle computes the coefficients
c ∈ Rd+1 of a degree-d polynomial pc that approximately minimizes the Ak-distance to the empirical
distribution f̂ in the given interval J . Moreover, our oracle ensures that pc is non-negative on J .

At a high-level, we formulate the Ak-projection as a convex optimization problem. A key insight is that
we can construct an efficient, approximate separation oracle for the set of polynomials that have an Ak-
distance of at most τ to the empirical distribution f̂ . Combining this separation oracle with existing convex
optimization algorithms allows us to solve the feasibility problem of checking whether we can achieve a
given Ak-distance τ . We then convert the feasibility problem to the optimization variant via a binary search
over τ .

Note that the set of non-negative polynomials is a spectrahedron (the feasible set of a semidefinite
program). After restricting the set of coefficients to non-negative polynomials, we can simplify the definition
of theAk-distance: it suffices to consider sets of intervals with endpoints at the locations of samples. Hence,
we can replace the supremum in the definition of the Ak-distance by a maximum over a finite set, which
shows that the set of polynomials that are both non-negative and τ -close to f̂ in Ak-distance is also a
spectrahedron. This suggests that the Ak-projection problem could be solved by a black-box application of
an SDP solver. However, this would lead to a running time that is exponential in k because there are more
than

(
s

2k

)
possible sets of intervals, where s is the number of sample points in the current interval J .1

Instead of using black-box SDP or LP solvers, we construct an algorithm that exploits additional struc-
ture in the Ak-projection problem. Most importantly, our algorithm separates the dimension of the desired
degree-d polynomial from the number of samples (or equivalently, the error parameter ε). This allows us

1While the authors of [CDSS14a] introduce an encoding of the Ak-constraint with fewer linear inequalities, their approach
increases the number of variables in the optimization problem to depend polynomially on 1/ε, which leads to an Ω(poly(d +

1)/ε3.5) running time. In contrast, our approach achieves a nearly optimal dependence on ε that is Õ(poly(d+ 1)/ε2).

10

to achieve a running time that is nearly-linear for a wide range of distributions. Interestingly, we can solve
our SDP significantly faster than the LP which has been proposed in [CDSS14a] for the same problem. We
achieve this by combining Vaidya’s cutting plane method [Vai96] with an efficient separation oracle that
leverages the structure of the Ak-distance. This separation oracle is the third level of our algorithm, which
we describe next.

Level 3: Ak-separation oracle for polynomials (Section 6). Our separation oracle efficiently tests two
properties for a given polynomial pc with coefficients c ∈ Rd+1: (i) Is the polynomial pc non-negative on
the given interval J? (ii) Is the Ak-distance between pc and the empirical distribution f̂ at most τ? We
implement Test (i) by using known algorithms for finding roots of real polynomials efficiently [Pan01].
Note, however, that root-finding algorithms cannot be exact for degrees larger than 4. Hence, we can only
approximately Test (i), which necessarily leads to an approximate separation oracle. Nevertheless, we show
that such an approximate oracle is still sufficient for solving the convex program outlined above.

At a high level, our algorithm proceeds as follows. We first verify that our current candidate polynomial
pc is “nearly” non-negative at every point in J . Assuming that pc passes this test, we then focus on the
problem of computing the Ak-distance between pc and f̂ . We reduce this problem to a discrete variant by
showing that the endpoints of intervals jointly maximizing the Ak-distance are guaranteed to coincide with
sample points of the empirical distribution (assuming pc is nearly non-negative on the current interval). Our
discrete variant of this problem is related to a previously studied question in computational biology, namely
finding maximum-scoring DNA segment sets [Csu04]. We exploit this connection and give a combinatorial
algorithm for this discrete variant that runs in time nearly-linear in the number of sample points in J and
the degree d. Once we have found a set of intervals maximizing the Ak-distance, we can convert it to a
separating hyperplane for the polynomial coefficients c and the set of non-negative polynomials with Ak-
distance at most τ to f̂ .

Combining these ingredients yields our general algorithm with the performance guarantees stated in
Theorem 1.

4 Iterative merging algorithm

In this section, we describe and analyze our iterative merging algorithm. We start with the case of histograms
and then provide the generalization to piecewise polynomials.

4.1 The histogram merging algorithm

A t-histogram is a function h : I → R that is piecewise constant with at most t interval pieces, i.e., there is
a partition of I into intervals I1, . . . , It′ with t′ ≤ t such that h is constant on each Ii. Given sample access
to an arbitrary pdf f over I and a positive integer t, we would like to efficiently compute a good t-histogram
approximation to f . Namely, if Ht = Ht(I) denotes the set of t-histogram probability density functions
over I and OPTt = infg∈Ht ‖g − f‖1, our goal is to output an O(t)-histogram h : I → R that satisfies
‖h− f‖1 ≤ C ·OPTt +O(ε) with high probability over the samples, where C is a universal constant.

The following notion of flattening a function over an interval will be crucial for our algorithm:

Definition 8. For a function g : I → R and an interval J = [u, v] ⊆ I , we define the flattening of g over J ,
denoted gJ , to be the constant function defined on J as

gJ(x)
def
=

g(J)

v − u
for all x ∈ J.

11

For a set I of disjoint intervals in I , we define the flattening of g over I to be the function gI on ∪J∈IJ
which for each J ∈ I satisfies gI(x) = gJ(x) for all x ∈ J .

We start by providing an intuitive explanation of our algorithm followed by a proof of correctness. The
algorithm draws n = Θ((t+log 1/δ)/ε2) samples x1 ≤ x2 ≤ . . . ≤ xn from f . We start with the following
partition of I = [a, b]:

I0 = {[a, x1), [x1, x1], (x1, x2), [x2, x2], . . . , (xn−1, xn), [xn, xn], (xn, b]}. (1)

This is the partition where each interval is either a single sample point or the interval between two consec-
utive samples. Starting from this partition, our algorithm greedily merges pairs of consecutive intervals in a
sequence of iterations. When deciding which interval pairs to merge, the following notion of approximation
error will be crucial:

Definition 9. For a function g : I → R and an interval J ⊆ I , define e(g, J) = ‖g− gJ‖A1,J
. We call this

quantity the A1-error of g on J .

In the j-th iteration, given the current interval partition Ij , we greedily merge pairs of consecutive
intervals to form the new partition Ij+1. Let sj be the number of intervals in Ij . In particular, given
Ij = {I1,j , . . . , Isj ,j}, we consider the intervals

I ′`,j+1 = I2`−1,j ∪ I2`,j

for all 1 ≤ ` ≤ sj/2.2 We first iterate through 1 ≤ ` ≤ sj/2 and calculate the quantities

e`,j = e(f̂ , I ′`,j+1) ,

i.e., the A1-errors of the empirical distribution on the candidate intervals.
To construct Ij+1, the algorithm keeps track of the largest O(t) errors e`,j . For each ` with e`,j being

one of the O(t) largest errors, we do not merge the corresponding intervals I2`−1,j and I2`,j . That is, we
include I2`−1,j and I2`,j in the new partition Ij+1. Otherwise, we include their union I ′`,j+1 in Ij+1. We
perform this procedure O(log 1

ε) times and arrive at some final partition I. Our output hypothesis is the
flattening of f̂ with respect to I.

For a formal description of our algorithm, see the pseudocode given in Algorithm 1 below. In addition to
the parameter t, the algorithm has a parameter α ≥ 1 that controls the trade-off between the approximation
ratio C achieved by the algorithm and the number of pieces in the output histogram.

The following theorem characterizes the performance of Algorithm 1, establishing the special case of
Theorem 1 corresponding to d = 0.

Theorem 10. Algorithm CONSTRUCTHISTOGRAM(f, t, α, ε, δ) draws n = O((αt + log(1/δ))/ε2) sam-
ples from f , runs in time O(n (log(1/ε) + log log(1/δ))), and outputs a hypothesis h and a corresponding
partition I of size |I| ≤ 2α · t such that with probability at least 1− δ we have

‖h− f‖1 ≤ 2 ·OPTt +
4 ·OPTt + 4ε

α− 1
+ ε . (2)

2We assume sj is even for simplicity.

12

Algorithm 1 Approximating with histograms by merging.
1: function CONSTRUCTHISTOGRAM(f, t, α, ε, δ)
2: Draw n = Θ((αt+ log 1/δ)/ε2) samples x1 ≤ x2 ≤ . . . ≤ xn.
3: Form the empirical distribution f̂ from these samples.
4: Let I0 ← {[a, x1), [x1, x1], (x1, x2), . . . , (xn−1, xn), [xn, xn], (xn, b]} be the initial partition.
5: j ← 0
6: while |Ij | > 2α · t do
7: Let Ij = {I1,j , I2,j , . . . , Isj−1,j , Isj ,j}
8: for ` ∈ {1, 2, . . . , sj2 } do
9: I ′`,j+1 ← I2`−1,j ∪ I2`,j

10: e`,j ← e(f̂ , I ′`,j+1)
11: end for
12: Let L be the set of ` ∈ {1, 2, . . . , sj2 } with the αt largest errors e`,j .
13: Let M be the complement of L.
14: Ij+1 ←

⋃
`∈L
{I2`−1,j , I2`,j}

15: Ij+1 ← Ij+1 ∪ {I ′`,j+1 | ` ∈M}
16: j ← j + 1
17: end while
18: return I = Ij and the flattening f̂I
19: end function

Proof. We start by analyzing the running time. To this end, we show that the number of intervals decreases
exponentially with the number of iterations. In the j-th iteration, we merge all but αt intervals. Therefore,

sj+1 = αt+
sj − αt

2
=

3sj
4

+
2αt− sj

4
.

Note that the algorithm enters the while loop when sj > 2αt, implying that

sj+1 <
3sj
4
.

By construction, the number of intervals is at least αt when the algorithm exits the while loop. Therefore,
the number of iterations of the while loop is at most

O
(

log
n

αt

)
= O (log(1/ε) + log log(1/δ)) ,

which follows by substituting the value of n from the statement of the theorem. We now show that each
iteration takes time O(n). Without loss of generality, assume that we compute the A1-distance only over
intervals ending at a data sample. For an interval J = [c, d] containing m sample points, x1, . . . , xm, let
Cj =

(xj−x1)
jn − (d−c)

n . TheA1-error of f̂ on J is given by maxCj−minCj and can therefore be computed
in time proportional to the number of sample points in the interval. Therefore, the total time of the algorithm
is O(n(log(1/ε) + log log(1/δ))), as claimed.

We now proceed to bound the learning error. Let I = {I1, . . . , It′} be the partition of I returned by
CONSTRUCTHISTOGRAM. The desired bound on |I| follows immediately because the algorithm terminates
only when |I| ≤ 2αt. The rest of the proof is dedicated to Equation (2).

13

Fix h∗ ∈ Ht such that ‖h∗ − f‖1 = OPTt. Let I∗ = {I∗1 , . . . , I∗t } be the partition induced by the
discontinuities of h∗. Call a point at a boundary of any I∗j a jump of h∗. For any interval J ⊆ I , we define
Γ(J) to be the number of jumps of h∗ in the interior of J . Since we draw n = Ω((αt+log 1/δ)/ε2) samples,
Corollary 4 implies that with probability at least 1− δ, we have

‖f̂ − f‖A(2α+1)t
≤ ε .

We condition on this event throughout the analysis.
We split the total error into three terms based on the final partition I:

Case 1: Let F be the set of intervals in I with zero jumps in h∗, i.e., F = {J ∈ I |Γ(J) = 0}.

Case 2a: Let J0 be the set of intervals in I that were created in the initial partitioning step of the algorithm
and which contain a jump of h∗, i.e., J0 = {J ∈ I | Γ(J) > 0 and J ∈ I0}.

Case 2b: Let J1 be the set of intervals in I that contain at least one jump and were created by merging two
other intervals, i.e., J1 = {J ∈ I | Γ(J) > 0 and J /∈ I0}.

Notice that F , J0, and J1 form a partition of I, and thus

‖h− f‖1 = ‖h− f‖1,F + ‖h− f‖1,J0 + ‖h− f‖1,J1 .

We will bound these three terms separately. In particular, we will show:

‖h− f‖1,F ≤ 2 · ‖f − h∗‖1,F + ‖f̂ − f‖A|F|,F , (3)

‖h− f‖1,J0 ≤ ‖f̂ − f‖A|J0|,J0 , (4)

‖h− f‖1,J1 ≤
4 ·OPTt + 4ε

α− 1
+ 2 · ‖f − h∗‖1,J1 + ‖f̂ − f‖A|J1|+t,J1 . (5)

Using these results along with the fact that ‖f − h∗‖1,F + ‖f − h∗‖1,J1 ≤ OPTt, we have

‖h− f‖1 ≤ 2 ·OPTt +
4 ·OPTt + 4ε

α− 1
+ ‖f̂ − f‖A|F|,F + ‖f̂ − f‖A|J0|,J0 + ‖f̂ − f‖A|J1|+t,J1

(a)

≤ 2 ·OPTt +
4 ·OPTt + 4ε

α− 1
+ ‖f̂ − f‖A(2α+1)t

(b)

≤ 2 ·OPTt +
4 ·OPTt + 4ε

α− 1
+ ε ,

where inequality (a) follows from Fact 6(d) and inequality (b) follows from the VC inequality. Thus, it
suffices to prove Equations (3)–(5).

Case 1. We first consider the set of intervals F . By the triangle inequality, we have

‖h− f‖1,F ≤ ‖f − h∗‖1,F + ‖h− h∗‖1,F .

Thus to show (3), it suffices to show that

‖h− h∗‖1,F ≤ ‖f − h∗‖1,F + ‖f̂ − f‖A|F|,F . (6)

We prove a slightly more general version of (6) that holds over all finite sets of intervals not containing
any jump of h∗. We will use this general version also later in our proof.

14

Lemma 11. Let J ∈ I`I so that Γ(J) = 0 for all J ∈ J . Let h = f̂J denote the flattening of f̂ on J . Then

‖h− h∗‖1,J ≤ ‖f − h
∗‖1,J + ‖f̂ − f‖A`,J .

Note that this is indeed a generalization of (6) since for any point x in any interval of F , we have
h(x) = f̂F (x).

Proof of Lemma 11. In any interval J ∈ J with Γ(J) = 0, we have

‖h− h∗‖1,J
(a)
= |h(J)− h∗(J)| (b)

= |f̂(J)− h∗(J)|,

where (a) follows from the fact that h and h∗ are constant in J , and (b) follows from the definition of h.
Thus, we get

‖h− h∗‖1,J =
∑
J∈J
‖h− h∗‖1,J

=
∑
J∈J
|f̂(J)− h∗(J)|

(c)

≤
∑
J∈J
|f̂(J)− f(J)|+

∑
J∈J
|f(J)− h∗(J)|

(d)

≤ ‖f̂ − f‖A|J |,J + ‖f − h∗‖1,J

where (c) uses the triangle inequality, and (d) follows from the definition of Ak-distance.

Case 2a. Next, we analyze the error for the intervals in J0. The set I0 contains only singletons and
intervals with no sample points. By definition, only the intervals in I0 that contain no samples may contain
a jump of h∗. The singleton intervals containing the sample points do not include jumps and are hence
covered by Case 1. Since the intervals in J0 do not contain any samples, our algorithm assigns

h(J) = f̂(J) = 0

for any J ∈ J0. Hence,
‖h− f‖1,J0

= ‖f‖1,J0
.

We thus have the following sequence of (in)equalities:

‖h− f‖1,J0
= ‖f‖1,J0

=
∑
J∈J0

|f(J)|

=
∑
J∈J0

|f(J)− f̂(J)|

≤ ‖f − f̂‖A|J0|,J0
,

where the last step uses the definition of the Ak-norm.

15

Case 2b. Finally, we bound the error for intervals in J1, i.e., intervals that were created by merging in
some iteration of our algorithm and also contain jumps. As before, our first step is the following triangle
inequality:

‖h− f‖1,J1 ≤ ‖h− h∗‖1,J1 + ‖h∗ − f‖1,J1 .

Consider an interval J ∈ J1. Since h is constant in J and h∗ has Γ(J) jumps in J , h − h∗ has at most
Γ(J) sign changes in J . Therefore,

‖h− h∗‖1,J
(a)
= ‖h− h∗‖AΓ(J)+1,J

(b)

≤ ‖h− f̂‖AΓ(J)+1,J + ‖f̂ − f‖AΓ(J)+1,J + ‖f − h∗‖AΓ(J)+1,J

(c)

≤ (Γ(J) + 1)‖h− f̂‖A1,J + ‖f̂ − f‖AΓ(J)+1,J + ‖f − h∗‖1,J , (7)

where equality (a) follows from Fact 6(a), inequality (b) is the triangle inequality, and inequality (c) uses
Fact 6(c). Finally, we bound the A1-distance in the first term above.

Lemma 12. For any J ∈ J1, we have

‖h− f̂‖A1,J ≤
2OPTt + 2ε

(α− 1)t
. (8)

Before proving the lemma, we show how to use it to complete Case 2b. Since h is the flattening of f̂
over J , we have that ‖h− f̂‖A1,J = e(f̂ , J). Applying (7) gives:

‖h− h∗‖1,J1 =
∑
J∈J1

‖h− h∗‖1,J

≤
∑
J∈J1

(
(Γ(J) + 1)‖h− f̂‖A1,J + ‖f̂ − f‖AΓ(J)+1,J + ‖f − h∗‖1,J

)

≤ 2 ·OPTt + 2ε

(α− 1)t
·

∑
J∈J1

(Γ(J) + 1)

+
∑
J∈J1

‖f̂ − f‖AΓ(J)+1,J + ‖f − h∗‖1,J1

(a)

≤ 4 ·OPTt + 4ε

(α− 1)
+ ‖f̂ − f‖At+|J1|,J1 + ‖f − h∗‖1,J1

where inequality (a) uses the fact that Γ(J) ≥ 1 for these intervals and hence∑
J∈J1

(Γ(J) + 1) ≤ 2
∑
J∈J1

Γ(J) ≤ 2t .

We now complete the final step by proving Lemma 12.

Proof of Lemma 12. Recall that in each iteration of our algorithm, we merge all pairs of intervals except
those with the αt largest errors. Therefore, if two intervals were merged, there were at least αt other pairs
of intervals with larger error. We will use this fact to bound the error on the intervals in J1.

Consider any interval J ∈ J1, and suppose it was created in the jth iteration of the while loop of our
algorithm, i.e., J = I ′i,j+1 = I2i−1,j ∪ I2i,j for some i ∈ {1, . . . , sj/2}. Note that this interval is not merged
again in the remainder of the algorithm. Recall that the intervals I ′i,j+1, for i ∈ {1, . . . , sj/2}, are the

16

possible candidates for merging at iteration j. Let h′ = f̂I′j+1
be the distribution obtained by flattening the

empirical distribution over these candidate intervals I ′j+1 = {I ′1,j+1, . . . , I
′
sj/2,j+1}. Note that h′(x) = h(x)

for x ∈ J because J was created in this iteration.
Let L be the set of candidate intervals I ′i,j+1 in the set I ′j+1 with the largest α · t errors e(f̂ , I ′i,j+1). Let

L0 be the intervals in L that do not contain any jumps of h∗. Since h∗ has at most t jumps, |L0| ≥ (α− 1)t.
Moreover, for any I ′ ∈ L0, by the triangle inequality

e(f̂ , I ′) = ‖h′ − f̂‖A1,I′

≤ ‖h′ − h∗‖A1,I′ + ‖f − h∗‖A1,I′ + ‖f − f̂‖A1,I′

≤ ‖h′ − h∗‖A1,I′ + ‖f − h∗‖1,I′ + ‖f − f̂‖A1,I′ .

Summing over the intervals in L0,∑
I′∈L0

e(f̂ , I ′) ≤
∑
I′∈L0

(
‖h′ − h∗‖A1,I′ + ‖f − h∗‖1,I′ + ‖f − f̂‖A1,I′

)

≤

∑
I′∈L0

‖h′ − h∗‖A1,I′

+ ‖f − h∗‖1,L0 + ‖f − f̂‖A2αt,L0

≤

∑
I′∈L0

‖h′ − h∗‖A1,I′

+ OPTt + ε , (9)

where recall that we had conditioned on the last term being at most ε throughout the analysis. Since both h
and h∗ are flat on each interval I ′ ∈ L0, Lemma 11 gives∑

I′∈L0

‖h′ − h∗‖A1,I′
≤ ‖f − h∗‖1,L0 + ‖f̂ − f‖A|L0|,L0 ≤ OPTt + ε .

Plugging this into (9) gives ∑
I′∈L0

e(f̂ , I ′) ≤ 2 ·OPTt + 2ε .

Since J was created by merging in this iteration, we have that e(f̂ , J) is no larger than e(f̂ , I ′) for any of the
intervals I ′ ∈ L0 (see lines 12 - 15 of Algorithm 1), and therefore e(f̂ , J) is not larger than their average.
Recalling that |L0| ≥ (α− 1)t, we obtain

e(f̂ , J) = ‖h′ − f̂‖A1,J
= ‖h− f̂‖A1,J

≤
∑

I′∈L0
e(f̂ , I ′)

(α− 1)t
≤ 2OPTt + 2ε

(α− 1)t
,

completing the proof of the lemma.

4.2 The general merging algorithm

We are now ready to present our general merging algorithm, which is a generalized version of the histogram
merging algorithm introduced in Section 4.1. The histogram algorithm only uses three main properties of

17

histogram hypotheses: (i) The number of intersections between two t-histogram hypotheses is bounded by
O(t). (ii) Given an interval J and an empirical distribution f̂ , we can efficiently find a good histogram fit to
f̂ on this interval. (iii) We can efficiently compute the A1-errors of candidate intervals.

Note that property (i) bounds the complexity of the hypothesis class and leads to a tight sample complex-
ity bound while properties (ii) and (iii) are algorithmic ingredients. We can generalize these three notions to
arbitrary classes of piecewise hypotheses as follows. Let D be a class of hypotheses. Then the generalized
variants of properties (i) to (iii) are: (i) The number of intersections between any two hypotheses in D is
bounded. (ii) Given an interval J and an empirical distribution f̂ , we can efficiently find the best fit to f̂
from functions in D with respect to the Ak-distance. (iii) We can efficiently compute the Ak-distance be-
tween the empirical distribution and any hypothesis in D. Using these generalized properties, the histogram
merging algorithm naturally extends to agnostically learning piecewise hypotheses where each piece is in
the class D.

The following definitions formally describe the aforementioned framework. We first require a mild condition
on the underlying distribution family:

Definition 13. LetD be a family of measurable functions defined over subsets of I . D is said to be full if for
each J ⊆ I , there exists a function g in D whose domain is J . Let DJ be the elements of D whose domain
is J .

Our next definition formalizes the notion of piecewise hypothesis whose components come from D:

Definition 14. A function h : I → R is a t-piece D-function if there exists a partition of I into intervals
I1, . . . , It′ with t′ ≤ t, such that for every i, 1 ≤ i ≤ t′, there exists hi ∈ DIi satisfying that h = hi on Ii.
Let Dt denote the set of all t-piece D-functions.

The main property we require from our full function class D is that any two functions in D intersect a
bounded number of times. This is formalized in the definition below:

Definition 15. Let D be a full family over I and J ⊆ I . Suppose h ∈ DJ and h′ ∈ Dk for some k ≥ 1.
Let h′ = h′Ii , 1 ≤ i ≤ k, for some interval partition I1, . . . , Ik of I and h′Ii ∈ DIi . Let s denote the number
of endpoints of the Ii’s contained in J . We say that D is d-sign restricted if the function h− h′ has at most
(s+ 1)d sign changes on J , for any h and h′.

The following simple examples illustrate that histograms and more generally piecewise polynomial func-
tions fall into this framework.

Example 1. Let HJ be the set of constant functions defined on J . Then if H = ∪J⊆IHJ , the set Ht of
t-piece H-functions is the set of piecewise constant functions on I with at most t interval pieces. (Note that
this class is the set of t-histograms.)

Example 2. For J ⊆ I , we define PJ,d to be set of degree-d nonnegative polynomials on J , and Pd
def
=

∪JPJ,d. Since the degree d will be fixed throughout this paper, we sometimes simply denote this set by P .
The set Pt,d of t-piece P-functions is the set of t-piecewise degree-d non-negative polynomials. It is easy to
see that this class is full over I . Since any two polynomials of degree d intersect at most d times, it is easy
to see that Pd forms a d-sign restricted class.

We are now ready to formally define our general learning problem. Fix positive integers t, d and a full
d-sign restricted class of functions D. Given sample access to any pdf f : I → R+, we want to compute a

18

good Dt approximation to f . We define OPTD,t
def
= infg∈Dt ‖g − f‖1 . Our goal is to find an O(t)-piece

D-function h : I → R such that ‖h − f‖1 ≤ C · OPTD,t + O(ε), with high probability over the samples,
where C is a universal constant.

Our iterative merging algorithm takes as input samples from an arbitrary distribution, and outputs an
O(t)-piecewise D hypothesis satisfying the above agnostic guarantee. Our algorithm assumes the existence
of two subroutines, which we call Ak-projection and Ak-computation oracles. The Ak-projection oracle
was defined in Definition 7 and is restated below along with the definition of the Ak-computation oracle
(Definition 16).

Definition 7. Fix η > 0. An algorithm Op(f̂ , J, η) is an η-approximate Ak-projection oracle for D if it
takes as input an interval J and f̂ , and returns a hypothesis h ∈ D such that

‖h− f̂‖Ak,J ≤ inf
h′∈D
‖h′ − f̂‖Ak,J + η .

Definition 16. Fix η > 0. An algorithm Oc(f̂ , hJ , J, η) is an η-approximate Ak-computation oracle for D
if it takes as input f̂ , a subinterval J ⊆ I , and a function hJ ∈ DJ , and returns a value ξ such that∣∣∣‖hJ − f̂‖Ak,J − ξ∣∣∣ ≤ η .

We consider a d-sign restricted full familyD, and a fixed η > 0. LetRp(I) = Rp(I, f̂ ,Op) andRc(I) =

Rc(I, f̂ ,Oc) be the time used by the oracle Op and Oc, respectively. With a slight abuse of notation, for a
collection of at most 2n intervals containing n points in the support of the empirical distribution, we also
define Rp(n) and Rc(n) to be the maximum time taken by Op and Oc, respectively.

We are now ready to state the main theorem of this section:

Theorem 17. Let Op and Oc be η-approximate Ak-projection and Ak-computation oracles for D. Algo-
rithm GENERAL-MERGING(f, t, α, ε, δ) draws n = O((αdt+ log(1/δ))/ε2) samples, has time complexity
O
(
(Rp(n) +Rc(n)) log n

αt

)
, and outputs a hypothesis h and an interval partition I such that |I| ≤ 2α · t

and with probability at least 1− δ, we have

‖h− f‖1 ≤ 3 ·OPTD,t +
OPTD,t + ε

α− 1
+ 2ε+ η . (10)

In the remainder of this section, we provide an intuitive explanation of our general merging algorithm
followed by a detailed pseudocode.

The algorithm GENERAL-MERGING and its analysis is a generalization of the CONSTRUCTHISTOGRAM

algorithm from the previous subsection. More formally, the algorithm proceeds greedily, as before. We take
n = O((αdt + log 1/δ)/ε2) samples x1 ≤ . . . ≤ xn. We construct I0 as in (1). In the j-th iteration, given
the current partition Ij = {I1,j , . . . , Isj ,j} with sj intervals, consider the intervals

I ′`,j+1 = I2`−1,j ∪ I2`,j

for ` ≤ sj/2. As for histograms, we want to compute the errors in each of the new intervals created. To do
this, we first call the Ak–projection oracle with k = d+ 1 on this interval to find the approximately best fit
in D for f̂ over these new intervals, namely:

h′`,j = Op
(
f̂ , I ′`,j+1,

η

O(t)

)
.

19

To compute the error, we call the Ak–computation oracle with k = d+ 1, i.e.:

e`,j = Oc
(
f̂ , h′`,j , I

′
`,j+1,

η

O(t)

)
.

As in CONSTRUCTHISTOGRAM, we keep the intervals with the largest O(αt) errors intact and merge
the remaining pairs of intervals. We perform this procedureO(log n

αt) times and arrive at some final partition
I with O(αt) pieces. Our output hypothesis is the output of Op(f̂ , I) over each of the final intervals I .

The formal pseudocode for our algorithm is given in Algorithm 2. We assume that D and d are known
and fixed and are not mentioned explicitly as an input to the algorithm. Note that we run the algorithm with
η = ε so that Theorem 17 has an additional O(ε) error. The proof of Theorem 17 is very similar to that of
the histogram merging algorithm and is deferred to Appendix A.

Algorithm 2 Approximating with general hypotheses by merging.
1: function GENERAL-MERGING(f, d, t, α, ε, δ)
2: Draw n = Θ((αdt+ log 1/δ)/ε2) samples x1 ≤ x2 ≤ . . . ≤ xn.
3: Form the empirical distribution f̂ from these samples.
4: Let I0 ← {[a, x1), [x1, x1], (x1, x2), . . . , (xn−1, xn), [xn, xn], (xn, b]} be the initial partition.
5: j ← 0
6: while |Ij | > 2α · t do
7: Let Ij = {I1,j , I2,j , . . . , Isj−1,j , Isj ,j}
8: for ` ∈ {1, 2, . . . , sj2 } do
9: I ′`,j+1 ← I2`−1,j ∪ I2`,j

10: h′`,j ← Op(f̂ , I ′`,j+1,
ε

2αt)

11: e`,j ← Oc(f̂ , h′`,j , I ′`,j+1,
ε

2αt)
12: end for
13: Let L be the set of ` ∈ {1, 2, . . . , sj2 } with the αt largest errors e`,j .
14: Let M be the complement of L.
15: Ij+1 ←

⋃
`∈L
{I2`−1,j , I2`,j}

16: Ij+1 ← Ij+1 ∪ {I ′`,j+1 | ` ∈M}
17: j ← j + 1
18: end while
19: return I = Ij and the functions Op(f̂ , J, ε

2αt) for J ∈ I
20: end function

4.3 Putting everything together

In Sections 5 and 6.3, we present an efficient approximate Ak-projection oracle and an Ak-computation
oracle for Pd, respectively. We show that:

Theorem 18. Fix J ⊆ [−1, 1] and η > 0. For all k ≤ d, there is an η-approximate Ak-projection oracle
for Pd which runs in time

O

((
d3 log log 1/η + sd2 + dω+2

)
log2 1

η

)
.

where s is the number of samples in the interval J .

20

Theorem 19. There is an η-approximateAk-computation oracle forPd which runs in timeO((s+d) log2(s+
d)) where s is the number of samples in the interval J .

The algorithm GENERALMERGING, when used in conjunction with the oracles Op and Oc given in
Theorems 18 and 19 (for η = ε), yields Theorem 1. For this choice of oracles we have thatRp(n)+Rc(n) =
O(n · dω+2 · log3 1

ε). This completes the proof.

5 A fast Ak-projection oracle for polynomials

We now turn our attention to theAk-projection problem, which appears as the main subroutine in the general
merging algorithm (see Section 4.2). In this section, we let E ⊂ J be the set of samples drawn from the
unknown distribution. To emphasize the dependence of the empirical distribution on E, we denote the
empirical distribution by f̂E in this section. Given an interval J = [a, b] and a set of samples E ⊂ J ,
the goal of the Ak-projection oracle is to find a hypothesis h ∈ D such that the Ak-distance between the
empirical distribution f̂E and the hypothesis h is minimized. In contrast to the merging algorithm, the
Ak-projection oracle depends on the underlying hypothesis class D, and here we present an efficient oracle
for non-negative polynomials with fixed degree d. In particular, our Ak-projection oracle computes the
coefficients c ∈ Rd+1 of a degree-d polynomial pc that approximately minimizes the Ak-distance to the
given empirical distribution f̂E in the interval J . Moreover, our oracle ensures that pc is non-negative for all
x ∈ J .

At a high-level, we formulate the Ak-projection as a convex optimization problem. A key insight is
that we can construct an efficient, approximate separation oracle for the set of polynomials that have anAk-
distance of at most τ to the empirical distribution f̂E . Combining this separation oracle with existing convex
optimization algorithms allows us to solve the feasibility problem of checking whether we can achieve a
given Ak-distance τ . We then convert the feasibility problem to the optimization variant via a binary search
over τ .

In order to simplify notation, we assume that the interval J is [−1, 1] and that the mass of the empirical
distribution f̂E is 1. Note that the general Ak-projection problem can easily be converted to this special
case by shifting and scaling the sample locations and weights before passing them to the Ak-projection
subroutine. Similarly, the resulting polynomial can be transformed to the original interval and mass of the
empirical distribution on this interval.3

5.1 The set of feasible polynomials

For the feasibility problem, we are interested in the set of degree-d polynomials that have anAk-distance of
at most τ to the empirical distribution f̂E on the interval J = [−1, 1] and are also non-negative on J . More
formally, we study the following set.

Definition 20 (Feasible polynomials). Let E ⊂ J be the samples of an empirical distribution with f̂E(J) =
1. Then the set of (τ, d, k, E)-feasible polynomials is

Cτ,d,k,E :=
{
c ∈ Rd+1 | ‖pc − f̂E‖Ak,J ≤ τ and pc(x) ≥ 0 for all x ∈ J

}
.

3Technically, this step is actually necessary in order to avoid a running time that depends on the shape of the unknown pdf
f . Since the pdf f could be supported on a very small interval only, the corresponding polynomial approximation could require
arbitrarily large coefficients (the empirical distribution would have all samples in a very small interval). In that case, operations
such as root-finding with good precision could take an arbitrary amount of time. In order to circumvent this issue, we make use
of the real-RAM model to rescale our samples to [−1, 1] before processing them further. Combined with the assumption of unit
probability mass, this allows us to bound the coefficients of candidate polynomials in the current interval.

21

When d, k, and E are clear from the context, we write only Cτ for the set of τ -feasible polynomials.

Considering the original Ak-projection problem, we want to find an element c∗ ∈ Cτ∗ , where τ∗ is the
smallest value for which Cτ∗ is non-empty. We solve a slightly relaxed version of this problem, i.e., we find
an element c for which the Ak-constraint and the non-negativity constraint are satisfied up to small additive
constants. We then post-process the polynomial pc to make it truly non-negative while only increasing the
Ak-distance by a small amount.

Note that we can “unwrap” the definition of the Ak-distance and write C as an intersection of sets in
which each set enforces the constraint

∑k
i=1|pc(Ii)− f̂E(Ii)| ≤ τ for one collection of k disjoint intervals

{I1, . . . , Ik}. For a fixed collection of intervals, we can then write each Ak-constraint as the intersection
of linear constraints in the space of polynomials. Similarly, we can write the non-negativity constraint as
an intersection of pointwise non-negativity constraints, which are again linear constraints in the space of
polynomials. This leads us to the following key lemma. Note that convexity of Cτ could be established
more directly4, but considering Cτ as an intersection of halfspaces illustrates the further development of our
algorithm (see also the comments after the lemma).

Lemma 21 (Convexity). The set of τ -feasible polynomials is convex.

Proof. From the definitions of Cτ and the Ak-distance, we have

Cτ = {c ∈ Rd+1 | ‖pc − f̂E‖Ak,J ≤ τ and pc(x) ≥ 0 for all x ∈ J}

= {c ∈ Rd+1 | sup
I∈IkJ

∑
I∈I
|pc(I)− f̂E(I)| ≤ τ} ∩ {c ∈ Rd+1 | pc(x) ≥ 0 for all x ∈ J}

=
⋂
I∈IkJ

{c ∈ Rd+1 |
∑
I∈I
|pc(I)− f̂E(I)| ≤ τ} ∩

⋂
x∈J
{c ∈ Rd+1 | pc(x) ≥ 0}

=
⋂
I∈IkJ

⋂
ξ∈{−1,1}k

{c ∈ Rd+1 |
k∑
i=1

ξi(pc(Ii)− f̂E(Ii)) ≤ τ} ∩
⋂
x∈J
{c ∈ Rd+1 | pc(x) ≥ 0} .

In the last line, we used the notation I = {I1, . . . , Ik}. Since the intersection of a family of convex sets is
convex, it remains to show that the individual Ak-distance sets and non-negativity sets are convex. Let

M =
⋂
I∈IkJ

⋂
ξ∈{−1,1}k

{c ∈ Rd+1 |
k∑
i=1

ξi(pc(Ii)− f̂E(Ii)) ≤ τ}

N =
⋂
x∈J
{c ∈ Rd+1 | pc(x) ≥ 0} .

We start with the non-negativity constraints encoding the set N . For a fixed x ∈ J , we can expand the
constraint pc(x) ≥ 0 as

d∑
i=0

ci · xi ≥ 0 ,

which is clearly a linear constraint on the ci. Hence, the set {c ∈ Rd+1 | pc(x) ≥ 0} is a halfspace for a
fixed x and thus also convex.

4Norms give rise to convex sets and the set of non-negative polynomials is also convex.

22

Next, we consider the Ak-constraints
∑k

i=1 ξi(pc(Ii) − f̂E(Ii)) ≤ τ for the setM. Since the intervals
I1, . . . , Ik are now fixed, so is f̂E(Ii). Let αi and βi be the endpoints of the interval Ii, i.e., Ii = [αi, βi].
Then we have

pc(Ii) =

∫ βi

αi

pc(x) dx = Pc(βi)− Pc(αi) ,

where Pc(x) is the indefinite integral of Pc(x), i.e.,

Pc(x) =

d∑
i=0

ci ·
xi+1

i+ 1
.

So for a fixed x, Pc(x) is a linear combination of the ci. Consequently
∑k

i=1 ξipc(Ii) is also a linear
combination of the ci, and hence each set in the intersection definingM is a halfspace. This shows that Cτ
is a convex set.

It is worth noting that the set N is a spectrahedron (the feasible set of a semidefinite program) because
it encodes non-negativity of a univariate polynomial over a fixed interval. After restricting the set of coeffi-
cients to non-negative polynomials, we can simplify the definition of theAk-distance: it suffices to consider
sets of intervals with endpoints at the locations of samples (see Lemma 37). Hence, we can replace the
supremum in the definition ofM by a maximum over a finite set, which shows that Cτ is also a spectrahe-
dron. This suggests that the Ak-projection problem could be solved by a black-box application of an SDP
solver. However, this would lead to a running time that is exponential in k because there are more than

(|E|
2k

)
possible sets of intervals. While the authors of [CDSS14] introduce an encoding of the Ak-constraint with
fewer linear inequalities, their approach increases the number of variables in the optimization problem to
depend polynomially on 1

ε , which leads to a super-linear running time.
Instead of using black-box SDP or LP solvers, we construct an algorithm that exploits additional struc-

ture in the Ak-projection problem. Most importantly, our algorithm separates the dimension of the desired
degree-d polynomial from the number of samples (or equivalently, the error parameter ε). This allows us to
achieve a running time that is nearly-linear for a wide range of distributions. Interestingly, we can solve our
SDP significantly faster than the LP which has been proposed in [CDSS14] for the same problem.

5.2 Separation oracles and approximately feasible polynomials

In order to work with the large number of Ak-constraints efficiently, we “hide” this complexity from the
convex optimization procedure by providing access to the constraints only through a separation oracle. As
we will see in Section 6, we can utilize the structure of theAk-norm and implement such a separation oracle
for the Ak-constraints in nearly-linear time. Before we give the details of our separation oracle, we first
show how we can solve the Ak-projection problem assuming that we have such an oracle. We start by
formally defining our notions of separation oracles.

Definition 22 (Separation oracle). A separation oracle O for the convex set Cτ is a function that takes as
input a coefficient vector c ∈ Rd+1 and returns one of the following two results:

1. “yes” if c ∈ Cτ .

2. a separating hyperplane y ∈ Rd+1. The hyperplane y must satisfy yT c′ ≤ yT c for all c′ ∈ Cτ .

23

For general polynomials, it is not possible to perform basic operations such as root finding exactly, and
hence we have to resort to approximate methods. This motivates the following definition of an approximate
separation oracle. While an approximate separation oracle might accept a point c that is not in the set Cτ ,
the point c is then guaranteed to be close to Cτ .

Definition 23 (Approximate separation oracle). A µ-approximate separation oracle O for the set Cτ =
Cτ,d,k,E is a function that takes as input a coefficient vector c ∈ Rd+1 and returns one of the following two
results, either “yes” or a hyperplane y ∈ Rd+1.

1. If O returns “yes”, then ‖pc − f̂E‖Ak,J ≤ τ + 2µ and pc(x) ≥ −µ for all x ∈ J .

2. If O returns a hyperplane, then y is a separating hyperplane; i.e. the hyperplane y must satisfy
yT c′ ≤ yT c for all c′ ∈ Cτ .

In the first case, we say that pc is a 2µ-approximately feasible polynomial.

Note that in our definition, separating hyperplanes must still be exact for the set Cτ . Although our
membership test is only approximate, the exact hyperplanes allow us to employ several existing separation
oracle methods for convex optimization. We now formally show that many existing methods still provide
approximation guarantees when used with our approximate separation oracle.

Definition 24 (Separation Oracle Method). A separation oracle method (SOM) is an algorithm with the
following guarantee: let C be a convex set that is contained in a ball of radius 2L. Moreover, let O be a
separation oracle for the set C. Then SOM(O, L) returns one of the following two results:

1. a point x ∈ C.

2. “no” if C does not contain a ball of radius 2−L.

We say that an SOM is canonical if it interacts with the separation oracle in the following way: the first
time the separation oracle returns “yes” for the current query point x, the SOM returns the point x as its
final answer.

There are several algorithms satisfying this definition of a separation oracle method, e.g., the classical
Ellipsoid method [Kha79] and Vaidya’s cutting plane method [Vai89]. Moreover, all of these algorithms
also satisfy our notion of a canonical separation oracle method. We require this technical condition in
order to prove that our approximate separation oracles suffice. In particular, by a straightforward simulation
argument, we have the following:

Theorem 25. LetM be a canonical separation oracle method, and let O be a µ-approximate separation
oracle for the set Cτ = Cτ,d,k,E . Moreover, let L be such that Cτ is contained in a ball of radius 2L. Then
M(O, L) returns one of the following two results:

1. a coefficient vector c ∈ Rd+1 such that ‖pc − f̂E‖Ak,J ≤ τ + 2µ and pc(x) ≥ −µ for all x ∈ J .

2. “no” if C does not contain a ball of radius 2−L.

5.3 Bounds on the radii of enclosing and enclosed balls

In order to bound the running time of the separation oracle method, we establish bounds on the ball radii
used in Theorem 25.

24

Upper bound When we initialize the separation oracle method, we need a ball of radius 2L that contains
the set Cτ . For this, we require bounds on the coefficients of polynomials which are bounded in L1 norm.
Bounds of this form were first established by Markov [Mar92].

Lemma 26. Let pc be a degree-d polynomial with coefficients c ∈ Rd+1 such that p(x) ≥ 0 for x ∈ [−1, 1]
and

∫ 1
−1 p(x) dx ≤ α, where α > 0. Then we have

|ci| ≤ α · (d+ 1)2 · (
√

2 + 1)d for all i = 0, . . . , d .

This lemma is well-known, but for completeness, we include a proof in Appendix B. Using this lemma, we
obtain:

Theorem 27 (Upper radius bound). Let τ ≤ 1 and let A be the (d+ 1)-ball of radius r = 2Lu where

Lu = d log(
√

2 + 1) +
3

2
log d+ 2 .

Then Cτ,d,k,E ⊆ A.

Proof. Let c ∈ Cτ,d,k,E . From basic properties of the L1- and Ak-norms, we have∫ 1

−1
pc dx = ‖pc‖1,J = ‖pc‖Ak,J ≤ ‖f̂E‖Ak,J + ‖pc − f̂E‖Ak,J ≤ 1 + τ ≤ 2 .

Since pc is also non-negative on J , we can apply Lemma 26 and get

|ci| ≤ 2 · (d+ 1) · (
√

2 + 1)d for all i = 0, . . . , d .

Note that the above constraints define a hypercube B with side length s = 4 · (d+ 1) · (
√

2 + 1)d. The
ball A contains the hypercube B because r =

√
d+ 1 · s is the length of the longest diagonal of B. This

implies that Cτ,d,k,E ⊆ B ⊆ A.

Lower bound Separation oracle methods typically cannot directly certify that a convex set is empty. In-
stead, they reduce the volume of a set enclosing the feasible region until it reaches a certain threshold. We
now establish a lower bound on volumes of sets Cτ+η that are feasible by at least a margin η in the Ak-
distance. If the separation oracle method cannot find a small ball in Cτ+η, we can conclude that achieving
an Ak-distance of τ is infeasible.

Theorem 28 (Lower radius bound). Let η > 0 and let τ be such that Cτ = Cτ,d,k,E is non-empty. Then Cτ+η

contains a ball of radius r = 2−L` , where

L` = log
4(d+ 1)

η
.

Proof. Let c∗ be the coefficients of a feasible polynomial, i.e., c∗ ∈ Cτ . Moreover, let c be such that

ci =

{
c∗0 + η

4 if i = 0

c∗i otherwise
.

Since pc∗ is non-negative on J , we also have pc(x) ≥ η
4 for all x ∈ J . Moreover, it is easy to see that shifting

the polynomial pc∗ by η
4 changes the Ak-distance to f̂E by at most η2 because the interval J has length 2.

25

Hence, ‖pc − f̂E‖Ak,J ≤ τ + η
2 and so c ∈ Cτ+η. We now show that we can perturb the coefficients of c

slightly and still stay in the set of feasible polynomials Cτ+η.
Let ν = η

4(d+1) and consider the hypercube

B = {c′ ∈ Rd+1 | c′i ∈ [ci − ν, ci + ν] for all i} .

Note that B contains a ball of radius ν = 2−L` . First, we show that pc′(x) ≥ 0 for all x ∈ J and c′ ∈ B.
We have

pc′(x) =

d∑
i=0

c′ixi

=
d∑
i=0

cix
i +

d∑
i=0

(c′i − ci)xi

≥ pc(x)−
d∑
i=0

ν|xi|

≥ η

4
− (d+ 1) · ν

≥ 0 .

Next, we turn our attention to the Ak-distance constraint. In order to show that pc′ also achieves a good
Ak-distance, we bound the L1-distance to pc.

‖pc(x)− pc′(x)‖1,J =

∫ 1

−1
|pc(x)− pc′(x)|dx

≤
∫ 1

−1

d∑
i=0

ν · |xi|dx

≤
∫ 1

−1
(d+ 1)ν dx

= 2(d+ 1)ν

≤ η

2
.

Therefore, we get

‖pc′ − f̂E‖Ak,J ≤ ‖pc′ − pc‖Ak,J + ‖pc − f̂E‖Ak,J
≤ ‖pc′ − pc‖1,J + τ +

η

2
≤ τ + η .

This proves that c′ ∈ Cτ+η and hence B ⊆ Cτ+η.

5.4 Finding the best polynomial

We now relate the feasibility problem to our original optimization problem of finding a non-negative poly-
nomial with minimal Ak-distance. For this, we perform a binary search over the Ak-distance and choose

26

Algorithm 3 Finding polynomials with small Ak-distance.
1: function FINDPOLYNOMIAL(d, k, E, η)
2: . Initial definitions
3: Let η′ = η

15 .
4: Let Lu = d log(

√
2 + 1) + 3

2 log d+ 2.
5: Let L` = log 4(d+1)

2η′ .
6: Let L = max(Lu, L`).
7: LetM be a canonical separation oracle method.
8: Let Oτ be an η′-approximate separation oracle

for the set of (τ, d, k, E)-feasible polynomials.

9: τ` ← 0
10: τu ← 1
11: while τu − τ` ≥ η′ do
12: τm ← τ`+τu

2
13: τ ′m ← τm + 2η′

14: ifM(Oτ ′m , L) returned a point then
15: τu ← τm
16: else
17: τ` ← τm . Cτm′ does not contain a ball of radius 2−L and hence Cτm is empty.
18: end if
19: end while
20: c′ ←M(Oτu+10η′ , L) . Find final coefficients.
21: c0 ← c′0 + η′ and ci ← c′i for i 6= 0 . Ensure non-negativity.
22: return c
23: end function

27

our error parameters carefully in order to achieve the desired approximation guarantee. See Algorithm 3 for
the corresponding pseudocode.

The main result for our Ak-oracle is the following:

Theorem 29. Let η > 0 and let τ∗ be the smallest Ak-distance to the empirical distribution f̂E achievable
with a non-negative degree-d polynomial on the interval J , i.e., τ∗ = minh∈PJ,d‖h − f̂E‖Ak,J . Then
FINDPOLYNOMIAL returns a coefficient vector c ∈ Rd+1 such that pc(x) ≥ 0 for all x ∈ J and ‖pc −
f̂E‖Ak,J ≤ τ

∗ + η.

Proof. We use the definitions in Algorithm 3. Note that τ∗ is the smallest value for which Cτ∗ = Cτ∗,d,k,E
is non-empty. First, we show that the binary search maintains the following invariants: τ` ≤ τ∗ and there
exists a 4η′-approximately τu-feasible polynomial. This is clearly true at the beginning of the algorithm: (i)
Trivially, τ∗ ≥ 0 = τ`. (ii) For c = (0, 0, · · · , 0)T , we have ‖pc − f̂E‖Ak,J ≤ 1 = τu and pc(x) ≥ 0, so pc
is τu-feasible (and hence also approximately τu-feasible).

Next, we consider the two cases in the while-loop:

1. If the separation oracle method returns a coefficient vector c such that the polynomial pc is 2η′-
approximately τ ′m-feasible, then pc is also 4η′-approximately τm-feasible because τ ′m = τm + 2η′.
Hence, the update of τu preserves the loop invariant.

2. If the separation oracle method returns that Cτ ′m does not contain a ball of radius 2−L, then τm must be
empty (by the contrapositive of Theorem 28). Hence, we have τ∗ ≥ τm and the update of τ` preserves
the loop invariant.

We now analyze the final stage of FINDPOLYNOMIAL after the while-loop. First, we show that Cτu+8η′

is non-empty by identifying a point in the set. From the loop invariant, we know that there is a coefficient
vector v′ such that pv′ is a 4η′-approximately τu-feasible polynomial. Consider v with v0 := v′0 + 2η′ and
vi := v′i for i 6= 0. Then we have

‖pv − pv′‖1,J =

∫ 1

−1
|pv(x)− pv′(x)|dx =

∫ 1

−1
2η′ dx = 4η′ .

Hence, we also get

‖pv − f̂E‖Ak,J
(a)

≤ ‖pv − pv′‖Ak,J + ‖pv′ − f̂E‖Ak,J
(b)

≤ ‖pv − pv′‖1,J + τu + 4η′ ≤ τu + 8η′ .

We used the triangle inequality in (a) and the fact that pv′ is 4η′-approximately τu-feasible in (b). Moreover,
we have pv′(x) ≥ −2η′ for all x ∈ J and thus pv(x) ≥ 0 for all x ∈ J . This shows that Cτu+8η′ is
non-empty because v ∈ Cτu+8η′ .

Finally, consider the last run of the separation oracle method in line 20 of Algorithm 3. Since Cτu+8η′

is non-empty, Theorem 28 shows that Cτu+10η′ contains a ball of radius 2−L. Hence, the separation oracle
method must return a coefficient vector c′ ∈ Rd+1 such that pc′ is 2η′-approximately τu + 10η′-feasible.
Using a similar argument as for v, we can make pc′ non-negative while increasing its Ak-distance to f̂E by
only 2η′, i.e., we can show that pc(x) ≥ 0 for all x ∈ J and that

‖pc − f̂E‖Ak,J ≤ τu + 14η′ .

Since τu − τ` ≤ η′ and τ` ≤ τ∗, we have τu ≤ τ∗ + η′. Therefore, τu + 14η′ ≤ τ∗ + 15η′ = τ∗ + η, which
gives the desired bound on ‖pc − f̂E‖Ak,J .

28

In order to state a concrete running time, we instantiate our algorithm FINDPOLYNOMIAL with Vaidya’s
cutting plane method as the separation oracle method. In particular, Vaidya’s algorithm runs in time
O(TdL+dω+1L) for a feasibility problem in dimension d and ball radii bounds of 2L and 2−L, respectively.
T is the cost of a single call to the separation oracle and ω is the matrix-multiplication constant. Then we
get:

Theorem 30. LetO be an η
14 -approximate separation oracle that runs in time T . Then FINDPOLYNOMIAL

has time complexity O((Td2 + dω+2) log2 1
η).

Proof. The running time of FINDPOLYNOMIAL is dominated by the binary search. It is easy to see that the
binary search performs O(log 1

η) iterations, in which the main operation is the call to the separation oracle
method. Our bounds on the ball radii in Theorems 27 and 28 imply L = O(d+ log 1

η). Combining this with
the running time bound for Vaidya’s algorithm gives the time complexity stated in the theorem.

In Section 6 we describe a µ-approximate separation oracle that runs in time Õ(dk+ d log log 1/µ+ s),
where s is the number of samples in the empirical distribution on the interval J . Plugging this oracle
directly into our algorithm FINDPOLYNOMIAL gives an η-approximate Ak-projection oracle which runs in
time O((d3k+ d3 log log 1/η+ sd2 + dω+2) log2 1

η). This algorithm is the algorithm promised in Theorem
18.

6 The separation oracle and the Ak-computation oracle

In this section, we construct an efficient approximate separation oracle (see Definition 23) for the set Cτ
over the interval J = [−1, 1]. We denote our algorithm by APPROXSEPORACLE. Let A be the ball defined
in Lemma 27. We will show:

Theorem 31. For all µ > 0, APPROXSEPORACLE(c, µ) is a µ-approximate separation oracle for Cτ that
runs in time Õ(dk+d log log 1

µ+s), where s the number of samples in J , assuming all queries are contained
in the ball A.

Along the way we also develop an approximate Ak-computation oracle COMPUTEAK.

6.1 Overview of APPROXSEPORACLE

APPROXSEPORACLE consists of two parts, TESTNONNEGBOUNDED and AKSEPARATOR. We show:

Lemma 32. For any τ ≤ 2, given a set polynomial coefficients c ∈ A ⊂ Rd+1, the algorithm TEST-
NONNEGBOUNDED(c, µ) runs in time O(d log2 d(log2 d + log log 1/µ)) and outputs a separating hyper-
plane for Cτ or “yes”. Moreover, if there exists a point x ∈ [−1, 1] such that pc(x) < −µ, the output is
always a separating hyperplane.

We show in the next section that whenever c /∈ Cτ the output is “yes”.

Theorem 33. Given a set of polynomial coefficients c ∈ A ⊂ Rd+1 such that pc(x) ≥ −µ for all x ∈
[−1, 1], there is an algorithm AKSEPARATOR(c, µ) that runs in timeO(dk+(s+d) log2(s+d)) and either
outputs a separating hyperplane for c from Cτ or returns “yes”. Moreover, if ‖pc − f̂E‖Ak > τ + 2µ, the
output is always a separating hyperplane.

29

APPROXSEPORACLE given TESTNONNEGBOUNDED and AKSEPARATOR Given TESTNONNEGBOUNDED

and AKSEPARATOR, it is straightforward to design APPROXSEPORACLE.
We first run TESTNONNEGBOUNDED(c, µ). If it outputs a separating hyperplane, we return the hyper-

plane. Otherwise, we run AKSEPARATOR(c, µ), and again if it outputs a separating hyperplane, we return
it. If none of these happen, we return “yes”. Lemma 32 and Theorem 33 imply that APPROXSEPORACLE

is correct and runs in the claimed time:

O(d log2 d(log2 d+ log log 1/µ)) + O(dk + (s+ d) log2(s+ d)) = Õ(dk + d log log 1/µ+ s) .

In the following sections, we prove Lemma 32 and Theorem 33. In Section 6.2 we describe TEST-
NONNEGBOUNDED and prove Lemma 32, and in Section 6.3 we describe AKSEPARATOR and prove The-
orem 33.

6.2 Testing non-negativity and boundedness

Formally, the problem we solve here is the following testing problem:

Definition 34 (Approximate non-negativity test). An approximate non-negativity tester is an algorithm sat-
isfying the following guarantee. Given a polynomial p =

∑d
i=0 cix

i with maxi|ci| ≤ α and a parameter
µ > 0, return one of two results:

• a point x ∈ [−1, 1] at which p(x) < −µ/2.

• “OK”.

Moreover, it must return the first if there exists a point x′ ∈ [−1, 1] so that p(x′) < −µ.

Building upon the classical polynomial root-finding results of [Pan01], we show:

Theorem 35. Consider p and µ from Definition 34. Then there exists an algorithm TESTNONNEG(p, µ)
that is an approximate non-negativity tester and runs in time

O(d log2 d · (log2 d+ log logα+ log log(1/µ))) ,

where α is a bound on the coefficients of p.

This theorem is proved in Section B.2.
We have a bound on the coefficients c since we may assume that c ∈ A, and so we can use this al-

gorithm to efficiently test non-negativity as we require. Our algorithm TESTNONNEGBOUNDED simply
runs TESTNONNEG(pc, µ). If this returns ”yes”, then TESTNONNEGBOUNDED outputs ”yes”. Otherwise,
TESTNONNEG(pc, µ) outputs a point x ∈ [−1, 1] such that pc(x) ≤ −µ/2. In that case, TESTNONNEG-
BOUNDED returns the hyperplane defined by y = −(1, x, x2, . . . , xd)T , i.e., pc(x) = −yT c. Note that for
all c′ ∈ Cτ we have pc′(y) ≥ 0 and hence yT c′ ≤ 0. This shows that

yT c′ ≤ 0 <
µ

2
≤ −pc(x) = yT c

as desired.

30

Proof of Lemma 32. The correctness of this algorithm follows from the correctness of TESTNONNEG. We
therefore only bound the running time. The worst-case runtime of this algorithm is exactly the runtime of
TESTNONNEG(pc, µ) for any c ∈ A. Since we run TESTNONNEG(pc, µ) only when maxi∈[d] |ci| ≤ 2Lu =

2O(d) (see Theorem 27) , the runtime of TESTNONNEG(pc, µ) is

O(d log2 d(log2 d+ log log 1/µ)),

as claimed.

6.3 An Ak-computation oracle

We now consider the Ak-distance computation between two functions, one of which is a polynomial and
the other an empirical distribution. In this subsection, we describe an algorithm COMPUTEAK, and show:

Theorem 36. Given a polynomial p such that p(x) ≥ −µ for all x ∈ [−1, 1] and an empirical distribution
f̂ supported on s points, for any k ≤ d, COMPUTEAK(p, f̂ , k) runs in time O((s + d) log2(s + d)), and
computes a value v ∈ R+ such that |v − ‖p− f̂‖Ak | ≤ 2µ and a set of intervals I1, . . . , Ik so that

k∑
i=1

∣∣∣p(Ii)− f̂(Ii)
∣∣∣ = v .

Note that this theorem immediately implies Theorem 19.

AKSEPARATOR given COMPUTEAK: Before describing COMPUTEAK, we show how to design AK-
SEPARATOR satisfying Theorem 33 given such a subroutine COMPUTEAK.

The algorithm AKSEPARATOR is as follows: we run COMPUTEAK(pc, f̂ , k), let v be its estimate for
‖pc − f̂‖Ak , and let I1, . . . , Ik be the intervals it produces. If v ≤ τ , we output “yes”.

Otherwise, suppose

v =
k∑
i=1

|pc(Ii)− f̂(Ii)| > τ .

Note that if ‖pc − f̂‖Ak > τ + 2µ, this is guaranteed to happen since v differs from ‖pc − f̂‖Ak by at most
2µ. Let σi = sign(pc(Ii)− f̂(Ii)). Let Ii = [ai, bi]. Then

k∑
i=1

|pc(Ii)− f̂(Ii)| =
k∑
i=1

σi

(∫ bi

ai

pc(x) dx− f̂(Ii)

)

=
k∑
i=1

σi

 d∑
j=0

1

j + 1

(
bj+1
i − aj+1

i

)
cj − f̂(Ii)

 ,

and therefore,
k∑
i=1

σi

d∑
j=0

1

j + 1

(
bj+1
i − aj+1

i

)
cj > τ +

k∑
i=1

σif̂(Ii) . (11)

Note that the left hand side is linear in cwhen we fix σi, and this is the separating hyperplane AKSEPARATOR

returns in this case.

31

Proof of Theorem 33 given Theorem 36. We first argue about the correctness of the algorithm. If ‖pc −
f̂‖Ak ≥ τ + 2µ, then COMPUTEAK guarantees that

v =
i∑
i=1

|pc(Ii)− f̂(Ii)| > τ .

Consider the hyperplane constructed in (11). For any c′ ∈ Cτ

k∑
i=1

σi

 d∑
j=0

1

j + 1

(
bj+1
i − aj+1

i

)
c′j − f̂(Ii)

 ≤ k∑
i=1

∣∣∣∣∣∣
d∑
j=0

1

j + 1

(
bj+1
i − aj+1

i

)
c′j − f̂(Ii)

∣∣∣∣∣∣
=

d∑
j=0

∣∣∣pc′(Ij)− f̂(Ii)
∣∣∣

≤ |pc′ − f̂‖Ak ≤ τ ,

where the last inequality is from the definition of Cτ . Therefore this is indeed a separating hyperplane for c
and Cτ . Moreover, given I1, . . . , Ik and v, this separating hyperplane can be computed in time O(dk). Thus
the entire algorithm runs in time O(dk + (s+ d) log2(s+ d) as claimed.

6.3.1 A Reduction from Continuous to Discrete

We first show that our Ak–computation problem reduces to the following discrete problem: For a sequence
of real numbers c1, . . . , cr and an interval I = [a, b] in [r], letw(I) =

∑
a≤i≤b ci. We show that our problem

reduces to the problem DISCRETEAK, defined below.
DISCRETEAK: Given a sequence of r real numbers {ci}ri=1 and a number k, find a set of k disjoint

intervals I1, . . . , Ik that maximizes
k∑
i=1

|w(Ii)| .

We will denote the maximum value obtainable ‖{ci}‖Ak , i.e.,

‖{ci}‖Ak = max
I

∑
I∈I
|w(I)| ,

where the I is taken over all collections of k disjoint intervals.
We will show that it is possible to reduce the continuous problem of approximately computing the Ak

distance between p and f̂ to solving DISCRETEAK for a suitably chosen sequence of length O(d). Suppose
the empirical distribution f̂ is supported at s points a < x1 ≤ . . . ≤ xs ≤ b in this interval. Let X be the
support of f̂ . Let p[α, β] =

∫ β
α p(x)dx. Consider the following sequences of length 2s+ 1:

E(i) =

{
1/n if i is even,

0 if i is odd.
, Pdisc(i) =

{
p[x`, x`+1] if i = 2`+ 1,

0 if i is even.
,

where for simplicity we let s0 = a and ss+1 = b. The two sequences are displayed in Table 2.
Then we have the following lemma:

32

i 1 2 3 4 . . . 2s 2s+ 1

E(i) 0 1
n 0 1

n . . . 1
n 0

Pdisc(i) p[a, x1] 0 p[x1, x2] 0 . . . 0 p[xs, b]

Table 2: The sequences E(i) and Pdisc(i).

Lemma 37. For any polynomial p so that p(x) ≥ −µ on [−1, 1]∣∣∣‖p− f̂‖Ak − ‖{Pdisc − E}‖Ak
∣∣∣ < 2µ .

Moreover, given k intervals I1, . . . , Ik maximizing ‖{Pdisc−E}‖Ak , one can compute k intervals J1, . . . , Jk
so that ∣∣∣∣∣

k∑
i=1

∣∣∣p(Ji)− f̂(Ji)
∣∣∣− ‖{Pdisc − E}‖Ak

∣∣∣∣∣ < 2µ

in time O(k).

Proof. We first show that
‖p− f̂‖Ak ≥ ‖{Pdisc − E}‖Ak .

Let I1, . . . , Ik be a set of disjoint intervals in [2d+ 1] achieving the maximum on the RHS. Then it suffices
to demonstrate a set of k disjoint intervals J1, . . . , Jk in I satisfying

k∑
i=1

∣∣∣p(Ji)− f̂(Ji)
∣∣∣ ≥ k∑

i=1

|Pdisc(Ii)− E(Ii)| . (12)

We construct the Ji as follows. Fix i, and let Ii = [ai, bi]. Define Ji to be the interval from ai to bi. If
ai is even (i.e., if Pdisc(ai) − E(i) has only a contribution from −E(ai)), include the left endpoint of this
interval from Ji, otherwise (i.e., if Pdisc(ai)− E(i) has only a contribution from Pdisc(ai)), exclude it, and
similarly for the right endpoint. Then, by observation, we have Pdisc(Ii)−E(Ii) = p(Ji)− f̂(Ji), and thus
this choice of Ji satisfies (12), as claimed.

Now we show the other direction, i.e., that

‖p− f̂‖Ak ≤ ‖{Pdisc − E}‖Ak + 2µ .

Let I1, . . . , Ik denote a set of disjoint intervals in I achieving the maximum value on the LHS. It suffices
to demonstrate a set of k disjoint intervals J1, . . . , Jk in I satisfying

k∑
i=1

∣∣∣p(Ii)− f̂(Ii)
∣∣∣ ≤ k∑

i=1

|Pdisc(Ji)− E(Ji)|+ 2µ . (13)

We first claim that we may assume that the endpoints of each Ii are at a point in the support of the
empirical. Let ai and bi be the left and right endpoints of Ii, respectively. Cluster the intervals Ii into
groups, as follows: cluster any set of consecutive intervals Ij , . . . , Ij′ if it is the case that p(I`)− f̂(I`) ≥ 0
for ` = j, . . . , j′, and [b`, a`+1] contains no points of the empirical, for ` = j, . . . , j′ − 1. Put all other

33

intervals not clustered this way in their own group. That is, cluster a set of consecutive intervals if and
only if on all of them the contribution to the LHS is non-negative, and there are no points of the empirical
between them. Let the clustering be I1, . . . , Ik′ , and let Ji be the smallest interval containing all the intervals
in Ij . Let ci and di denote the left and right endpoints of Ji, respectively. Associate to each cluster a sign
σi ∈ {−1, 1} which is the (unique) sign of p(I)− f̂(I) for all I ∈ Ij . Since p(i) ≥ −µ, this clustering has
the property that for any cluster Ii, we have∣∣∣∣∣∣

∑
I∈Ii

p(I)− f̂(I)

− (p(Ji)− f̂(Ji))

∣∣∣∣∣∣ ≤ µ · |Ji −
⋃
I∈Ij

I| .

Then, for all i, if σi = 1, take the interval I ′i = (xj , x`) where xj is the largest point inX so that xj ≤ ci,
and where x` is the smallest point in X so that x` ≥ di. Then since p ≥ µ on [−1, 1] and the new interval
contains no points in the support of f̂ which are not in ∪I∈IjI or Ji, we have

p(I ′i)− f̂(I ′i) ≥ p(Ji)− f̂(I ′i)− µ
∣∣I ′i − Ji∣∣ ≥

∑
I∈Ii

p(I)− f̂(I)

− µ|Ji − ∪I∈IjI| − µ ∣∣I ′i − Ji∣∣ .
Alternatively, if σi < 0, take the interval I ′i = [xj , x`] where xj is the smallest point in X so that xj ≥ ci
and x` is the largest point in X so that x` ≤ di. By the analogous reasoning as before we have that
p(I ′i)− f̂(I ′i) ≤ p(Ji)− f̂(Ji) + µ|Ji|,5 and therefore |p(I ′i)− f̂(I ′i)|+ µ|Ii| ≥ |p(Ji)− f̂(Ji)|. Thus,

k∑
i=1

∣∣∣p(Ii)− f̂(Ii)
∣∣∣ ≤ k′∑

i=1

(
|p(I ′i)− f̂(I ′i)|+ µ|Ji − ∪I∈IjI|+ µ

∣∣I ′i − Ji∣∣)

≤
k′∑
i=1

∣∣∣p(I ′i)− f̂(I ′i)
∣∣∣+ 2µ .

since
∑k′

i=1

(
|Ji − ∪I∈IjI + µ |I ′i − Ji|

)
≤ 2 as the intervals in the sum are disjoint subintervals in [−1, 1].

Now it is straightforward to define the Ji. Namely, for each Ii with endpoints xi1 ≤ xi2 so that xi1 , xi2 ∈
X , define

Ji =

[i1, i2] if xi1 , xi2 ∈ X ;

[i1 + 1, i2] if xi1 6∈ X and xi2 ∈ X ;

[i1, i2 − 1] if xi1 ∈ X and xi2 6∈ X ;

[i1 + 1, i2 − 1] if xi1 , xi2 6∈ X .

One can check that with this definition of the Ji, we have p(Ii)− f̂(Ii) = Pdisc(Ji)−E(Ji); moreover, all
the Ji are discrete and thus this choice of Ji satisfies (6.3.1).

Moreover, the transformation claimed in the lemma is the transformation provided in the first part of the
argument. It is clear that this transformation is computable in a single pass through the intervals I1, . . . , Ik.
This completes the proof.

5Since each cluster with negative sign has exactly a single interval in the original partition, notationally we will not distinguish
between Ji and the one interval in the original partition in Ii, when σi = −1.

34

6.3.2 Description of COMPUTEDISCRETEAK

For the rest of this section we focus on solving DISCRETEAK. A very similar problem was considered
in [Csu04] who showed an algorithm for the problem of computing the set of k disjoint intervals I1, . . . , Ik
maximizing ∣∣∣∣∣

k∑
i=1

w(Ii)

∣∣∣∣∣
which runs in time O(d · min{log d, k}) time. We require a modified version of this algorithm which we
present and analyze below. We call our variant COMPUTEDISCRETEAK.

Here is an informal description of COMPUTEDISCRETEAK. First, we may assume the original sequence
is alternating in sign, as otherwise we may merge two consecutive numbers without consequence. We start
with the set of intervals I0 = I0,1 ≤ . . . ≤ I0,r, where I0,i = [ci, ci] contains only the point ci. We first
compute J0 and m0, where J0 is the set of k intervals I in I0 with largest |w(I)|, and m0 =

∑
I∈J0

|w(I)|.
Iteratively, after constructing Ii = {Ii,1, . . . , Ii,r}, we construct Ii+1 by finding the set Ii,j with minimal
|w(Ii,j)| amongst all intervals in Ii, and merging it with both of its neighbors (if it is the first or last interval
and so only has one neighbor, instead discard it), that is,

Ii+1 = {Ii,1, . . . , Ii,j−2, Ii,j−1 ∪ Ii,j ∪ Ii,j+1, Ii,j+2, . . . , Ii,ri} .

We then compute Ji+1 and mi+1 where Ji+1 is the set of k intervals I in Ii+1 with largest |w(I)|, and
mi+1 =

∑
I∈Ji+1

|w(I)|. To perform these operations efficiently, we store the weights of the intervals we
create in priority queues. We repeat this process until the collection of intervals I` has ≤ k intervals. We
output Ji and wi, where wi is the largest amongst all wi′ computed in any iteration. An example of an
iteration of the algorithm is given in Figure 1, and the formal definition of the algorithm is in Algorithm 4.

Iteration i :
0.8 −0.5 0.4 −0.1 0.3−0.4 0.5

Iteration i+ 1 :
0.8 −0.5 0.6 −0.4 0.5

Figure 1: An iteration of COMPUTEDISCRETEAK. The numbers denote the weight of each interval. The
interval with smallest weight (in absolute value) is chosen and merged with adjacent intervals. Note that if
weights are of alternating signs at the start, then they are of alternating signs at each iteration.

The following runtime bound can be easily verified:

Theorem 38. Given {ci}ri=1, COMPUTEDISCRETEAK({ci}ri=1, k) runs in time O(r ·min{log r, k}).

The nontrivial part of the analysis is correctness.

Theorem 39. Given {ci}ri=1 and k, the set of intervals returned by COMPUTEDISCRETEAK({ci}ri=1, k)
solves the problem DISCRETEAK.

Proof. Our analysis follows the analysis in [Csu04]. We call any I∗ which attains the maximum for the
DISCRETEAK problem a maximal subset, or maximal for short. For any two collections of disjoint intervals
I ′, I ′′ in [r], we say that I ′ is contained in I ′′ if all the boundary points of intervals in I ′ are also boundary

35

Algorithm 4 Computing the discrete Ak norm of a sequence.
1: function COMPUTEDISCRETEAK({ci}ri=1, k)
2: Let I0 ← {[c1, c1], [c2, c2], . . . , [cr, cr]} be the initial set of intervals.
3: Let Q be an empty priority queue.
4: for I ∈ I0 do
5: Q.push(I, w(I))
6: end for
7: i← 0
8: while |Ii| > k do
9: Let I ← Q.deleteMin().

10: if I is not the leftmost or rightmost interval then
11: Let Ileft and Iright be its left and right neighbors, respectively.
12: Q.remove(Ileft)
13: Q.remove(Iright)
14: Let I ′ = Ileft ∪ I ∪ Iright
15: Q.push(I ′, w(I ′))
16: end if
17: i← i+ 1
18: Let Ii be the elements of Q
19: Let Ji be the k intervals in Ii with maximum weight
20: Let wi =

∑
I∈Ji w(I)

21: end while
22: return wj and Jj where wj satisfies wj ≥ wi for all i.
23: end function

points of intervals in I ′′. Figure 2 shows an example of two collections of intervals, one contained in the
other. If there is a maximal I∗ that is contained in I we say that I contains a maximal subset. We say that I ′
is atomic with respect to I ′′ if every interval in I ′ is also in I ′′. Figure 3 gives an example of two collections
of intervals, one atomic with respect to the other. If there is a maximal I∗ that is atomic with respect to I
then we say that the maximum is atomic with respect to I.

I ′ :

I ′′ :

Figure 2: I ′ is contained in I ′′ since each boundary point of all intervals in I ′ are boundary points of some
interval in I ′′.

We will prove the following invariant of our algorithm:

Lemma 40. For any i ≥ 0, if Ii contains a maximal subset, then either the maximum is atomic with respect
to Ii or Ii+1 contains a maximal subset.

Before we prove this lemma, let us see how it suffices to prove Theorem 39. Now the set I0 contains a
maximal subset. By induction and Lemma 40, for all i, as long as the maximum is not atomic with respect

36

I ′ :

I ′′ :

Figure 3: I ′ is atomic with respect to I ′′, since each interval in I ′ is also an interval in I ′′.

to Ii, Ii+1 contains a maximal subset. COMPUTEDISCRETEAK stops iterating at iteration if if Iif has at
most k intervals. At this point either the maximum was atomic with respect to some Ii, or Iif contains a
maximal subset. Let I∗ be any maximal subset it contains. We observe that∑

I∈I∗
|w(I)| ≤

∑
I∈Iif

|w(I)| ,

and moreover, Iif has k pieces, so Iif is itself maximal, and is atomic with respect to itself.
Thus, there is some i so that Ii contains a maximal subset that is atomic with respect to Ii. Call this

maximal subset I∗. But then since it is atomic with respect to Ii, we have that∑
I∈I∗
|w(I)| ≤

∑
I∈Ji

|w(I)| = mi ,

since Ji is chosen to maximize the sum over all sets of k intervals which are atomic with respect to Ii.
Since I∗ achieves the maximum for DISCRETEAK, we conclude that mi is indeed the maximum. Thus
whatever mi′ we output is also the maximum, and its Ji′ attains the maximum. This completes the proof of
Theorem 39 assuming Lemma 40.

We now prove Lemma 40.

Proof of Lemma 40. It suffices to show that if Ii contains a maximal subset, but the maximum is not atomic
with respect to Ii, then Ii+1 also contains a maximal subset. Thus, let I∗ be such that

1. I∗ is maximal

2. I∗ is contained in Ii, and

3. there is no I∗1 6= I∗ satisfying conditions (1) and (2) so that every interval in I∗1 is contained in some
interval in I∗.

Such an I∗ clearly exists by the assumption on Ii. Note that I∗ cannot be atomic with respect to Ii.
By observation we may assume that no interval I ′ in a maximal subset will ever end on a point a so that
w(I ′) and ca have different signs, since otherwise we can easily modify the partition to have this property
while still maintaining properties (1)-(3). More generally, we may assume there does not exist an interval I ′′

contained in I ′ with right endpoint equal to I ′’s right endpoint (resp. left endpoint equal to I ′’s left endpoint)
so that w(I ′) and w(I ′′) have different signs.

Let Ij = [β2, β3] be the interval in Ii with minimal |w(I)| amongst all I ∈ Ii. WLOG assume that it is
not the leftmost or rightmost interval (the analysis for these cases is almost identical and so we omit it). Let
β1 be the left endpoint of Ij−1 and β4 be the right endpoint of Ij+1. WLOG assume that w(Ij) < 0.

37

The initial partition I0 had the property that the signs of the values w(I) for I ∈ I0 alternated, and
through a simple inductive argument it follows that for all Ii, the signs of the values w(I) for I ∈ Ii still
alternate. Thus, we have w(Ij−1), w(Ij+1) ≥ 0. Since I∗ is not atomic, there is some Ia ∈ I∗ which
contains at least two intervals I1, I2 of Ii. Moreover, since the signs of the w(I) of the intervals in Ii
alternate, we may assume that w(I1) and w(I2) have different signs. Thus, by observation, we may in fact
assume that Ia contains three consecutive intervals I1 < I2 < I3, and that w(Ia), w(I1), w(I3) have the
same sign, and w(I2) has a different sign. Moreover, |w(Ij)| ≤ min{w(I1), w(I2), w(I3)}. Moreover,
define I1

a to be the interval which shares a left endpoint with Ia, and which has right endpoint the right
endpoint of I1, and I2

a to be the interval which shares a right endpoint with Ia, and which has left endpoint
the left endpoint of I3 (See Figure 4).

.

.

I∗ :

Ii :

Ia

.
I3I1 I2

I1
a I2

a

Figure 4: The interval Ia, and the intervals I1, I2, and I3.

We must have that w(I1
a), w(I2

a) are the same sign as w(Ia) as otherwise, say if w(I1
a)’s sign was

different from w(Ia)’s sign, we would have |w(Ia)| ≤ |w(I2
a)| and so the existence of the collection of

intervals I ′ = (I∗ \ Ia) ∪ I2
a violates condition (3), since it is contained in Ii, and∑

I∈I′
|w(I)| =

∑
I∈I∗
|w(I)| − |w(Ia)|+ |w(I2

a)| ≥
∑
I∈I∗
|w(I)| ,

so it is maximal.
Since I∗ is contained in Ii, the only boundary points that intervals in Ii can have in the interval [β1, β4]

are at the points βi for i ∈ {1, 2, 3, 4}. There are a few cases.

Case 1 If no interval in I∗ has any boundary point at β2 or β3, then it is still contained in Ii+1, by the
definition of Ii+1.

Case 2 If [β2, β3] ∈ I∗, define I ′ = (I∗ \ {[β2, β3], Ia}) ∪ {I1
a , I

2
a}. Then∑

I∈I′
|w(I)| =

∑
I∈I∗
|w(I)| − |w(Ij)|+ |w(I2)| ≥

∑
I∈I∗
|w(I)|

by the choice of Ij , so I ′ is maximal, contained in Ii, and thus its existence violates condition (3), so this
case is impossible. This is illustrated in Figure 5, where for simplicity Ia contains precisely three intervals.

Case 3 If β3 is the right endpoint of some interval I ∈ I∗, then by the same reasoning as before, we may
assume that w(I) < 0. Then, let I ′ be the interval with the same left endpoint as I but with right endpoint
β1. Since then w(I ′) = w(I) − w(Ij−1) − w(Ij) ≤ w(I), the partition I ′ = I∗ \ I ∪ I ′ is maximal,
contained in Ii, and its existence again violates condition (3), so this case is impossible. An illustration is
given in Figure 6.

38

I∗ :

.

Ia

Ii :
Ijβ2 β3I1

a I2 I2
a

Figure 5: When Ij is an element of I∗, we can drop it and add the intervals I1
a and I2

a achieving a larger
weight.

I∗ :

.

I

Ii :

β1

IjI ′

β3

Ij−1

β2

Figure 6: I∗ can drop I and instead take I ′ to get a larger weight.

Case 4 If β2 is the left endpoint of some interval I ∈ I∗, then analogous reasoning to that in Case 3 results
in a contradiction, so this case is also impossible.

Case 5a If β2 is the right endpoint of some interval I ∈ I∗, and no interval in I∗ contains Ij+1, then we
know that w(I) ≥ 0. Let I ′ be the interval I ∪ Ij ∪ Ij+1. Then, the partition I ′ = I∗ \ I ∪ I ′ is maximal by
the same kind of reasoning as before, and I ′ is contained in Ij+1. Thus, this case is possible and consistent
with the Lemma.

Case 5b If β2 is the right endpoint of some interval I ∈ I∗ and β3 is the left endpoint of some interval I ′ ∈
I∗, then we know that w(I), w(I ′) ≥ 0. Let I ′′ = I ∪ Ij ∪ I ′. Define I ′ = (I∗ \ {I, I ′, Ia})∪ {I ′′, I1

a , I
2
a}.

Then, ∑
I∈I′
|w(I)| =

∑
I∈I∗
|w(I)| − |w(Ij)|+ |w(I2)| ≥

∑
I∈I∗
|w(I)| ,

so again this is a maximal subset which is now contained in Ij+1.

Case 6 If β3 is the left endpoint of some interval in I∗, by analogous reasoning to that in Cases 5a and 5b,
we may conclude that in this case, the Lemma holds.

These cases encompass all possible cases, and thus we conclude that the Lemma holds, as claimed.

6.3.3 Description of COMPUTEAK

Our algorithm COMPUTEAK uses Fact 41 below, produces the sequence Pdisc(i) − E(i), and computes
‖{Pdisc − E}‖Ak using COMPUTEDISCRETEAK.

It thus suffices to show that we can construct this sequence Pdisc(i) − E(i) efficiently when we are
given the empirical distribution and the polynomial p. The only difficulty lies in efficiently computing the
p[xi, xi+1]. This problem is equivalent to efficiently evaluating the integral of p at all the points in X , which

39

is in turn equivalent to efficiently evaluating a degree d + 1 polynomial at s points. To do so, we use the
following well-known fact:

Fact 41 ([VZGG13], p. 299 and p. 245). Let x1, . . . , xs be a set of s real numbers and let p be a polynomial
of degree at most s. Then there is an algorithm that computes p(x1), . . . , p(xs) in time O(s log2 s).

After solving the discretized version of the problem, the algorithm outputs the estimate that COM-
PUTEDISCRETEAK computed and the processed version of the intervals, where the processing is the one
described in Lemma 37. Thus, we have:

Proof of Theorem 36. The correctness of the algorithm follows from Lemma 37 and the arguments given
above. Thus it suffices to bound the running time. The time required to produce the sequence Pdisc(i)−E(i)
is bounded by computing the p[xi, xi+1], which can be done in time O((s + d) log2(s + d)) by Fact 41.
Moreover, the running time of COMPUTEDISCRETEAK on the sequence Pdisc(i) − E(i) is O(s log s).
Hence, the running time of the overall algorithm is O((s+ d) log2(s+ d)), as claimed.

7 Applications

In this section, we apply our main result to obtain near optimal estimators for various classes of structured
distributions. As described in Table 1, we consider arbitrary mixtures of well-studied distribution families,
including log-concave distributions, normal distributions, densities with bounded number of modes, and
density functions in Besov spaces. We also consider mixtures of discrete structured distributions over an
ordered domain, such as multi-modal distributions, monotone hazard rate distributions, Poisson, Binomial,
and Poisson Binomial distributions. For all these classes, our sample complexity and running time match
the information-theoretic optimum, up to at most logarithmic factors.

We note that even though our algorithm is stated for distributions over a known finite interval, they
are also applicable to distributions over the entire real line, such as (mixtures of) Gaussians or Poisson
distributions. This follows from the following fact: let xmin and xmax be the smallest and largest elements
among log(1/δ)

ε2
draws from any distribution. Then with probability at least 1 − δ, the distribution assigns

probability mass at least 1 − ε to the interval [xmin, xmax]. Thus, at a cost of log(1/δ)
ε2

samples, we may
truncate the distribution and thereafter only consider this finite interval.

7.1 Mixture of log-concave distributions

For an interval I ⊆ R, a function g : I → R is called concave if for any x, y ∈ I and λ ∈ [0, 1]
it holds g (λx+ (1− λ)y) ≥ λg(x) + (1 − λ)g(y). A function h : I → R+ is called log-concave if
h(x) = exp (g(x)), where g : I → R is concave. A density f is a k-mixture of log-concave density
functions if there exist w1, . . . , wk ≥ 0,

∑
iwi = 1 and log-concave density functions f1, . . . , fk such that

f =
∑
wifi. The class of log concave distributions is very broad and contains the class of Gaussians,

uniform, exponential, Gamma, Beta, and Weibull distributions. Log-concave distributions have received
significant interest in economics and statistics [BB05, CSS10, DR09, DW13, CS13, KS14, BD14, HW15].

It was shown in [CDSS14a] that a k-mixture of log-concave density functions can be ε-approximated in
L1-norm by a t-piecewise linear density, for t = Õ(k/

√
ε). Using this structural result, [CDSS14a] gave a

polynomial time algorithm with sample complexity Õ(t/ε2) = Õ(k/ε5/2) to agnostically learn a k-mixture
of log-concave distributions. This sample bound is nearly optimal, as Ω(k/ε5/2) samples are necessary for
this learning problem.

40

Our main result yields a sample optimal and nearly-linear time algorithm for this problem. In particular,
this follows from a combination of Theorem 1 and a recently obtained tight structural result that removes
the logarithmic factors from the previous construction of [CDSS14a]. In particular, it is shown in [DKS16a]
that a k-mixture of log-concave density functions can be ε-approximated in L1-norm by a t-piecewise linear
density, for t = O(k/

√
ε). As a corollary, we obtain the following:

Theorem 42. There is an agnostic learning algorithm for the class of k-mixtures of log-concave distribu-
tions over the real line that uses O(k/ε5/2) samples and runs in time Õ(k/ε5/2).

7.2 Mixture of Gaussians

Let N(µ, σ2) denote the normal distribution with mean µ and variance σ2. A density f : R → R+ is a
k-mixture of Gaussians if there exist w1, . . . , wk ≥ 0,

∑
iwi = 1, µ1, . . . , µk ∈ R, and σ1, . . . , σk ∈ R+

such that f =
∑k

i=1wiN(µi, σ
2
i).

In the theoretical computer science community, the problem of parameter estimation for Gaussian mix-
tures was initiated by [Das99]. Recent work has obtained polynomial sample and time algorithms for this
problem under the conditions of identifiability [MV10, BS10]. We remark that learning the parameters of a
mixture of k univariate Gaussians to accuracy ε requires Ω((1/ε)6k−2) samples [HP15] .

The problem of proper learning for Gaussian mixtures has also been recently studied in [DK14, SOAJ14]
who obtain algorithms that draw Õ(k/ε2) samples and run in time O((1/ε)3k−1). Another approach, due to
[BSZ15], outputs a mixture of O(k/ε3) Gaussians in time and sample complexity of O(k/ε6).

It is well-known (see, e.g., [Tim63, Section 7.21] or [CDSS14a]) that a normal distribution is ε-close
to a 3-piecewise polynomial of degree O(log(1/ε)). Using this structural result, [CDSS14a] obtain a nearly
sample optimal and polynomial time agnostic learning algorithm for this problem.

As a corollary of Theorem 1, we obtain a nearly sample optimal and nearly-linear time algorithm. (The
sample complexity of our algorithm is better than that of [CDSS14a] by logarithmic factors.) In particular:

Theorem 43. There is an agnostic learning algorithm for k-mixtures of univariate Gaussians that draws
O((k/ε2) log(1/ε)) samples and runs in time Õ(k/ε2).

7.3 Densities in Besov spaces

Densities in Besov spaces constitute a broad family of distributions, including piecewise polynomials and
the exponential family. Density estimation for functions in Besov spaces has received considerable at-
tention in the statistics and information theory literature. A lot of the early work on the topic relied on
wavelet techniques, based on the fact that functions in Besov spaces are amenable to multiscale decomposi-
tions [DeV98, DJKP96, DJ98].

A piecewise smooth density function f has the following decomposition,

f(x) =
∑
k

cj0,kφj0,k(x) +
∞∑
j=j0

∑
k

dj0,kψj0,k(x)

where the φ’s are scaling functions and the ψ’s are wavelet functions. The Besov space Bα
q (Lp([0, 1])) is

the following subset of such density functions

Bα
q (Lp([0, 1]))

def
=

f : ‖cj0,k‖`p +

 ∞∑
j=j0

(
2αjp

∑
k

|dj,k|p
)q/p1/q

<∞

 ,

41

for parameters α > 1
p > 0 and q > 0, where {cj0,k} and {dj,k} are the scaling and wavelet coefficients in

the wavelet expansion of f .
Nowak and Willett [WN07] showed that any density f inBα

q (Lp([0, 1])) for 0 < q ≤ p, with 1
p = α+ 1

2 ,

can be approximated up to L1 error ε with n = Oα

(
log2(1/ε)

εα+1/2

)
samples. They also propose an algorithm for

this problem with running time Ω(n3).
As a corollary of our main result, we obtain a sample optimal and nearly-linear time agnostic algorithm

for this problem. A result in [DeV98] implies that under the above assumptions on α, p, q, any function
in Bα

q (Lp([0, 1])) can be ε-approximated in L1-norm by an Oα(ε−1/α)-piece degree-O(dαe) polynomial.

Combined with our main result, we obtain an algorithm with sample complexity Oα
(

1
ε2+1/α

)
, which is

optimal up to constant factors [WN07]. Moreover, the running time of our algorithm is nearly-linear in the
number of samples. In particular:

Theorem 44. There is an agnostic learning algorithm for Bα
q (Lp([0, 1])), with 0 < q < p, 1/p = α+ 1/2

with sample complexity Oα
(

1
ε2+1/α

)
and running time Õα

(
1

ε2+1/α

)
.

7.4 Mixtures of t-monotone distributions

A density f : R → R+ is 1-monotone if it is non-increasing. It is 2-monotone if it is non-increasing
and convex, and t-monotone for t ≥ 3 if (−1)jf (j) is non-negative, non-increasing, and convex for j =
0, . . . , t − 2. A number of recent works in statistics studied the problem of estimating t-monotone density
functions in the context of the MLE [BW07, GW09, BW10].

Implicit in [KL04, KL07] is the fact that any t-monotone bounded density function over [0, 1] can be
approximated with an O(1/ε1/t) piecewise degree t− 1 polynomial. Using this along with our main result
yields the following guarantee on learning t-monotone distributions.

Theorem 45. There exists an agnostic learning algorithm for k-mixtures of t-monotone distributions that
uses O(tk/ε2+1/t) samples and runs in time Õ(kt2+ω/ε2+1/t).

The above is a significant improvement in the running time compared to [CDSS14a]. Note that for
t = 1, 2, the sample complexity of our algorithm is optimal. This follows from known lower bounds of
Ω(1/ε3) for t = 1 [Bir87a] and of Ω(1/ε5/2) for t = 2 [DL01].

7.5 Mixtures of discrete distributions

Our main result applies to the discrete setting as well, leading to fast algorithms for learning mixtures of
discrete distributions that can be well-approximated by piecewise polynomials.

Mixtures of t-modal discrete distributions and MHR distributions. A distribution over [N] is unimodal
if there is a j ∈ [N] such that the pmf is non-decreasing up to j, and non-increasing after j. A distribution is
t-modal if there is a partition of [N] into at most t intervals over which the conditional pmf is unimodal. It
follows from [Bir87b, CDSS13] that any mixture of k t-modal distributions is ε-close to a (kt/ε) log(N/kt)-
histogram. [CDSS14b] implies an algorithm for this problem that uses n = Õ(kt log(N)/ε3) samples and
runs in time Õ(n). As a corollary of our main result, we obtain the first sample optimal (up to constant
factors) and nearly-linear time algorithm:

Theorem 46. There is an agnostic learning algorithm for k-mixtures of t-modal distributions over [N] that
draws O(kt log(N/kt)

ε3
) samples and runs in time O(kt log(N/kt)

ε3
log(1/ε)).

42

We similarly obtain a sample optimal and near-linear time algorithm for learning mixtures of MHR
distributions.

For a distribution p on [N], the function H(i)
def
= p(i)∑

j≥i p(j)
is called the hazard rate function of p. The

distribution p is a monotone hazard distribution (MHR) if H(i) is non-decreasing. [CDSS13] shows that a
mixture of k MHR distributions over [N] can be approximated up to distance ε using an O(k log(N/ε)/ε)-
histogram. Using this, [CDSS14b] yields a Õ(k log(N/ε)/ε3) sample, Õ(k log(N/ε)/ε3) time algorithm to
estimate mixtures of MHR distributions. We obtain

Theorem 47. There is an agnostic learning algorithm for k-mixtures of MHR distributions over [N] that
draws O(k log(N/ε)/ε3) samples and runs in time O(k log(N/ε)

ε3
log(1/ε)).

Mixtures of Binomial, Poisson, and Poisson Binomial distributions. We consider mixtures of k Bino-
mial, Poisson, and Poisson Binomial distributions. For these distribution families, the best sample complex-
ity attainable using the techniques of [CDSS14a, CDSS14b] is Õ(k/ε3). This follows from the fact that
approximating a k-mixture of Binomial, Poisson, and Poisson Binomial distributions by piecewise constant
distributions requires Θ(k/ε) pieces.

A recent result of [DDS15, DKS16c] shows that any Binomial, Poisson, or Poisson Binomial distri-
bution can be approximated to L1 distance ε using t-piecewise degree-d polynomials for t = O(1) and
d = O(log(1/ε)). Therefore, a Binomial, Poisson, or Poisson Binomial k-mixture can be approximated
with O(k)-piecewise, degree-O(log(1/ε)) polynomials. Since our main result applies to discrete piecewise
polynomials as well, we obtain the following:

Theorem 48. There is an agnostic learning algorithm for k-mixtures of Binomial, Poisson, and Poisson
Binomial distributions that uses O(k

ε2
log(1/ε)) samples and runs in time Õ(k/ε2).

8 Experimental Evaluation

In addition to the strong theoretical guarantees proved in the previous sections, our algorithm also demon-
strates very good empirical performance. In order to evaluate our algorithm, we conduct several experiments
on synthetic data. We remark that the evaluation here is preliminary, and we postpone a more detailed ex-
perimental study, including a comparison with related algorithms, to future work. Nevertheless, our results
here show that both the empirical sample and time complexity are nearly optimal in a strong sense. For
example, no histogram learning algorithm that requires sorted samples can outperform the running time of
our method by more than 30%. Similarly, our learning algorithm for piecewise linear hypotheses only adds
a factor of 2− 3× overhead to the time needed to sort the samples. Moreover, the sample complexity of our
algorithm matches the quantity t · (d+ 1)/ε2 up to a small constant between 1 and 2.

All experiments in this section were conducted on a laptop computer from 2010, using an Intel Core
i7 CPU with 2.66 GHz clock frequency, 4 MB of cache, and 8 GB of RAM. We used Mac OS X 10.9
as operating system and g++ 4.8 as compiler with the -O3 flag (we implemented our algorithms in C++).
All reported running times and learning errors are averaged over 100 independent trials. As an illustrative
baseline, sorting 106 double-precision floating point numbers with the std::sort algorithm from the C++ STL
takes about 100 ms on the above machine.

Figure 7 shows the three distributions we used in our experiments: a mixture of two Gaussians, a mixture
of two Beta distributions, and a mixture of two Gamma distributions. The three distributions have different
shapes (e.g., different numbers of modes), and the support size considered for these distributions differs.

43

−1 −0.5 0 0.5 1
0

0.5

1

1.5

Gaussian mixture density
0.2 0.4 0.6 0.8 1

0

2

4

Beta mixture density
0 5 10 15 20

0

0.05

0.1

0.15

Gamma mixture density

Figure 7: The three test distributions.

8.1 Histogram hypotheses

In order to evaluate our histogram learning algorithm (see Section 4.1), we use the following test setup.
For a given unknown distribution with pdf f , we draw n i.i.d. samples from the unknown distribution. We
then give the sorted samples as input to our algorithm, which produces a histogram hypothesis h. We set
the parameters of our algorithm so that the resulting histogram contains 80 constant pieces. As perfor-
mance measures, we record the running time of our algorithm (excluding sorting) and the L1-learning error
achieved, i.e., ‖f − h‖1.

Figure 8 contains the running time results, both on a linear scale and on a logarithmic scale. The results
indicate three important points: (i) The running time of our algorithm scales nearly-linearly with the input
size, i.e., the number of samples n. (ii) The constant hidden in the big-O notation of our analysis is very
small. In particular, the algorithm runs in less than 35 milliseconds for 106 samples. Note that this is three
times faster than sorting the samples. (iii) The running time of our algorithm essentially does not depend
on the unknown distribution. Such robustness guarantees are very desirable for reliable performance in
practice.

The L1-learning error results are displayed in Figure 9. The results show that the best learning error
achievable with 80-piece histograms depends on the shape of the underlying distribution: 2-GMMs are
harder to approximate than the Beta and Gamma mixtures. This shows that for large number of samples,
it is beneficial to use richer hypotheses classes such as piecewise linear functions (see the next subsection).
Nevertheless, our algorithm exhibits a good decay of the learning error before the regime where OPT80

dominates.

8.2 Piecewise linear hypotheses

Next, we turn our attention to the more challenging case of agnostically learning piecewise linear densities.
This is an interesting case because, in contrast to the histogram algorithm, the piecewise linear algorithm
requires our full set of tools developed in Sections 3 – 6. For the case of piecewise linear functions, the
structure of the feasible set is still somewhat simpler than for general degree-d polynomials because the
non-negativity constraint on a given interval can be encoded with two linear inequalities, i.e., the feasible
set is a polytope instead of a spectrahedron. We use this additional structure in our piecewise linear algo-
rithm. However, we did not implement further potential optimizations and resorted to an off-the-shelf linear
program (LP) solver (GLPK, the GNU Linear Programming Kit) instead of a customized LP solver. We
believe that the running time of our algorithm can be improved further by implementing a custom LP solver
that better utilizes the structure and small size of our LPs (and also takes into account that we solve many

44

0 2·105 4·105 6·105 8·105 1·106

0.01

0.02

0.03

Number of samples

R
un

ni
ng

tim
e

(s
ec

on
ds

) GMM
Beta

Gamma

103 104 105 106
10−5

10−4

10−3

10−2

10−1

Number of samples

R
un

ni
ng

tim
e

(s
ec

on
ds

) GMM
Beta

Gamma

Figure 8: Running times for density estimation with histogram hypotheses. The left plot shows the results
on a linear scale, the right plot on a logarithmic scale. As predicted by our analysis, the running time of our
algorithm scales nearly-linearly with the input size n. Moreover, the constant in the big-O is very small: for
n = 106, our algorithm takes less than 35 milliseconds, which is about three times faster than sorting the
samples. The running time performance of our algorithm is also essentially independent of the unknown
distribution.

such small LPs).
We repeat the same experimental procedure as for piecewise histogram hypotheses, but use 40 linear

pieces this time. Figure 10 contains the running time results of our algorithm. Again, the results show three
important points: (i) As predicted, the running time scales nearly-linearly with n. (ii) In spite of using an
off-the-shelf LP solver, the constant factor in our running time is still good. In particular, our algorithm
requires less than 0.3 seconds for 106 samples. This is only three times slower than the time required for
sorting the samples. We believe that with a customized LP solver, we can bring this overhead down to a
factor closer to two. (iii) Again, the running time of our algorithm is very robust and does not depend on the
shape of the unknown distribution.

Next, we consider the learning error achieved by our piecewise-linear algorithm, which is displayed in
Figure 11. Compared with the plots for piecewise constant hypotheses above, the results show that piecewise
linear hypotheses can approximate the unknown densities significantly better, especially for the case of the
2-GMM. Three points are worth noting: (i) The slope of the curve in the log-scale plot is about −0.477.
Note that this matches the 1

ε2
term in our learning error guaranteeO(t·(d+1)

ε2
) almost perfectly. (ii) Moreover,

the constant factor achieved by our algorithm is close to 1. In particular, the learning error for the 2-GMM
and n = 106 samples is roughly 0.00983. Using this as ε = 0.00983 together with t = 40 and d = 1 in
t·(d+1)
ε2

gives about 830,000, which almost matches the n = 106 samples for which this error was obtained.
(iii) The learning error of our algorithm is robust and essentially independent of the underlying distribution.

8.3 Comparison with prior work

The paper closest to ours is [CDSS14a]. We did not implement their method because the algorithmic ap-
proach of [CDSS14a] is rather complicated and we believe that our algorithm has a significantly better
running time for any non-trivially small number of samples. We now substantiate this claim with a simple

45

0 2·105 4·105 6·105 8·105 1·106
0

0.05

0.1

0.15

0.2

0.25

Number of samples

L
ea

rn
in

g
er

ro
r(
L

1
-d

is
ta

nc
e) GMM

Beta
Gamma

103 104 105 106
10−2

10−1

100

Number of samples

L
ea

rn
in

g
er

ro
r(
L

1
-d

is
ta

nc
e) GMM

Beta
Gamma

Figure 9: Learning error for density estimation with histogram hypotheses. The left plot shows the results on
a linear scale, the right plot on a logarithmic scale. The results clearly show that some distributions such as
2-GMMs are harder to approximate with 80-piecewise constant hypotheses than others. Before the optimal
learning error OPT80 dominates, our algorithm nevertheless demonstrates a quickly diminishing learning
error.

running time estimate.
Recall that the algorithm of [CDSS14a] has a running time of Õ(t

2d3.5

ε4.5
(1/ε+d3)) (see Section 1.4).6 We

now instantiate this bound for our piecewise-linear (i.e., d = 1) density estimation example with n = 106

samples above. Using t = 40 pieces, our algorithm achieves an approximation error of less than ε = 0.01.
Substituting these numbers into the time complexity of [CDSS14a] and ignoring logarithmic and constant
factors, we get

t2 · (d+ 1)3.5

ε4.5
(1/ε+ (d+ 1)3)) ≈ 2.0 · 1015 .

We use this expression as the number of simple instructions required by their algorithm. Assuming a modern
CPU that executes 3 · 109 instructions per second, their algorithm would run for about 6.5 · 105 seconds,
which is roughly 7.5 days. Clearly, such a running time is infeasible in practice. As mentioned in the
previous subsection, our algorithm requires 0.3 seconds for this example, which leads to a speed-up of more
than 106.

We remark that this back-of-the-envelope calculation is in favor of [CDSS14a]. Using the same calcu-
lation approach for our time complexity would give

t · (d+ 1)6

ε2
≈ 2.6 · 107 .

Assuming the same CPU, the corresponding running time estimate is roughly 0.009 seconds. This underes-
timates our running time by a factor of more than 30. Considering that the time complexity of [CDSS14a]
contains more logarithmic factors than our time complexity and most likely also a larger constant factor, the

6In Section 1.4, we state the running time with d in place of d+ 1 to simplify the expression. Note that as for our algorithm, the
correct dependence is in terms of d+ 1 because a degree-d polynomial has d+ 1 parameters. For instance, the running time does
not vanish for the histogram (d = 0) case.

46

0 2·105 4·105 6·105 8·105 1·106

0.05

0.1

0.15

0.2

0.25

Number of samples

R
un

ni
ng

tim
e

(s
ec

on
ds

) GMM
Beta

Gamma

103 104 105 106
10−2

10−1

100

Number of samples

R
un

ni
ng

tim
e

(s
ec

on
ds

) GMM
Beta

Gamma

Figure 10: Running times for density estimation with piecewise-linear hypotheses. The left plot shows the
results on a linear scale, the right plot on a logarithmic scale. As predicted by our analysis, the running time
of our algorithm scales nearly-linearly with the input size n. Moreover, the constant in the big-O is quite
small: for n = 106, our algorithm takes less than 0.3 seconds, which is only three times slower than sorting
the samples. Note that this means that no algorithm that relies on sorting the samples can be more than 4
times faster than our algorithm when the total running time with sorting is taken into account. As before,
the running time of our algorithm is also essentially independent of the unknown distribution.

0 2·105 4·105 6·105 8·105 1·106
0

0.05

0.1

0.15

0.2

0.25

Number of samples

L
ea

rn
in

g
er

ro
r(
L

1
-d

is
ta

nc
e) GMM

Beta
Gamma

103 104 105 106

10−2

10−1

100

Number of samples

L
ea

rn
in

g
er

ro
r(
L

1
-d

is
ta

nc
e) GMM

Beta
Gamma

Figure 11: Learning error for density estimation with piecewise-linear hypotheses. The left plot shows the
results on a linear scale, the right plot on a logarithmic scale. The slope of the curve in the log-scale plot
is roughly −.477, which almost exactly matches the asymptotic guarantee for our algorithm. Moreover,
the average learning error for 2-GMMs with n = 106 samples is about 0.00983. Substituting this into
the theoretical guarantee t·(d+1)

ε2
gives a sample requirement of roughly 830,000, i.e., very close to the 106

samples our algorithm required to achieve this error. Similar to the running time, the learning error is also
robust and essentially independent of the underlying distribution.

47

true gap in the running times of [CDSS14a] and our algorithm might be even larger than the 106× speed-up
mentioned above.

Acknowledgements

We thank Chinmay Hegde for his contributions to the early stages of this work. We would like to thank
Yin Tat Lee and Aaron Sidford for useful discussions, and Richard Samworth for his help with the statis-
tics literature. We would also like to thank Daniel Kane for making us aware of the structural result in
Appendix D.

References

[ADH+15] J. Acharya, I. Diakonikolas, C. Hegde, J. Li, and L. Schmidt. Fast and Near-Optimal Algorithms
for Approximating Distributions by Histograms. In PODS, 2015.

[ADK15] J. Acharya, C. Daskalakis, and G. Kamath. Optimal testing for properties of distributions. In
NIPS, 2015.

[ADLS16] J. Acharya, I. Diakonikolas, J. Li, and L. Schmidt. Fast Algorithms for Segmented Linear
Regression. ICML, 2016.

[AK01] S. Arora and R. Kannan. Learning mixtures of arbitrary Gaussians. In STOC, pages 247–257,
2001.

[AM05] D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In COLT,
pages 458–469, 2005.

[BB05] M. Bagnoli and T. Bergstrom. Log-concave probability and its applications. Economic theory,
26(2):445–469, 2005.

[BBBB72] R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk. Statistical Inference under
Order Restrictions. Wiley, New York, 1972.

[BD14] F. Balabdaoui and C. R. Doss. Inference for a Mixture of Symmetric Distributions under Log-
Concavity. Available at http://arxiv.org/abs/1411.4708, 2014.

[Bir87a] L. Birgé. Estimating a density under order restrictions: Nonasymptotic minimax risk. Annals
of Statistics, 15(3):995–1012, 1987.

[Bir87b] L. Birgé. On the risk of histograms for estimating decreasing densities. Annals of Statistics,
15(3):1013–1022, 1987.

[Bru58] H. D. Brunk. On the estimation of parameters restricted by inequalities. The Annals of Mathe-
matical Statistics, 29(2):pp. 437–454, 1958.

[BRW09] F. Balabdaoui, K. Rufibach, and J. A. Wellner. Limit distribution theory for maximum like-
lihood estimation of a log-concave density. The Annals of Statistics, 37(3):pp. 1299–1331,
2009.

48

[BS10] M. Belkin and K. Sinha. Polynomial learning of distribution families. In FOCS, pages 103–112,
2010.

[BSZ15] A. Bhaskara, A. T. Suresh, and M. Zaghimoghaddam. Sparse Solutions to Nonegative Linear
Systems and Applications. In AISTATS, 2015.

[BW07] F. Balabdaoui and J. A. Wellner. Estimation of a k-monotone density: Limit distribution theory
and the spline connection. The Annals of Statistics, 35(6):pp. 2536–2564, 2007.

[BW10] F. Balabdaoui and J. A. Wellner. Estimation of a k-monotone density: characterizations, con-
sistency and minimax lower bounds. Statistica Neerlandica, 64(1):45–70, 2010.

[CDGR16] C. L. Canonne, I. Diakonikolas, T. Gouleakis, and R. Rubinfeld. Testing shape restrictions of
discrete distributions. In STACS, 2016.

[CDSS13] S. Chan, I. Diakonikolas, R. Servedio, and X. Sun. Learning mixtures of structured distributions
over discrete domains. In SODA, pages 1380–1394, 2013.

[CDSS14a] S. Chan, I. Diakonikolas, R. Servedio, and X. Sun. Efficient density estimation via piecewise
polynomial approximation. In STOC, pages 604–613, 2014.

[CDSS14b] S. Chan, I. Diakonikolas, R. Servedio, and X. Sun. Near-optimal density estimation in near-
linear time using variable-width histograms. In NIPS, pages 1844–1852, 2014.

[Che82] E. W. Cheney. Introduction to Approximation Theory: Second Edition. AMS Chelsea Publish-
ing, 1982.

[CS13] Y. Chen and R. J. Samworth. Smoothed log-concave maximum likelihood estimation with
applications. Statist. Sinica, 23:1373–1398, 2013.

[CSS10] M. Cule, R. Samworth, and M Stewart. Maximum likelihood estimation of a multi-dimensional
log-concave density. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 72:545–607, 2010.

[Csu04] M. Csuros. Maximum-scoring segment sets. IEEE/ACM Trans. Comput. Biol. Bioinformatics,
1(4):139–150, October 2004.

[CT04] K. S. Chan and H. Tong. Testing for multimodality with dependent data. Biometrika,
91(1):113–123, 2004.

[Das99] S. Dasgupta. Learning mixtures of Gaussians. In FOCS, pages 634–644, 1999.

[DDKT16] C. Daskalakis, A. De, G. Kamath, and C. Tzamos. A size-free CLT for poisson multinomials
and its applications. In STOC, 2016.

[DDO+13] C. Daskalakis, I. Diakonikolas, R. O’Donnell, R.A. Servedio, and L. Tan. Learning Sums of
Independent Integer Random Variables. In FOCS, pages 217–226, 2013.

[DDS12a] C. Daskalakis, I. Diakonikolas, and R.A. Servedio. Learning k-modal distributions via testing.
In SODA, pages 1371–1385, 2012.

49

[DDS12b] C. Daskalakis, I. Diakonikolas, and R.A. Servedio. Learning Poisson Binomial Distributions.
In STOC, pages 709–728, 2012.

[DDS15] C. Daskalakis, I. Diakonikolas, and A. Stewart. Personal communication, 2015.

[DeV98] R. A. DeVore. Nonlinear approximation. ACTA NUMERICA, 7:51–150, 1998.

[DG85] L. Devroye and L. Györfi. Nonparametric Density Estimation: The L1 View. John Wiley &
Sons, 1985.

[DHS15] I. Diakonikolas, M. Hardt, and L. Schmidt. Differentially private learning of structured discrete
distributions. In NIPS, 2015.

[DJ98] D. L. Donoho and I. M. Johnstone. Minimax estimation via wavelet shrinkage. Annals of
Statistics, 26(3):879–921, 1998.

[DJKP95] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage: asymp-
topia. Journal of the Royal Statistical Society, Ser. B, pages 371–394, 1995.

[DJKP96] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard. Density estimation by wavelet
thresholding. Annals of Statistics, 24(2):508–539, 1996.

[DK14] C. Daskalakis and G. Kamath. Faster and sample near-optimal algorithms for proper learning
mixtures of gaussians. In COLT, pages 1183–1213, 2014.

[DKS16a] I. Diakonikolas, D. M. Kane, and A. Stewart. Efficient robust proper learning of log-concave
distributions. CoRR, abs/1606.03077, 2016.

[DKS16b] I. Diakonikolas, D. M. Kane, and A. Stewart. The fourier transform of poisson multinomial
distributions and its algorithmic applications. In Proceedings of STOC’16, 2016.

[DKS16c] I. Diakonikolas, D. M. Kane, and A. Stewart. Nearly optimal learning and sparse covers for
sums of independent integer random variables. In Proceedings of Conference on Learning
Theory (COLT), 2016.

[DL01] L. Devroye and G. Lugosi. Combinatorial methods in density estimation. Springer Series in
Statistics, Springer, 2001.

[DR09] L. Dumbgen and K. Rufibach. Maximum likelihood estimation of a log-concave density and its
distribution function: Basic properties and uniform consistency. Bernoulli, 15(1):40–68, 2009.

[DS00] S. Dasgupta and L. Schulman. A two-round variant of EM for Gaussian mixtures. In UAI,
pages 143–151, 2000.

[DW13] C. R. Doss and J. A. Wellner. Global Rates of Convergence of the MLEs of Log-concave and
s-concave Densities. Available at http://arxiv.org/abs/1306.1438, 2013.

[FM99] Y. Freund and Y. Mansour. Estimating a mixture of two product distributions. In COLT, pages
183–192, 1999.

[FOS05] J. Feldman, R. O’Donnell, and R. Servedio. Learning mixtures of product distributions over
discrete domains. In FOCS, pages 501–510, 2005.

50

[Fou97] A.-L. Fougères. Estimation de densités unimodales. Canadian Journal of Statistics, 25:375–
387, 1997.

[GJ14] P. Groeneboom and G. Jongbloed. Nonparametric Estimation under Shape Constraints: Esti-
mators, Algorithms and Asymptotics. Cambridge University Press, 2014.

[Gre56] U. Grenander. On the theory of mortality measurement. Skandinavisk Aktuarietidskrift,
39:125–153, 1956.

[Gro85] P. Groeneboom. Estimating a monotone density. In Proc. of the Berkeley Conference in Honor
of Jerzy Neyman and Jack Kiefer, pages 539–555, 1985.

[GW09] F. Gao and J. A. Wellner. On the rate of convergence of the maximum likelihood estimator of
a k-monotone density. Science in China Series A: Mathematics, 52:1525–1538, 2009.

[Hen88] P. Henrici. Applied and Computational Complex Analysis, Power Series Integration Conformal
Mapping Location of Zero. Applied and Computational Complex Analysis. Wiley, 1988.

[HP76] D. L. Hanson and G. Pledger. Consistency in concave regression. The Annals of Statistics,
4(6):pp. 1038–1050, 1976.

[HP15] M. Hardt and E. Price. Sharp bounds for learning a mixture of two gaussians. In STOC, 2015.

[HW15] Q. Han and J. A. Wellner. Approximation and Estimation of s-Concave Densities via Renyi
Divergences. Available at http://arxiv.org/abs/1505.00379, 2015.

[Ize91] A. J. Izenman. Recent developments in nonparametric density estimation. Journal of the
American Statistical Association, 86(413):205–224, 1991.

[JW09] H. K. Jankowski and J. A. Wellner. Estimation of a discrete monotone density. Electronic
Journal of Statistics, 3:1567–1605, 2009.

[Kha79] L. Khachiyan. A polynomial algorithm in linear programming. Soviet Math. Dokl, 20:1093–
1096, 1979.

[KL04] V. N. Konovalov and D. Leviatan. Free-knot splines approximation of s-monotone functions.
Advances in Computational Mathematics, 20(4):347–366, 2004.

[KL07] V. N. Konovalov and D. Leviatan. Freeknot splines approximation of sobolev-type classes of s
-monotone functions. Adv. Comput. Math., 27(2):211–236, 2007.

[KM10] R. Koenker and I. Mizera. Quasi-concave density estimation. Annals of Statistics, 38(5):2998–
3027, 2010.

[KMR+94] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. On the learnability
of discrete distributions. In STOC, pages 273–282, 1994.

[KMV10] A. T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two Gaussians. In
STOC, pages 553–562, 2010.

[KP92] G. Kerkyacharian and D. Picard. Density estimation in Besov spaces. Statistics & Probability
Letters, 13(1):15–24, 1992.

51

[KPT96] G. Kerkyacharian, D. Picard, and K. Tribouley. Lp adaptive density estimation. Bernoulli,
2(3):pp. 229–247, 1996.

[KS14] A. K. H. Kim and R. J. Samworth. Global rates of convergence in log-concave density estima-
tion. Available at http://arxiv.org/abs/1404.2298, 2014.

[KSV08] R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mixture models.
SIAM J. Comput., 38(3):1141–1156, 2008.

[Las01] J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization, 11(3):796–817, 2001.

[LB99] J. Q. Li and A. R. Barron. Mixture density estimation. In NIPS, pages 279–285, 1999.

[Lin95] B. Lindsay. Mixture models: theory, geometry and applications. Institute for Mathematical
Statistics, 1995.

[LS14] Y. T. Lee and A. Sidford. Path finding methods for linear programming: Solving linear pro-
grams in Õ

√
rank iterations and faster algorithms for maximum flow. In FOCS, pages 424–433,

2014.

[LS15] J. Li and L. Schmidt. A Nearly Optimal and Agnostic Algorithm for Properly Learning a
Mixture of k Gaussians, for any Constant k. Manuscript, available on arxiv., 2015.

[Mar92] VA Markov. On functions deviating least from zero in a given interval. Izdat. Imp. Akad. Nauk,
St. Petersburg, pages 218–258, 1892.

[MV10] A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of Gaussians. In
FOCS, pages 93–102, 2010.

[Pan01] V. Y. Pan. Univariate polynomials: nearly optimal algorithms for factorization and rootfinding.
In ISSAC, pages 253–267. ACM, 2001.

[Par03] P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical
programming, 96(2):293–320, 2003.

[Pea95] K. Pearson. Contributions to the mathematical theory of evolution. ii. skew variation in homo-
geneous material. Philosophical Trans. of the Royal Society of London, 186:343–414, 1895.

[Rao69] B. L. S. Prakasa Rao. Estimation of a unimodal density. Sankhya A, 31:23–36, 1969.

[RW84] R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM algorithm.
SIAM Review, 26:195–202, 1984.

[Sco92] D. W. Scott. Multivariate Density Estimation: Theory, Practice and Visualization. Wiley, New
York, 1992.

[SHKT97] C. J. Stone, M. H. Hansen, C. Kooperberg, and Y. K. Truong. Polynomial splines and their
tensor products in extended linear modeling: 1994 wald memorial lecture. Annals of Statistics,
25(4):1371–1470, 1997.

52

[Sho87] N. Z. Shor. Class of global minimum bounds of polynomial functions. Cybernetics and Systems
Analysis, 23(6):731–734, 1987.

[Sil86] B. W. Silverman. Density Estimation. Chapman and Hall, London, 1986.

[SOAJ14] A. T. Suresh, A. Orlitsky, J. Acharya, and A. Jafarpour. Near-optimal-sample estimators for
spherical gaussian mixtures. In NIPS, pages 1395–1403, 2014.

[Sto94] C. J. Stone. The use of polynomial splines and their tensor products in multivariate function
estimation. Annals of Statistics, 22(1):pp. 118–171, 1994.

[SW09] G.R. Shorack and J.A. Wellner. Empirical Processes with Applications to Statistics. Classics
in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM, 3600 Market
Street, Floor 6, Philadelphia, PA 19104), 2009.

[Tim63] A. F. Timan. Theory of approximation of functions of a real variable, volume 34. Courier
Corporation, 1963.

[TSM85] D. M. Titterington, A. F. M. Smith, and U. E. Makov. Statistical analysis of finite mixture
distributions. Wiley & Sons, 1985.

[Vai89] P. Vaidya. A new algorithm for minimizing convex functions over convex sets. In FOCS, pages
338–343, 1989.

[Vai96] P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. Mathemati-
cal Programming, 73(3):291–341, 1996.

[Val84] L. G. Valiant. A theory of the learnable. In STOC, pages 436–445. ACM Press, 1984.

[VC71] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and Its Applications, 16:264–280, 1971.

[VW02] S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. In FOCS,
pages 113–122, 2002.

[VZGG13] J. Von Zur Gathen and J. Gerhard. Modern computer algebra. Cambridge university press,
2013.

[Wal09] G. Walther. Inference and modeling with log-concave distributions. Statistical Science,
24(3):319–327, 2009.

[Weg70] E. J. Wegman. Maximum likelihood estimation of a unimodal density. I. and II. Annals of
Mathematical Statistics, 41:457–471, 2169–2174, 1970.

[WN07] R. Willett and R. D. Nowak. Multiscale poisson intensity and density estimation. IEEE Trans-
actions on Information Theory, 53(9):3171–3187, 2007.

[WW83] E. J. Wegman and I. W. Wright. Splines in statistics. Journal of the American Statistical
Association, 78(382):pp. 351–365, 1983.

53

Appendix

A Analysis of the General Merging Algorithm: Proof of Theorem 17

This section is dedicated to the proof of Theorem 17. The proof is a generalization of that of Theorem 10.
Recall the statement of Theorem 17:

Theorem 17. Let Op and Oc be η-approximate Ak-projection and Ak-computation oracles for D. Algo-
rithm GENERAL-MERGING(f, t, α, ε, δ) draws n = O((αdt+ log(1/δ))/ε2) samples, has time complexity
O
(
(Rp(n) +Rc(n)) log n

αt

)
, and outputs a hypothesis h and an interval partition I such that |I| ≤ 2α · t

and with probability at least 1− δ, we have

‖h− f‖1 ≤ 3 ·OPTD,t +
OPTD,t + ε

α− 1
+ 2ε+ η . (10)

Proof. We first bound the running time. The number of iterations of the algorithm is O(log(n/αt)) by the
same argument as for histograms, since the number of intervals reduces by a factor of 3/4 in each iteration.
In each iteration, we compute the closest function in D and the corresponding Ad+1 distance, hence the
runtime per iteration is bounded by Rp(n) +Rc(n), by definition.

We now prove the error guarantee. Let I = {I1, . . . , It′} be the partition of I returned by GENERAL-
MERGING, and let h be the function returned. The desired bound on t′ is immediate since the algorithm
terminates only when t′ ≤ 2αt. We now prove (10).

Let h∗ ∈ Dt be such that ‖h∗ − f‖1 = OPTD,t. Let I∗ = {I∗1 , . . . , I∗t } be a partition with at most t
pieces such that h∗ ∈ DI∗i for all i. Call the end-points of I∗j ’s as jumps of h∗. For any interval J ⊆ I let
Γ(J) be the number of jumps of h∗ in the interior of J . Since we draw n = Ω((αdt+log 1/δ)/ε2) samples,
Corollary 4 implies that with probability at least 1− δ,

‖f̂ − f‖A(2α+1)(d+1)t
≤ ε .

We condition on this event throughout the analysis.
We split the total error into three terms based on the final partition I:

Case 1: Let F be the set of intervals in I with no jumps in h∗, i.e., F = {J ∈ I |Γ(J) = 0}.

Case 2a: Let J0 be the set of intervals in I that were created in the initial partitioning step of the algorithm
and contain a jump of h∗, i.e., J0 = {J ∈ I | Γ(J) > 0 and J ∈ I0}.

Case 2b: Let J1 be the set of intervals in I that contain at least one jump, and were created by merging two
other intervals, i.e., J1 = {J ∈ I | Γ(J) > 0 and J /∈ I0}.

Notice that F ,J0,J1 form a partition of I , and thus

‖h− f‖1 = ‖h− f‖1,F + ‖h− f‖1,J0 + ‖h− f‖1,J1 .

We bound the error from above in the three cases separately. In particular, we will show:

‖h− f‖1,F ≤ 3 · ‖f − h∗‖1,F + 2 · ‖f̂ − f‖A|F|·(d+1),F +
η

2αt
|F| , (14)

‖h− f‖1,J0 ≤ ‖f̂ − f‖A|J0|·(m+1),J0 , (15)

‖h− f‖1,J1 ≤
OPTD,t + ε

(α− 1)
+ ‖f̂ − f‖Ad·t+|J1|,J1 + ‖f − h∗‖1,J1 +

η

2(α− 1)
. (16)

54

Using these results along with the fact that ‖f − h∗‖1,F + ‖f − h∗‖1,J1 ≤ OPTD,t and α > 2, we have

‖h− f‖1 ≤ 3 ·OPTD,t +
OPTD,t + ε

α− 1
+ 2‖f̂ − f‖A|F|(d+1)

+ ‖f̂ − f‖A|J0|d

+ ‖f̂ − f‖A(|J1|+t)d
+

η

2αt
(|F|+ J1)

(a)

≤ 3 ·OPTD,t +
OPTD,t + ε

α− 1
+ 2‖f̂ − f‖A2αt(d+1)

+ η

(b)

≤ 3 ·OPTD,t +
OPTD,t + ε

α− 1
+ 2ε+ η ,

where (a) follows from Fact 6(d) and since (|F| + |J1| + |J0|) ≤ 2αt, and (b) follows from the VC
inequality. Thus, it suffices to prove Equations (14)–(16).

Case 1. We first consider the set of intervals in F . By the triangle inequality we have

‖h− f‖1,F ≤ ‖f − h∗‖1,F + ‖h− h∗‖1,F .

For any interval J ∈ F , since h and h∗ are both in D, they have at most d sign changes, and

‖h− h∗‖1,J = ‖h− h∗‖Ad+1,J ≤ ‖h− f̂‖Ad+1,J + ‖f̂ − h∗‖Ad+1,J .

By the definition of h and the projection oracle,

‖h− f̂‖Ad+1,J ≤ min
h′∈DJ

‖h′ − f̂‖Ad+1,J +
η

2αt
≤ ‖h∗ − f̂‖Ad+1,J +

η

2αt
.

Therefore,
‖h− h∗‖1,J ≤ 2 · ‖h∗ − f̂‖Ad+1,J +

η

2αt
.

Again by the triangle inequality,

‖h∗ − f̂‖Ad+1,J ≤ ‖h
∗ − f‖Ad+1,J + ‖f − f̂‖Ad+1,J .

Summing over the intervals in F ,∑
J∈F
‖h∗ − f̂‖Ad+1,J ≤

∑
J∈F
‖h∗ − f‖Ad+1,J +

∑
J∈F
‖f − f̂‖Ad+1,J

≤ ‖h∗ − f‖1,F + ‖f − f̂‖A|F|(d+1),F

Combining these, we obtain,

‖h− f‖1,F ≤ 3 · ‖f − h∗‖1,F + 2 · ‖f − f̂‖A|F|(d+1),F +
η

2αt
|F| ,

which is precisely (14).

55

Case 2a. We now analyze the error for the intervals J0. The set I0 contains only singletons and intervals
with no sample points. By definition, with probability 1, only the intervals in I0 that contain no samples
may contain a jump of h∗. The singleton intervals containing the sample points do not include jumps, and
are hence covered by Case 1. Since J0 does not contain any samples, our algorithm assigns

h(J) = f̂(J) = 0

for any J ∈ J0. Hence,
‖h− f‖1,J0

= ‖f‖1,J0
,

and

‖h− f‖1,J0
= ‖f‖1,J0

=
∑
J∈J0

|f(J)|

=
∑
J∈J0

|f(J)− f̂(J)|

≤ ‖f − f̂‖A|J0|(d+1),J0
,

where the last step simply follows from non-negativity of f − f̂ over J0.

Case 2b. We finally consider J1, the set of intervals created by merging in some iteration of our algorithm
that also contain jumps. As before, our first step is the following triangle inequality:

‖h− f‖1,J1 ≤ ‖h− h∗‖1,J1 + ‖h∗ − f‖1,J1 .

Consider an interval J ∈ J1 with Γ(J) ≥ 1 jumps of h∗. Since h ∈ DJ , h − h∗ has at most d · Γ(J)
sign changes in J . Therefore,

‖h− h∗‖1,J
(a)
= ‖h− h∗‖Ad·Γ(J)+1,J

(b)

≤ ‖h− f̂‖Ad·Γ(J)+1,J + ‖f̂ − f‖Ad·Γ(J)+1,J + ‖f − h∗‖Ad·Γ(J)+1,J

(c)

≤ Γ(J)‖h− f̂‖Ad+1,J + ‖f̂ − f‖Ad·Γ(J)+1,J + ‖f − h∗‖1,J , (17)

where (a) follows from Fact 6(a), (b) is the triangle inequality, and inequality (c) uses Fact 6(c) along with
the fact that Γ(J) ≥ 1 and d ≥ 1. We start by bounding the Ad+1 distance in the first term above.

Lemma 49. For any J ∈ J1, we have

‖h− f̂‖Ad+1,J ≤
OPTD,t + ε

(α− 1)t
+

η

2(α− 1)t
. (18)

Before proving this lemma, we use it to complete Case 2b. Summing (7) over J ∈ J1 and plugging in
the lemma,

‖h− h∗‖1,J1 ≤

∑
J∈J1

(Γ(J)

 · (OPTD,t + ε

(α− 1)t
+

η

2(α− 1)t

)
+
∑
J∈J1

‖f̂ − f‖Ad·Γ(J)+1,J + ‖f − h∗‖1,J1

(a)

≤
OPTD,t + ε

(α− 1)
+

η

2(α− 1)
+ ‖f̂ − f‖Ad·t+|J1|,J1 + ‖f − h∗‖1,J1

56

where the first term in (a) uses the fact that
∑

J∈J1
Γ(J) ≤ t and the second term uses this in conjunction

with Fact 6(d).
We now prove Lemma 49.

Proof of Lemma 49. Each iteration of our algorithm merges pairs of intervals except those with the αt
largest errors. Therefore, if two intervals were merged, there were at least αt other interval pairs with
larger error. We will use this fact to bound the error on the intervals in J1.

Suppose an interval J ∈ J1 was created in the jth iteration of the while loop of our algorithm, i.e., J =
I ′i,j+1 = I2i−1,j ∪ I2i,j for some i ∈ {1, . . . , sj/2}. Recall that the intervals I ′i,j+1, for i ∈ {1, . . . , sj/2},
are the candidates for merging at iteration j. Let h′ be the distribution given by applying the projection
oracle to the empirical distribution over each candidate interval I ′j+1 = {I ′1,j+1, . . . , I

′
sj/2,j+1}. Note that

h′(x) = h(x) for x ∈ J since J remains intact through the remainder of the algorithm.
As with the histogram estimation, for a classD with at most d sign changes, let ed(g, J) = ming′∈DJ ‖g−

g′‖Ad+1
. LetL be the set of candidate intervals I ′i,j+1 in the set I ′j+1 with the largest α·t errors ‖h′−f̂‖Ad+1

.
By the guarantee of projection oracle,

‖h′ − f̂‖Ad+1,I
′
i,j+1
≤ ed(f̂ , I ′i,j+1) +

η

2αt
.

Let L0 be the intervals in L that do not contain any jumps of h∗. Since h∗ has at most t jumps, |L0| ≥
(α− 1)t.

Therefore, ∑
I′∈L0

‖h′ − f̂‖Ad+1,I′ ≤
∑
I′∈L0

(
ed(f̂ , I

′) +
η

2αt

)
≤
∑
I′∈L0

(
‖h∗ − f̂‖Ad+1,I′ +

η

2αt

)
≤ ‖f − h∗‖1,L0 + ‖f − f̂‖A(d+1)αt,L0 + η/2

≤ OPTD,t + ε+ η/2.

Since h′ is h on the interval J , combining with |L0| ≥ (α− 1)t, we obtain

‖h′ − f̂‖Ad+1,J
= ‖h− f̂‖Ad+1,J

≤
OPTD,t + 2ε

(α− 1)t
+

η

2(α− 1)t
,

completing the proof of the lemma.

B Additional Omitted Proofs

B.1 Proof of Fact 26

We first require the following classical lemma, first proved by Markov [Mar92]. For completeness, we
include an elegant proof by the mathoverflow user fedja7. We remark that the bounds in the following fact
are essentially tight.

7See http://mathoverflow.net/questions/97769/approximation-theory-reference-for-a-
bounded-polynomial-having-bounded-coefficie

57

http://mathoverflow.net/questions/97769/approximation-theory-reference-for-a-bounded-polynomial-having-bounded-coefficie
http://mathoverflow.net/questions/97769/approximation-theory-reference-for-a-bounded-polynomial-having-bounded-coefficie

Fact 50 ([Mar92]). Let p(x) =
∑d

j=0 cjx
j be a degree-d polynomial so that |p(x)| ≤ 1 for all x ∈ [−1, 1].

Then maxj |cj | ≤ (
√

2 + 1)d for all j = 0, . . . , d.

Proof. We first claim that |cj | ≤ maxz∈D |p(z)| where D is the unit complex disc. To see this, we notice
that by Cauchy’s integral formula,

cj =
1

j!
p(j)(0) =

1

2πi

∫
|ζ|=1

p(ζ)

ζj+1
dζ ,

where we also changed the order of differentiation and integration and used

d

dxj
p(ζ)

ζ − x
=

j! · p(ζ)

(ζ − x)j+1
.

Therefore, we get

|cj | =
1

2π

∣∣∣∣∣
∫
|ζ|=1

p(ζ)

ζj+1
dζ

∣∣∣∣∣
≤ 1

2π

∫
|ζ|=1

∣∣∣∣ p(ζ)

ζj+1

∣∣∣∣ dζ
≤ max
|ζ|=1

|p(z)| .

Consider the function

F (z) = z−mp

(
z + z−1

2

)
.

On the domain {z : |z| ≥ 1}, this function is analytic. So by the maximum modulus principle, it is
bounded by its value on the unit circle. Since for all z ∈ D, (z + z−1)/2 = <(z), we conclude that
|F (z)| ≤ maxx∈[−1,1] p(x) ≤ 1 by assumption. Thus we have that

p

(
z + z−1

2

)
≤ zd

for all |z| > 1. Fix any w ∈ D. It is straightforward to see that w = (z + z−1)/2 for some z ∈ C \ {0};
by symmetry of z and z−1 we conclude that this also holds for some z with |z| ≥ 1. For each w, arbitrarily
choose such a z and denote it zw. Moreover, for all |z| > (

√
2 + 1), we have∣∣∣∣z + z−1

2

∣∣∣∣ ≥ |z| − |z−1|
2

>

√
2 + 1− 1√

2+1

2
≥ 1

and thus we conclude that for all w ∈ D we have that its corresponding zw satisfies |zw| ≤
√

2 + 1 and
therefore |p(w)| = |p((zw + z−1

w)/2)| ≤ zdw ≤ (
√

2 + 1)d, as claimed.

The above statement is for polynomials that are uniformly bounded on [−1, 1]. We will be interested
in bounds for polynomials that integrate to a fixed constant. In order to relate these bounds, we use the
following classical result.

58

Fact 51 (Bernstein’s Inequality [Che82]). Let p be a degree-d polynomial and let p′ be its derivative. Then

max
x∈[−1,1]

|p′(x)| ≤ d2 · max
x∈[−1,1]

|p(x)| .

With these results, we are now ready to prove Lemma 26.

Proof of Lemma 26. Consider the degree-(d + 1) polynomial P such that P (−1) = 0 and P ′ = p. This
implies that P (x) =

∫ x
−1 p(y) dy. Since p is non-negative on [−1, 1], the bound on

∫ 1
−1 p(y) dy then gives

max
x∈[−1,1]

|P (x)| ≤ α · (
√

2 + 1)d .

Using Bernstein’s Inequality (Fact 51), we can convert this bound into a bound on P ′ = p, i.e., we get that
|p(x)| ≤ t · (d + 1) for all x ∈ [−1, 1]. Combining this uniform bound on p with Fact 50 gives the desired
bound on the coefficients of p.

B.2 Proof of Lemma 34

Our approach to proving Lemma 34 is relatively straightforward. Assume we had an algorithm A that finds
the roots of p exactly. Then one could perform a non-negativity test by running A to find the roots of p′,
which correspond to the extrema of p. Given the extrema of p, it suffices to check whether p is non-negative
at those points and the endpoints of the interval.

However, such an exact root-finding algorithm A does not exist in general. Nevertheless, there are
efficient algorithms for finding the approximate roots of p in certain regimes. We leverage these results to
construct an efficient non-negativity test. Before we proceed, we remark briefly that we could also utilize
the univariate SOS algorithm [Sho87, Las01, Par03], which is arguably more elementary than our approach
here, but slower.

Formally, we build on the following result.

Fact 52 ([Pan01], Part II, Theorem 1.1). Let D denote the complex unit disc. For all ν > 0, there exists
an algorithm FINDROOTS(q, β) satisfying the following guarantee: given any degree-d polynomial q(z) :
C→ C with roots z1 . . . , zd such that zi ∈ D for all i and β ≥ d log d, returns z∗1 , . . . , z

∗
d so that |z∗j −zj | ≤

22−β/d for all j. Moreover, FINDROOTS runs in time O(d log2 d · (log2 d+ log β)).

Our polynomials do not necessarily have all roots within the complex unit disc. Moreover, we are only
interested in real roots. However, it is not too hard to solve our problems with the algorithm from Fact 52.
We require the following structural result:

Fact 53 ([Hen88], Sect. 6.4). Let q(x) = xd + cd−1x
d−1 + . . .+ c1x+ c0 be a monic polynomial of degree

d (i.e., the leading coefficient is 1). Let ρ(q) denote the norm of the largest zero of q. Then

ρ(q) ≤ 2 max
1≤i≤d

|cd−i|1/i .

In order to use the result above, we process our polynomial p so that it becomes monic and still has
bounded coefficients. We achieve this by removing the leading terms of p with small coefficients. This then
allows us to divide by the leading coefficient while increasing the other coefficients by a controlled amount
only. Formally, we require the following definitions.

59

Definition 54 (Truncated polynomials). For any degree-d polynomial p =
∑d

i=0 cix
i and ν > 0 let

∆ = ∆(p, ν) = max
{
i : |ci| ≥

ν

2d

}
,

and let Π = Πν be the operator defined by

(Πp)(x) =

∆(p,ν)∑
i=0

cix
i.

Formally, Π acts on the formal coefficient representation of p as q =
∑
cix

i. It then returns a for-
mal representation

∑∆(p,ν)
i=0 cix

i. In a slight abuse of notation, we do not distinguish between the formal
coefficient representation of p and the polynomial itself. Then Facts 52 and 53 give us the following:

Lemma 55. There exists an algorithm FASTAPPROXROOTS(p, ν, µ) with the following guarantee. Let p
be a polynomial as in Definition 34, and let ν, µ > 0 such that ν ≤ 1

2αd (where α and d are as in Def.
34). Then FASTAPPROXROOTS returns approximate roots x∗1, . . . , x

∗
∆(p,ν) ∈ R so that for all real roots y

of Πνp, there is some j so that |y − x∗j | ≤ µ. Moreover, FASTAPPROXROOTS runs in time O(d log2 d ·
(log2 d+ log logα+ log log(1/ν) + log log(1/µ))).

Proof. FASTAPPROXROOTS(p, ν, µ) proceeds as follows. We find ∆ = ∆(p, ν) and Πp = Πνp in time
O(d) by a single scan through the coefficients ci of p. Let q1(x) = 1

c∆
(Πp)(x). Note that the roots of q1 are

exactly the roots of Πp. Then, by Theorem 53, we have that

A
def
= 2 max

1≤i≤∆

∣∣∣∣c∆−i
c∆

∣∣∣∣1/i ≥ ρ(q1) .

The quantity A is also simple to compute in a single scan of the ci. Notice that we have

A ≤ max

(
2 max

1≤i≤∆

∣∣∣∣c∆−i
c∆

∣∣∣∣ , 1) ≤ 2αd

ν︸︷︷︸
B

by the definition of ∆ and the assumption that the ci are bounded by α (Definition 34). Let B denote the
right hand side of the expression above. If we let q(x) = q1(Ax), we have that the roots of q all lie within the
complex unit disc. Let z1, . . . , z∆ be the roots of Πp. Then the roots of q are exactly z1/A, . . . , z∆/A. Run
FINDROOTS(q, 2d+d logB+d log(1/µ)), which gives us z∗1 , . . . , z

∗
∆ so that for all i, we have |z∗i −zi/A| <

µ/B. Thus, for all i, we have
|Az∗i − z| ≤ A

µ

B
≤ µ .

FASTAPPROXROOTS(p, ν, µ) returns the numbers x∗i = <(Az∗i). For any real root x of Πp, there is some z∗i
so that |Az∗i −x| < µ, and thus |x∗i −x| < µ as well. Thus, we output numbers which satisfy the conditions
of the Lemma. Moreover, the runtime of the algorithm is dominated by the runtime of FINDROOTS(q, 2d+
d logB + d log(1/µ)), which runs in time

O(d log2 d · (log2 d+ log(d logB + d log(1/µ)))) =

O(d log2 d · (log2 d+ log logα+ log log(1/ν) + log log(1/µ)))

This completes the proof.

60

Proof of Lemma 34. Let ν = µ
2 , and let ν ′ = µ

4αd(d+1) . Set

r = (Πνp)(x) =

∆(p,ν)∑
i=1

cix
i .

We can compute the coefficients of r in time O(d). Moreover, Π(r′(x)) = r′(x). Let x1, . . . , xd′ , where
d′ ≤ ∆, be the roots of r′(x) in [−1, 1]. These points are exactly the local extrema of r on [−1, 1]. Our
algorithm TESTNONNEG(p, µ) then is simple:

1. Run FASTAPPROXROOTS(r, ν ′, µ) and let x∗1, . . . , x
∗
∆ be its output.

2. Let J = {i : x∗i ∈ [−1, 1]} and construct the set S = {−1, 1} ∪ {xi : i ∈ J}.

3. Denote the points in S by x0 = −1 ≤ x1 ≤ . . . ≤ xd′−1 ≤ xd′ = 1, where d′ ≤ ∆ + 1.

4. Evaluate the polynomial p at the points in S using the fast algorithm from Fact 41.

5. If at any of these points the polynomial evaluates to a negative number, return that point. Otherwise,
return “OK”.

The running time is dominated by the call to FASTAPPROXROOTS. By Lemma 55, this algorithm runs in
time O(d log2 d · (log2 d+ log logα+ log log(1/µ))) as claimed.

It suffices to prove the correctness of our algorithm. Clearly, if p is nonnegative on [−1, 1], it will always
return “OK”. Suppose there exists a point y ∈ I so that p(y) < −µ.

For a function f , and an interval I = [a, b], let |f |∞,I = supx∈I ‖f(x)‖. Then,

‖p− r‖∞,[−1,1] ≤ sup
x∈[−1,1]

∣∣∣∣∣
d∑

i=∆+1

cix
i

∣∣∣∣∣ (a)

≤ (d−∆) · µ
4d
≤ µ/4 , (19)

where the inequality (a) follows from the choice of ∆. Thus r(y) < −3µ/4. Since the points x0, x1, . . . , xd′

are extremal for r on I , there exists a 0 ≤ j ≤ d′ so that r(xj) < −3ν/4. If j = 0 (resp. j = m′),
so if r(−1) < −3µ/4 (resp. r(1) < −3µ/4), then by Equation (19), we have p(−1) < µ/2 (resp.
p(1) < −µ/2). Thus our algorithm correctly detects this, and the polynomial fails the non-negativity test as
intended.

Thus assume j ∈ {1, . . . ,∆}. By Lemma 55, we know that there is a x∗` so that |x∗` − xj | < ν ′. Since
xj ∈ I , either ` ∈ J or |xj + 1| < ν ′ or |xj − 1| < ν ′, so in particular, there is a point s ∈ S so that
|xj − s| < ν ′. Since for all x ∈ [−1, 1], we have

|p′(x)| ≤
d∑
i=1

∣∣icixi∣∣ ≤ αd(d+ 1)

by the bound on the coefficients of p (see Definition 34). By a first order approximation, we have that

|p(xj)− p(s)| ≤ αd(d+ 1)|xj − s| ≤ µ/4

where the last inequality follows by the definition of ν ′. Thus, we have that p(s) < −µ/2, and we will either
return s or some other point in s′ ∈ S with p(s′) ≤ p(s). Thus our algorithm satisfies the conditions on the
theorem.

61

C Learning discrete piecewise polynomials

Throughout this paper we focused on the case that the unknown distribution has a density f supported on
[−1, 1], and that the error metric is the L1-distance with respect to the Lebesgue measure on the real line.
We now show that our algorithm and analysis naturally generalize to the case of discrete distributions.

In the discrete setting, the unknown distribution is supported on the set [N]
def
= {1, . . . , N}, and the

goal is to minimize the `1-distance between the corresponding probability mass functions. The `1-norm of
a function f : [N]→ R is defined to be ‖f‖1 =

∑N
i=1 |f(i)| and the `1-distance between f, g : [N]→ R is

‖f − g‖1.
In the following subsections, we argue that our algorithm also applies to the discrete setting with only

minor adaptations. That is, we can agnostically learn discrete piecewise polynomial distributions with the
same sample complexity and running time as in the continuous setting. 1

C.1 Problem statement in the discrete setting

Fix an interval I ⊆ [N]. We say that a function p : I → R is a degree-d polynomial if there is a degree-d
real polynomial q : R → R such that p(i) = q(i) for all i ∈ I . We say that h : [N] → R is a t-piecewise
degree-d polynomial if there exists a partition of [N] into t intervals so that on each interval, h is a degree-
d polynomial. Let Pdisc

t,d be the set of t-piecewise degree-d polynomials on [N] which are nonnegative at
every point in [N]. Fix a distribution (with probability mass function) f : [N] → R. As in the continuous
setting, define OPTdisc

t,d
def
= ming∈Pdisc

t,d
‖g − f‖1 . As before, our goal is the following: given access to n

i.i.d. samples from f , to compute a hypothesis h so that probability at least 9/10 over the samples, we have
‖h− f‖1 ≤ C ·OPTdisc

t,d + ε , for some universal constant C. As before, we let f̂ denote the empirical after
taking n samples.

Our algorithms for the continuous setting also work for discrete distributions, albeit with slight mod-
ifications. For the case of histogram approximation, the algorithm and its analysis hold verbatim for the
discrete setting. The only difference is in the definition of flattening; Definition 8 applies to continuous
functions. For a function f : [N] → R and an interval J ⊆ [n] the flattening of f on J is now defined to
be the constant function on J which divides the total `1 mass of the function within J uniformly among all
the points in J . Formally, if J = {a, . . . , b}, we define the flattening of f on J to be the constant function
f̄J(x) =

∑
i∈I f(i)

b−a+1 .

C.2 The algorithm in the discrete setting

Our algorithm in the discrete setting is nearly identical to the algorithm in the continuous setting, and the
analysis is very similar as well. Here, we only present the high-level ideas of the discrete algorithm and
highlight the modifications necessary to move from a continuous to a discrete distribution.

C.2.1 The Ak-norm and general merging in the discrete setting

We start by noting that the notion of the Ak-norm and the VC inequality also hold in the discrete setting. In
particular, the Ak-norm of a function f : [N]→ R is defined as

‖f‖Ak = max
I1,...,Ik

k∑
i=1

|f(Ii)| ,

62

where the maximum ranges over all I1, . . . , Ik which are disjoint sub-intervals of [N].
The basic properties of the Ak-norm (i.e., those in Lemma 6) still hold true. Moreover, it is well-

known that the VC inequality (Theorem 2) still holds in this setting. These properties of the Ak-norm are
the only ones that we use in the analysis of GENERALMERGING. Therefore, it is readily verified that the
same algorithm is still correct, and has the same guarantees in the discrete setting, assuming appropriate
approximate Ak-projection and Ak-computation oracles for polynomials on a fixed subinterval of [N].

C.2.2 Efficient Ak-projection and computation oracles for polynomials

We argue that, as in the continuous setting, we can give efficient Ak-projection and computation oracles for
non-negative polynomials of degree d on a discrete interval I , using an O(d)-dimensional convex program.
By appropriately shifting the interval, we may assume without loss of generality that the interval is of the
form [m] = {1, . . . ,m} for some m ≤ N .

The Convex Program As in the continuous case, it can be shown that the set of non-negative polynomials
p on [m] satisfying ‖p − f̂‖Ak ≤ τ is convex (as in Lemma 21), for any fixed τ > 0 (since ‖ · ‖Ak is a
norm). Moreover, using explicit interpolation formulas for polynomials on [m], it is easy to show that every
polynomial in this feasible region has a representation with bounded coefficients (the analogue of Theorem
27), and that the feasible region is robust to small perturbations in the coefficients (the analogue of Theorem
28). Thus, it suffices to give an efficient separation oracle for the feasible set.

The Separation Oracle Recall that the separation oracle in the continuous case consisted of two compo-
nents: (i) a non-negativity checker (Subsection 6.2), and (ii) a fast Ak-computation oracle (Subsection 6.3).
We still use the same approach for the discrete setting.

To check that a polynomial p : I → R with bounded coefficients is non-negative on the points in I , we
proceed as follows: we use FAST-APPROX-ROOTS to find all the real roots of p up to precision 1/4, then
evaluate p on all the points in I which have constant distance to any approximate root of p. Since p cannot
change sign in an interval without roots, this is guaranteed to find a point in I at which p is negative, if one
exists. Moreover, since p has at most d roots, we evaluate p at O(d) points; using Fact 41, this can be done
in time O(d log d log log d).

Finally, to compute the Ak-distance between p =
∑d

j=0 cjx
j and f̂ on an interval I , we use the same

reduction as in Section 6.3 with minor modifications. The main difference is that between two points xi, xi+1

in the support of the empirical distribution, the quantity p[xi, xi+1] (see section 6.3) is now defined to be

p[xi, xi+1] =

xi+1−1∑
`=xi+1

p(`)

=

xi+1−1∑
`=xi+1

d∑
j=0

cj`
j

=

d∑
j=0

cj

xi+1−1∑
`=xi+1

`j

 .

Notice that the above is still a linear expression in the cj , and there are simple closed-form expressions for(∑β
`=α `

j
)

for all integers α, β and for all 0 ≤ j ≤ d. Following the arguments in Section 6.3 with this

63

substituted quantity, one can show that the quantity returned by APPROXSEPORACLE in the discrete setting
is still a separating hyperplane for p and the current feasible set. Moreover, APPROXSEPORACLE still runs
in time Õ(d).

D Approximating bounded polynomials with piecewise polynomials

In this section we will show:

Theorem 56. Fix ε > 0. Let p : [−1, 1] → R be a degree d polynomial so that
∫ 1
−1 |p(x)|dx ≤ 1. Then,

there exists a O(d log d)-piece degree O(log d/ε) polynomial q so that
∫ 1
−1 |p(x)− q(x)|dx ≤ O(ε).

A tool we will require is Bernstein’s inequality:

Theorem 57 (Bernstein’s inequality). Let p be a degree d polynomial. Then

sup
x∈[−1,1]

|p′(x)| ≤ d2 · sup
x∈[−1,1]

|p(x)| .

This immediately implies the following:

Corollary 58. Let p : [−1, 1]→ R be a degree d polynomial so that
∫ 1
−1 |p(x)|dx ≤ 1, and let k < d. Then

supx∈[−1,1]

∣∣∣ dkdxk p(x)
∣∣∣ ≤ (d+ 1)2(k+1).

Proof. LetP (x)
∫ x
−1 p(x)dx. ThenP (x) is a degree d+1 polynomial so that supx∈[−1,1] P (x) ≤

∫ 1
−1 |p(x)|dx ≤

1. We can then apply Bernstein’s inequality k + 1 times to P and its derivatives to obtain the desired re-
sult.

This bound is indeed fairly tight, in particular, the 2 in the exponent is unavoidable for such a statement,
as the Chebyshev polynomials give such a result. However, it is too coarse for us. Intuitively, this loses
because this bound is only tight very close to −1 and 1, and it is quite loose in intervals which are far from
the endpoints. We will next show a more fine-grained bound, which in conjunction with this bound, will
allow us to prove the desired approximation.

We first show that the L1 and L2 norms for polynomials with bounded L1 norm are related by a factor
which is at most poly(d):

Lemma 59. Let p : [−1, 1]→ R be a degree d polynomial so that
∫ 1
−1 |p(x)|dx ≤ 1. Then

∫ 1
−1 p(x)2dx ≤

2d2.

Proof. By Holder’s inequality, it suffices to show that supx∈[−1,1] |p(x)| ≤ 2d2. Suppose not. Let x∗ be a
point which maximizes p(x) for x ∈ [−1, 1], so that |p(x∗)| > 2d2. WLOG assume that p(x∗) ≥ 0. By
Bernstein’s inequality, we have that supx∈[−1,1] |p′(x)| ≤ d2 · p(x∗). Consider an interval I ⊆ [−1, 1] of
length 1/d2 containing x∗. By Taylor expanding at x∗, we have that for all points x ∈ I , we have that

p(x) ≥ p(x∗)− 1

2d2
sup
x∈I
|p′(x)|

≥ 1

2
p(x∗).

Thus,
∫ 1
−1 |p(x)|dx ≥

∫
I |p(x)|dx ≥ 1

2d2 p(x
∗) > 1, a contradiction.

64

For all 0 ≤ m ≤ d, let Pm(x) denote the mth Legendre polynomial, defined by

Pm(x) =
1

2mm!

dm

dxm
[(x2 − 1)m] ,

and let P̃m(x) =
√

2
2m+1Pm(x) denote the mth normalized Legendre polynomial. We have the following,

key lemma:

Lemma 60. Fix k < m. Then dkPm
dxk

(0) = O
(
(m+ k)k

)
.

Proof. By definition, we have that

dkPm
dxk

(x) =
1

2mm!

dm+k

dxm+k
[(x2 − 1)m] .

By the binomial theorem, the coefficient of xm+k in (x2 − 1)m is
(m
m+k

2

)
and hence by applying Stirling’s

approximation, we obtain

dkPm
dxk

(0) =
(m+ k)!

2mm!

(
m
m+k

2

)
=

(m+ k)!

2m
(
m+k

2

)
!
(
m−k

2

)
!

≤ O(1) · e−k 1

2m
(m+ k)m+k(

m+k
2

)m+k
2
(
m−k

2

)m−k
2

= O(1) · e−k (m+ k)
m+k

2

(m− k)
m−k

2

= O(1) · e−k
(
m+ k

m− k

)m−k
2

(m+ k)k

= O(1) · e−k
(

1 +
2k

m− k

)m−k
2

(m+ k)k

= O(1) · (m+ k)k ,

where in the last step we use the fact that (1 + 1
x)x ≤ e for all x ≥ 0.

This allows us to derive the following key bound:

Lemma 61. Let p : [−1, 1] → R be a degree d polynomial so that
∫ 1
−1 p(x)dx ≤ 1. Then, for any k ≤ d,

we have
∣∣∣ dkdxk p(0)

∣∣∣ ≤ O (d3/2(d+ k)k
)
.

Proof. By Lemma 59 we know that the L2 norm of p is at most O(d). Hence, by the orthonormality of the
normalized Legendre polynomials, we may write p(x) =

∑d
i=0 ciP̃i(x), where

∑d
i=1 c

2
i ≤ O(d2). Hence,

65

we have ∣∣∣∣ dkdxk p(0)

∣∣∣∣ =

∣∣∣∣∣
d∑
i=0

ci
dk

dxk
P̃i(0)

∣∣∣∣∣
≤

d∑
i=1

|ci|
∣∣∣∣ dkdxk P̃i(0)

∣∣∣∣
≤ O

(
d3/2(d+ k)k

)
,

where the last line follows from Hölder’s inequality and Lemma 60.

This implies the following corollary:

Corollary 62. Let p be as above. Let 0 ≤ γ < 1 and let ρ = 1− γ. Then

sup
x∈[γ−ρ/2,γ+ρ/2]

∣∣∣∣ dkdxk p(x)

∣∣∣∣ ≤ O
(
d3/2

(
d+ k

ρ

)k)
.

Proof. Fix any β in this interval. Then by the definition of ρ, we know that I = [β−ρ/2, β+ρ/2] ⊆ [−1, 1].
Let `(x) = ρ

2x+β be the linear transformation which sends [−1, 1] to I . Then p1(x) = 2
ρp(`(x)) is a degree

d polynomial from [−1, 1] to R satisfying
∫ 1
−1 |p1(x)|dx =

∫
I |p(x)|dx ≤ 1. Hence by Lemma 61 we have∣∣∣ dkdxk p1(0)

∣∣∣ ≤ O(d3/2(d+ k)k), but dk

dxk
p1(0) = ρk dk

dxk
p(β), and the claim follows.

Finally, we have the tools to prove our main approximation theorem:

Proof of Theorem 56. For now, we will focus our attention on approximating p on the interval [0, 1]; the
other half of the interval can be done symmetrically by doubling the number of pieces. For r = 1, . . . , R,
where R = 2 log d, let Ir = [1− 2−(r−1), 1− 2−r]. Thus Ir is of length 2−r. For each r, we will uniformly
subdivide Ir into 2d subintervals I1

r , . . . , I
2d
r , each of length 2−r/(2d). On each of these subintervals,

we will take the degree k = O(log(d/ε)) Taylor approximation to p centered at the midpoints of these
subintervals. This covers all of [0, 1] except the interval J = [1− 2−R, 1], and on this interval we will also
take the Taylor approximation to p centered at the midpoint of this interval of degree k. Call the resulting
piecewise polynomial q. Observe it has O(d log d) pieces and degree O(log d/ε), as claimed.

We now show that this has small error. Fix any 1 ≤ r ≤ R and ` ≤ 2d. By Taylor’s theorem, we have

sup
x∈I`r
|q(x)− p(x)| ≤ 1

(k + 1)!
sup
x∈I`r

∣∣∣∣ dk+1

dxk+1
p(x)

∣∣∣∣ (2−r

2d

)k+1

≤ 1

(k + 1)!
sup
x∈Ir

∣∣∣∣ dk+1

dxk+1
p(x)

∣∣∣∣ (2−r

2d

)k+1

≤ 1

(k + 1)!
O

(
d3/2

(
d+ k + 1

2d

)k+1
)

≤ 1

(k + 1)!

1

2k+1
≤ O(ε) ,

for our choice of k. Thus our approximation has small error over [0, 1]−J . We now seek to bound the error
on J .

66

However, by our choice of R, we have that |J | ≤ 1
d3 . Hence, by Taylor’s theorem and Corollary 58, we

have

sup
x∈J
|q(x)− p(x)| ≤ 1

(k + 1)!
sup
x∈J

∣∣∣∣ dk+1

dxk+1
p(x)

∣∣∣∣ (1

d3

)k+1

≤ 1

(k + 1)!
sup

x∈[−1,1]

∣∣∣∣ dk+1

dxk+1
p(x)

∣∣∣∣ (1

d3

)k+1

≤ 1

(k + 1)!
(d+ 1)2(k+2)

(
1

d3

)k+1

≤ 1

(k + 1)!

1

dk
≤ O(ε) .

Hence, the L∞ error between q and p on [0, 1] is O(ε), so in particular, the L1 error is at most O(ε) as
well.

67

	Introduction
	Our main result
	Applications of our algorithm
	Our techniques
	Related work
	Paper structure

	Preliminaries
	Paper outline
	Iterative merging algorithm
	The histogram merging algorithm
	The general merging algorithm
	Putting everything together

	A fast Ak-projection oracle for polynomials
	The set of feasible polynomials
	Separation oracles and approximately feasible polynomials
	Bounds on the radii of enclosing and enclosed balls
	Finding the best polynomial

	The separation oracle and the Ak-computation oracle
	Overview of ApproxSepOracle
	Testing non-negativity and boundedness
	An Ak-computation oracle

	Applications
	Mixture of log-concave distributions
	Mixture of Gaussians
	Densities in Besov spaces
	Mixtures of t-monotone distributions
	Mixtures of discrete distributions

	Experimental Evaluation
	Histogram hypotheses
	Piecewise linear hypotheses
	Comparison with prior work

	Analysis of the General Merging Algorithm: Proof of Theorem 17
	Additional Omitted Proofs
	Proof of Fact 26
	Proof of Lemma 34

	Learning discrete piecewise polynomials
	Problem statement in the discrete setting
	The algorithm in the discrete setting

	Approximating bounded polynomials with piecewise polynomials

