
Better Approximations for Tree Sparsity in Nearly-Linear Time

Arturs Backurs
MIT

Piotr Indyk
MIT

Ludwig Schmidt
MIT

Abstract

The Tree Sparsity problem is defined as follows: given a node-weighted tree of size n and an
integer k, output a rooted subtree of size k with maximum weight. The best known algorithm
solves this problem in time O(kn), i.e., quadratic in the size of the input tree for k = Θ(n).

In this work, we design (1 + ε)-approximation algorithms for the Tree Sparsity problem
that run in nearly-linear time. Unlike prior algorithms for this problem, our results offer single
criterion approximations, i.e., they do not increase the sparsity of the output solution, and work
for arbitrary trees (not only balanced trees). We also provide further algorithms for this problem
with different runtime vs approximation trade-offs.

Finally, we show that if the exact version of the Tree Sparsity problem can be solved in
strongly subquadratic time, then the (min,+) convolution problem can be solved in strongly
subquadratic time as well. The latter is a well-studied problem for which no strongly sub-
quadratic time algorithm is known.

1 Introduction

The tree sparsity problem is defined as follows: given a node-weighted tree of size n and an integer
k, output a rooted subtree of size k with the maximum weight. Over the last two decades, this
problem and its variants have been the subject of extensive studies in several areas. In combinatorial
optimization, this problem constitutes an important special case of the well-studied rooted k-MST
problem1 which is NP-hard in general, but solvable on trees in polynomial time [RSM+96, LZ93].
In machine learning, the problem was formulated in the context of optimal decision tree prun-
ing [BB94]. Perhaps most prominently, the problem and its variants have been studied in the sparse
approximation and compressive sensing literature, where it is used to identify tree sparse approxi-
mations of signals represented in a wavelet basis (see e.g., [BJ93, Don97, BCDH10, CT13, HIS14b]
as well as the recent survey [HIS15b]). In the latter two applications (machine learning and sparse
recovery), the trees are often assumed to be binary. This is the case we consider in the rest of this
paper.

The fastest exact algorithm for this problem runs in time O(kn) [CT13].2 Since this running time
can be quite high3 for large values of k and n, multiple faster but approximate or heuristic algorithms

1In the rooted k-MST problem we are given an edge-weighted graph G, the size parameter k, and a node v. The
goal is to find a subtree of G with k edges that contains v and has the minimum weight. Note that for the case when
G is a tree, rooted k-MST is computationally equivalent to tree sparsity: the weight of each edge can be assigned
to one of its endpoints that points “away” from the root v, and minimization can be replaced by maximization by
negating each weight and adding to it the sum of all weights W .

2The algorithm in [CT13] was designed for balanced binary trees. However, in the appendix we show the algorithm
can extended to arbitrary binary trees.

3E.g., for mega-pixel images we could have n ≈ 106 and k ≈ 0.1n ≈ 105.

1

were designed [Don97, BCDH10, CT13, HIS14b]. The approximate variants of the problem can be
formulated in two different ways.4 The first one relaxes the maximization problem, where the goal
is to find a sub-tree whose weight is as large as possible. The second one relaxes the minimization
problem, where the goal is to find a subtree such that the sum of node weights not in the subtree is
as small as possible. In both cases, the approximation algorithms find solutions that are within a
constant factor away from the optimum. Furthermore, the algorithms output sub-trees of size that
is larger than k by a constant factor. Table 1 summarizes the details of these algorithms (only the
best known bounds are shown). Note that the prior algorithms listed in the table work only for
balanced trees, i.e., of depth O(log n).

Reference Max/Min Running time Solution
sparsity

Approximation
ratio

Tree
depth

[CT13] Either O(kn) k 1 O(log n)
[HIS14b] Min O(n log n) 2k ≤ 2 O(log n)
[HIS14b] Max O(n log n+ k log2 n) 2k +O(log n) ≥ 1/4 O(log n)

This paper Min n(log n+ 1/ε)O(1) k ≤ (1 + ε) any
This paper Max n(log n+ 1/ε)O(1) k ≥ (1− ε) any
This paper Max O(n log n) k ≥ (k − d)/16k d

Table 1: A summary of the algorithms for the tree sparsity problem. Only the best known bounds
are included. The algorithms in [HIS14b] offer tradeoffs between sparsity and approximation factors
that we do not show for simplicity. We distinguish between the minimization and the maximization
versions of the problem. The approximation ratio is relative to the value of the optimal solution.

Overall, the existing algorithms are either (i) exact but slow, or (ii) fast but approximate, yielding
solutions whose value and sparsity bounds are suboptimal by constant factors. In particular, no
constant factor algorithm with near-linear running time was known for the minimization variant of
the problem if the sparsity bound k cannot be exceeded. The existence of such an algorithm was
posed by the last two authors of this paper as an open problem ([HIS15b], Problem 2). In the same
survey, they asked whether the running time of the exact algorithm can be improved.

Our results In this paper, we resolve the first question and make progress on the latter. Our
main results are as follows:

• We present nearly linear-time single-criterion approximation algorithms for both the maxi-
mization and the minimization variants. Furthermore, the approximation factors of our algo-
rithms are arbitrarily close to 1.

• We show that, for k ≈ n, a strongly sub-quadratic time algorithm for tree sparsity would imply
a strongly sub-quadratic time algorithm for (min,+)-convolution. The latter is a well-studied
problem (see e.g., [BCD+06]) for which no strongly sub-quadratic time algorithm is known.
The problem bears strong similarity to the (min,+)-matrix product, which has been used as
the basis for several conditional hardness results [RZ04, WW10, AW14, AGW15, AVWY15,
BDT16]. In particular, our reduction uses the techniques of [WW10].

4The choice of the formulation depends on the application. In particular, the application to approximation-tolerant
model-based compressive sensing described in [HIS15a] requires both variants. See [HIS15b] for further discussion.

2

We also give a simple algorithm for the maximization variant whose running time O(n log n) has only
a single logarithmic factor. The approximation factor of the algorithm is constant for trees whose
depth is a constant factor smaller than the sparsity k. We also show that a “boosted” variant of the
algorithm increases the sparsity bound by a logarithmic factor while achieving an approximation
ratio of 1.

Our techniques Our algorithms and lower bounds exploit the close connection between tree
sparsity and convolutions. This can be illustrated by recalling the O(kn)-time exact algorithm for
tree sparsity. The algorithm is based on dynamic programming. Specifically, for each node i and
sparsity t, we compute W [i, t], defined as the value of a sub-tree of size t, rooted at node i, and
maximizing the total weight of the selected nodes. We compute this quantity recursively by selecting
i and then, for an appropriate parameter r, selecting the maximum weight subtree of size r rooted
in the left child of i, as well as the maximum weight subtree of size t − r − 1 rooted in the right
child of i. Since we do not know the optimal value of r in advance, the algorithm enumerates all
possible values. This leads to the following recursive formula:

W [i, t] = xi + max
r
W [left(i), r] +W [right(i), t− r − 1] (1)

where xi denotes the weight of the node i.
Equation 1, when executed for all t = 0 . . . k, can be seen as corresponding to the (max,+)

convolution of a sequence
W [left(i), 0] . . .W [left(i), t− 1]

and
W [right(i), 0] . . .W [right(i), t− 1]

Our lower bound proceeds by showing that this correspondence is in some sense inherent, as we
reduce (max,+) convolution to tree sparsity over a binary tree of depth Θ(k) with three long
paths from the root to the leaves. In turn, our approximation algorithms are obtained by solving
approximate (max,+) convolutions or (min,+)-convolutions. Such approximations are known to
be computable in nearly-linear time [Zwi98, PS16]. For completeness, we include simpler (albeit
slightly slower) algorithms performing those tasks in the appendix.

The first step in our approximation algorithms is to replace the exact convolution in Equation 1
by its approximate counterparts. However, this works only if the underlying tree has bounded
(say, polylogarithmic) depth. This is because the approximation errors incurred at each level are
cumulative, i.e., the final error bound is exponential in the tree depth. In order to make the
algorithms applicable for trees of arbitrary depth, we must ensure that the error accumulates only
a limited number of times. To this end, we utilize the heavy-light decomposition [ST83] of the
underlying tree. On a high level, this approach decomposes the tree into a set of (possibly long)
paths called spines. The decomposition ensures that there are at most O(log n) such spines on
a path from the root to any leaf. We then design an algorithm that processes each spine in “one
shot”, as opposed to node by node. In this way, we ensure that the error is accumulated only a
poly-logarithmic number of times.

2 Preliminaries

We start by setting up basic notation. We generally identify the node weights of a given binary
tree with an n-dimensional vector x ∈ Rn: each of the n coefficients in x corresponds to a node in

3

the tree. Similarly, we identify a subtree with the corresponding support Ω ⊆ [n] in the vector x,
i.e., the set of indices belonging to the subtree. We denote the set of supports forming valid rooted
subtrees of size k with Tk. For an arbitrary vector / tree x, we write xΩ for the restriction of x to
the support / subtree Ω: we have (xΩ)i = xi if i ∈ Ω and (xΩ) = 0 otherwise. For a given support Ω,
we denote its complement with Ω = [n] \Ω. Finally, the `1-norm of a vector x is ‖x‖1 =

∑n
i=1 ‖xi‖.

2.1 Head and tail approximation

With the new notation in place, we now formally state our main algorithmic problems. The “head”
and “tail” terminology comes from the application of tree sparsity in sparse recovery [HIS15a]. In
the following problems, the input is a tree with node weights x ∈ Rn and a sparsity parameter k.

Exact tree sparsity Find a subtree Ω ∈ Tk such that ‖x − xΩ‖1 is minimized. Note that this is
equivalent to maximizing ‖xΩ‖1.

Tail approximation Find a subtree Ω ∈ Tk such that ‖x−xΩ‖1 ≤ cT ·minΩ′∈Tk ‖x−xΩ′‖1, where
cT is a constant (ideally close to 1).

Head approximation Find a subtree Ω ∈ Tk such that ‖xΩ‖1 ≥ cH ·maxΩ′∈Tk ‖xΩ′‖1, where cH
is a constant (ideally close to 1).

The tail approximation problem can be seen as an approximate minimization problem, while the
head approximation problem is an approximate maximization problem. Note that a constant-factor
tail approximation does not imply a constant-factor head approximation, and vice versa.

2.2 Generalized convolutions

Our algorithms build on sub-routines for various convolution problems, which we now review.

Definition 1 ((⊗,⊕)-Convolution problem). Given two vectors A = (A0, . . . , An−1)T ∈ Zn and
B = (B0, . . . , Bn−1)T ∈ Zn, output the vector C = (C0, . . . , Cn−1)T ∈ Zn defined as:

Ck = ⊗ki=0(Ai ⊕Bk−i) for all k = 0, . . . , n− 1 .

We consider three instances of the general convolution problem: (min,+), (max,+), and (OR,AND)-
convolution. The latter is also called Boolean Convolution. Note that one can solve the Boolean
Convolution problem in time O(n log n) using the Fast Fourier Transform on indicator vectors.

We will repeatedly use the following two theorems about (min,+) and (max,+)-convolutions
that we prove in Appendix C.

Let A,B ∈ Nn be two integer vectors with positive entries. Let W be the largest value of an
entry in A or B. Let C ∈ Nn be the (max,+)-convolution of A and B. We can output a vector
C ′ ∈ Nn such that C ′k ≤ Ck ≤ (1 + ε)C ′k for all k = 0, . . . , n− 1 in time

O
(n
ε2
· log n · log2W

)
.

An analogous statement holds if C is the (min,+)-convolution of A and B. We can output a
vector C ′ ∈ Nn such that C ′k ≤ Ck ≤ (1 + ε)C ′k for all k = 0, . . . , n− 1 in the same runtime.

4

An slightly faster algorithm for (min,+) matrix products was shown by Uri Zwick [Zwi98]. We
also note than a different algorithm for approximating (max,+)-convolution was given in [Ser15],
but no theoretical guarantees on the approximation factor were provided.

Let A1 ∈ Nn1 , . . . , Al ∈ Nnl be l ≥ 2 vectors with positive entries. We assume that the entries
of the vectors are indexed starting with 0, i.e., Ai =

(
Ai0, . . . , A

i
ni−1

)T for every i = 1, . . . , l. Let
B ∈ Nn, n = n1 + . . .+ nl be the (min,+)-convolution between the l vectors A1, . . . , Anl defined as
follows:

Bj = min
m1+...+ml=j

s.t. 0≤mt≤nt−1 ∀t=1,...,l

(
A1
m1

+ . . .+Alml

)
for every j = 0, . . . , n− 1. We can output a vector B′ ∈ Nn such that B′k ≤ Bk ≤ (1 + ε)B′k for all
k = 0, . . . , n− 1 in time

O
(n
ε2
· log n · log2W · log3 l

)
,

where W denotes the largest entry in the vectors A1, . . . , Al.
An analogous statement holds for (max,+)-convolution (we replace min in the equation for Bj

with max). The runtime stays the same and we output a vector B′ ∈ Nn such that B′k ≤ Bk ≤
(1 + ε)B′k for all k = 0, . . . , n− 1.

3 1 + ε tail approximation in nearly linear time

Our algorithm utilizes a heavy-light decomposition [ST83], which we define first.

Definition 2 (Heavy-light decomposition [ST83]). Let x be a binary tree, and let node v be a child
of node u (the parent). We call an edge e = (u, v) heavy if one of the following holds:

• size(v) > size(u)−1
2 ;

• size(v) = size(u)−1
2 and v is the right child of the parent u.

We call all other edges light.

We extend the above definition of light and heavy edges to nodes as follows: If a parent u is
connected to a child v by a heavy edge, we call v heavy. We can easily check that every node has
at most one heavy child and that only leaves can have no heavy child. We call a node special if it
is not a heavy child of its parent. Special nodes are relevant for our definition of a spine:

Definition 3 (Spine). Consider the following process. Pick any special node u. If u is not a leaf,
it has a unique heavy child. Choose this child and repeat. We will end up in a leaf. This defines a
path in the tree corresponding to the node u. We call this path the spine corresponding to the node
u. The spine includes the node u and the final leaf.

By iterating over all special nodes, we can decompose the tree into a set of spines. This decom-
position has desirable properties because we can only have a small number of spines on any path
from a leaf to the root. More formally, consider any node u in the tree. The number of light edges
on the path from the node u to the root of the tree is upper bounded by O(log n). The reason is that
every light edge at least halves the size of the subtree and the number of nodes in the tree is upper
bounded by n. Since every two light edges on the path are separated by one spine, the number of
different spines on the path from the node u to the root is also upper bounded by O(log n).

With our definition of a spine set up, we now proceed to our main result of this section.

5

Theorem 4. Given a vector x and an integer k ≥ 1, we can find a subtree Ω ∈ Tk such that

‖xΩ‖1 ≤ (1 + ε) · ‖xΩ∗k
‖1

where
Ω∗k = arg min

Ω′∈Tk
‖xΩ′‖1 .

Moreover, the algorithm runs in time O(n
ε3
· log9 n · log3 xmax).

Proof. For a tree x of size n ≥ 0, we define the tail tree sparsity vector to be the vector(
‖xΩ∗0

‖1, ‖xΩ∗1
‖1, . . . , ‖xΩ∗n

‖1
)T
∈ Nn+1.

To simplify the exposition, in this section we will skip the word “tail”.
We will recursively compute approximate tree sparsity vectors for all subtrees rooted at the

special nodes of the tree x. As we compute these approximations, the sizes of the subtrees become
smaller and the lengths of the corresponding approximate sparsity vectors (the number of entries
in the vectors) also become smaller. To compute the approximate sparsity vector for a special note
u, we need to know the approximate sparsity vectors for all special nodes in the subtree rooted at
u. Without loss of generality, we assume that for every leaf l, we have xl > 0.

Our recursive algorithm works as follows.

• For an integer l ≥ 1, let p1, p2, . . . , pl be the spine that starts at the root p1 of the tree x and
ends in the leaf pl of the tree. For simplicity, we renumber vertices of the tree x so that the
spine consists of vertices 1, . . . , l in this order (1 is the root of the tree and l is the leaf).

• For i = 1, . . . , l − 1, the node i has i + 1 as a child. Let xi denote the subtree rooted at the
other child node (recall that x is a binary tree). Let ni ≥ 0 denote the size of the subtree xi.
Note that ni can be zero if node i has only one child, i.e., the node i + 1. For simplicity of
exposition, let xl be an empty tree of size nl := 0. It corresponds to a child of leaf l. Since
leaf l has no children, xl is of size 0. Let

si :=
(
si0, s

i
1, s

i
2, . . . , s

i
ni

)T ∈ Nni+1

be the approximate sparsity vector for the subtree xi computed recursively. We assume that
si is an approximate sparsity vector in the following sense. Let ŝi be the (exact) sparsity
vector for the subtree xi. Then ŝij ≤ sij ≤ (1 + δ)ŝij for some δ > 0 and for all j = 0, 1, . . . , ni.

• For a node i = 1, . . . , l, let wi denote the total weight of the subtree rooted at i. We define
a set L as follows. Initially L = {l}. We set lmin = l. While lmin > 1, choose the smallest
l′ ≥ 1 such that wl′+1 ≤ (1 + δ′)wlmin

for some δ′ > 0 that we will choose later. Then we add
l′ to L, set lmin = l′, and repeat. We note that the size of the set L is upper bounded by
|L| ≤ log1+δ′(nxmax) ≤ O(log(nxmax)/δ′).

We need the set L for the following reason: We want to approximate the sparsity vector for
the tree x. Fix an arbitrary sparsity t ≥ 1 that we want to approximate. The optimal tree will
pick a number l′′ ≥ 1 of nodes from the spine and rooted subtrees from the trees x1, . . . , xl

′′ .
The main idea is that l′′ is as good as l′′′ for some l′′′ ∈ L up to a factor (1 + δ′). That is, we

6

can assume that l′′ ∈ L and we loose at most a factor of (1 + δ′) in the approximation ratio
(we make this precise in the analysis below). This implies that it is sufficient to compute the
sparsity vectors for all different l′′ ∈ L, i.e., assuming that we have to pick the first l′′ nodes
from the spine. In particular, we do not require to compute sparsity vectors for all values in
[l], which leads to an important speed-up and enables our algorithm to run in nearly-linear
time. To get an approximation for sparsity t, we take the minimum tail (for sparsity t) that
we achieve over all the computed sparsity vectors for different l′′ ∈ L.

• For every l′′ ∈ L, we compute a sparsity vector rl′′ ∈ Nn+1. Let t be the sparsity that we want
to approximate. We want to pick up the first l′′ nodes from the spine. We also have to pick
up t− l′′ nodes from the trees x1, . . . , xl

′′ . Therefore, we set

rl
′′
t := x1 + . . .+ xl′′+

min
m1,...,ml′′≥0

s.t. m1+...+ml′′=t−l′′

(
s1
m1

+ . . .+ sl
′′
ml′′

)
.

It remains to approximately compute min
(
s1
m1

+ . . .+ sl
′′
ml′′

)
. This is exactly the problem

stated in Theorem 2.2. We run the corresponding algorithm with approximation factor (1+δ′).
The approximate sparsity vector r ∈ Nn+1 for the tree x is then computed as rt := minl′′∈L r

l′′
t

for all t = 0, 1, . . . , n.

Correctness of the algorithm There are three sources of error in one recursive call of the al-
gorithm. First, we do not have the exact sparsity vectors for the subtrees xi. Instead, we have
(1 + δ)-approximate sparsity vectors. This introduces 1 + δ multiplicative error in our approxima-
tion of the sparsity vector for the tree x. Second, we will show below that working with the prefixes
of the spine of length l′′ ∈ L introduces a multiplicative error of (1 + δ′). Finally, since we perform
an approximate (min,+)-convolution in the final step of the recursive call, we get additional multi-
plicative error of (1 + δ′). Therefore, the multiplicative step gives an approximate sparsity vector
for the tree x with error (1 + δ)(1 + δ′)2. From Definition 2, we know that the number of different
spines on any path to the root is upper bounded by O(log n). This implies that the recursive depth
of the algorithm is O(log n), which leads to a final approximation error of (1 + δ′)O(logn). Choosing
δ′ = Θ

(
ε

logn

)
gives the promised (1 + ε) approximation factor.

It remains to show that working with the prefixes of the spine of length l′′ ∈ L introduces a
multiplicative error of at most (1 + δ′). Fix an arbitrary sparsity t = 0, . . . , n. Let l′ be the number
of nodes from the spine that an optimal subtree (with the smallest possible tail error) of size t picks
up. We assume that l′ 6∈ L since otherwise we compute an exact (sub-)solution. We have that
l′′1 < l′ < l′′2 for some l′′1 , l′′2 ∈ L with wl′′1 +1 ≤ (1 + δ′)wl′′2 by the construction of the set L. Let Ω∗ be
the support of the optimal subtree (Ω∗ picks up l′ nodes from the spine). Since l′ < l′′2 , we have

wl′′2 ≤ ‖xΩ∗‖1. (2)

Let Ωt be Ω∗ but with all the nodes from the subtree rooted at l′′1 + 1 removed from it. Then Ωt

picks up l′′1 nodes from the spine as required. We have to show that we did not increase the tail
too much by removing vertices from the support Ω∗ to get the support Ωt. To this end, we observe

7

that we increased the tail by at most wl′′1 +1 − wl′′2 , and therefore:

‖xΩt
‖1 ≤ ‖xΩ∗‖1 + wl′′1 +1 − wl′′2
≤ ‖xΩ∗‖1 + δ′wl′′2
≤ (1 + δ′)‖xΩ∗‖1,

where we use (2) in the last inequality.

The runtime of the algorithm There are S1 := O(log n) levels of recursion in the algorithm.
In each level, we perform |L| ≤ O(log(nxmax)/δ′) =: S2 approximate (min,+)-convolutions between
multiple sequences with approximation factor (1 + δ′). From Theorem 2.2, we know that one
(min,+)-convolution takes S3 := O

(
n
δ′2 · log4 n · log2 xmax

)
time. Since we chose δ′ =

(
ε

logn

)
, we

get the final runtime stated in the theorem:

S1 · S2 · S3 ≤ O
(n
ε3
· log9 n · log3 xmax

)

4 1 + ε head approximation in nearly linear time

In this section, we prove the following theorem.

Theorem 5. Given a vector x and an integer k ≥ 1, we can find a subtree Ω ∈ Tk such that

‖xΩ‖1 ≥ ‖xΩ∗k
‖1/(1 + ε)

where
Ω∗k = arg max

Ωk∈Tk
‖xΩk‖1 .

Moreover, the algorithm runs in time O(n
ε2
· log12 n · log2 xmax).

We solve the problem in two attempts. In the first attempt, we construct an algorithm that
runs in the required nearly-linear time but the approximation error is too large. This will allow us
to introduce ideas used in the second (and final) algorithm that achieves both the desired running
time and approximation factor.

4.1 First attempt to solve the problem

For a tree x of size n ≥ 0, we define the head tree sparsity vector to be the vector(
‖xΩ∗1

‖1, . . . , ‖xΩ∗n‖1
)T ∈ Nn.

Notice that this definition is different from the tail tree sparsity vector in Section 3. To simplify the
exposition, we omit the word “head”.

Our plan is to compute an approximation to the tree sparsity vector for every tree rooted at a
special node, i.e., for every tree rooted at the first node of every spine. Since the root of the tree is
a special node, this will also solve our original problem.

Similarly to the previous section, we perform this computation recursively.

8

• For an integer l ≥ 1, let p1, p2, . . . , pl be the spine that starts at the root p1 of the tree x and
ends in a leaf (pl) of the tree. To simplify notation, we renumber the vertices of the tree x so
that the spine consists of vertices 1, . . . , l in this order.

• For i = 1, . . . , l− 1, node i has child node i+ 1. Let xi denote the subtree rooted at the other
child node. Let ni ≥ 0 denote the size of the subtree xi. To simplify notation, let xl be an
empty tree of size nl := 0. It corresponds to a child of leaf l. Let

si :=
(
si1, s

i
2, . . . , s

i
ni

)T ∈ Nni

be the approximate sparsity vector for the subtree xi computed recursively. We assume that
si is a (1+δ)-approximate sparsity vector in the following sense. Let ŝi be the (exact) sparsity
vector for the subtree xi. Then ŝij/(1 + δ) ≤ sij ≤ ŝij for all j = 1, . . . , ni. We will determine
δ > 0 later.

• Let t = (t1, . . . , tm)T ∈ Nm be the approximate sparsity vector corresponding to a tree of
size m ≥ 0. We would like to represent t with much fewer than m entries so that we can
work with the sparsity vector faster. For this, we define the compressed sparsity vector C(t) ∈
Nlog1+δ′ (mxmax) as follows.5 For j = 0, . . . , log1+δ′(mxmax) − 1, we set C(t)j to the minimum
j′ ≥ 1 such that tj′ ≥ (1 + δ′)j . Notice that the sparsity vector is non-decreasing (that is,
tk ≤ tk+1 for every k = 1, . . . ,m−1). Intuitively, C(t) stores the indices of the sparsity vector
t where the value changes by a lot, i.e., by at least a factor of 1+δ′. We decreased the number
of entries from m to log1+δ′(mxmax) ≤ O(log(mxmax)/δ′) by using C(t) instead of t. Note
that, given C(t), we can recover vector r = (r1, . . . , rm)T ∈ Nm such that tj/(1 + δ′) ≤ rj ≤ tj
for every j ∈ [m]. We do this as follows: we set rj := maxj′:C(t)j′≤j(1 + δ′)j

′ for every j ∈ [m].

• For every i ∈ 1 . . . l, we compute the compressed sparsity vector C(si) corresponding to the
subtree xi. Then, for every i = l, l − 1, . . . , 1 (in this order), we compute the compressed
sparsity vector ci for the tree rooted at node i. To compute ci we need C(si) and ci−1. Given
C(si) and ci−1, we can first compute approximate sparsity vectors corresponding to the tree xi

and to the tree rooted at node i−1 as described in the definition of compressed sparsity vectors
above. Then we could use (max,+)-convolution to compute the approximate sparsity pattern
for the tree rooted at node i from which we can obtain ci. However, the time complexity of
this approach is too large. Instead, given ci−1 and C(si), we can compute ci directly in time
O(log2(nxmax)/δ′2). We give more details below.

We output c1, which is the compressed sparsity vector corresponding to the input tree x.

Why this approach does not quite work Consider the stage of the algorithm when we are
given compressed sparsity vectors ci−1 and C(si) and we compute ci for some fixed i = 1, . . . , l. To
compute ci, we can (implicitly) compute an approximate sparsity vector a corresponding to ci−1

and an approximate sparsity vector b corresponding to C(si) as described in the definition of the
compressed sparsity vectors. The vectors a and b consists of at most O(log(nxmax)/δ′) different
entries. It is not hard to see that the approximate sparsity vector for the tree rooted at node i
consists of at most O(log2(nxmax)/δ′2) different values (it is essentially a (max,+)-product of a
and b). We obtain ci from the resulting approximate sparsity vector as in the definition of the

5We will choose δ′ > 0 later. xmax upper bounds the maximum value in the vector t.

9

compressed sparsity vectors. Again, it is easy to check that this can be done implicitly in the
stated runtime. As observed in the definition, the step of obtaining the compressed sparsity vector
ci introduces a 1 + δ′ multiplicative error because we round the values of the vector to an integer
power of 1 + δ′. Since we compute l compressed sparsity vectors cl, cl−1, . . . , c1, the total error that
we collect is (1 + δ′)l. Since we want the final error to be small (at most 1 + ε), and l can be large
(as large as Ω(n)), we have to choose δ′ = O(1/n). This is prohibitively small because even the size
of the compressed sparsity vectors becomes Ω(n).

4.2 Second attempt to solve the problem

In our first attempt, we constructed an algorithm in which we had to choose δ′ to be too very small.
In this section, we change the algorithm in a way that will allow us to pick δ′ to be much larger. The
resulting algorithm then runs in the promised time complexity and achieves a 1 + ε approximation.
The algorithm stays the same as in attempt one, except for the last (fourth) step. We now describe
how to modify this last step.

W.l.o.g. we assume that l is an integer power of 2. We can do that since otherwise we can add
l − 2jbl/2jc nodes to the spine with the corresponding values equal to 0. For every integer j ≥ 0
such that 2j ≤ l, we split the nodes 1, 2, . . . , l on the spine into l/2j groups, each containing 2j

nodes. For y = 1, . . . , l/2j , the y-th group consists of 2j nodes (y − 1)2j + 1, (y − 1)2j + 2, . . . , y2j .
For a fixed j ≥ 0 and for a fixed group y, we want to compute an approximate sparsity vector rj,y

corresponding to subtrees in which we choose only nodes (y − 1)2j + 1, (y − 1)2j + 2, . . . , y2j from
the spine. Namely, we want to compute

rj,yt :=x(y−1)2j+1 + . . .+ xy2j

+ max
m1,...,m2j

≥0

s.t. m1+...+m
2j

=t−2j

(
s(y−1)2j+1
m1

+ . . .+ sy2j

m
2j

)
.

for all t = 0, 1, . . . , 2j +n(y−1)2j+1 +n(y−1)2j+2 + . . .+ny2j . To approximately compute the quantity

max
(
s

(y−1)2j+1
m1 + . . .+ sy2j

m
2j

)
, we run the algorithm from Theorem 2.2 with approximation factor

1 + δ′. Let nj,y := 2j + n(y−1)2j+1 + . . .+ ny2j . The runtime for (1 + δ′)-approximately computing
rj,y is

O

(
nj,y

δ′2
· log6 n · log2 xmax

)
by Theorem 2.2. When using Theorem 2.2 we note that the largest value in vectors si can be Ω(nW).
Since nj,1 + . . . + nj,l/2

j ≤ n, we get that the total runtime for computing the approximations r̂j,y

for all vectors rj,y is upper bounded by

O
(n
δ′2
· log7 n · log2 xmax

)
. (3)

Now we will describe how to use the vectors r̂j,y to get an approximation to the sparsity vector
of the tree x. We start with computing the compressed sparsity vectors C(r̂j,y) for all j and y.

For every i = 1, 2, . . . , l, we consider trees in which we choose nodes 1, 2, . . . , i from the spine and
we do not choose the node i+ 1. For such trees, we compute the compressed sparsity vector vi. We
want to use at most O(log n) compressed sparsity vectors C(r̂j0,y0), C(r̂j1,y1), C(r̂j2,y2), C(r̂j3,y3), . . .
to compute vi. We choose the pairs jp, yp according to the binary expansion of i: we choose different

10

integers jp such that i = 2j0+2j1+2j2+2j3+. . .. We also choose the groups yp so that different groups
do not share nodes and together the groups cover all elements 1, 2, . . . , i from the spine. To compute
vi, we could compute the (max,+)-convolution of the vectors r̂j0,y0 , r̂j1,y1 , r̂j2,y2 , . . . from which we
can obtain the compressed vector vi. However, this would take too much time. Instead, we observed
in our previous attempt that we can compute vi directly from the compressed vectors C(rjp,yp).
Thus, the compressed sparsity vector vi can be computed in time O(log n · log2(nxmax)/δ′2).

Now we have l compressed sparsity vectors v1, v2, . . . , vl. To compute the sparsity vector for
the tree x we could do the following: get sparsity vectors corresponding to vectors v1, v2, . . . , vl

and compute entry-wise minimum of the l vectors. This has too large time complexity and instead
we compute the answer by computing the entry-wise minimum without explicitly computing the
sparsity vectors. More precisely, let v′ ∈ Nn be a vector consisting of only +∞ initially. For every
i ∈ [l] and for every entry vij , we set v′

vij
to be equal to min(v′

vij
, j). We set z = 1. For every

j = 1, . . . , n in this order, we set vj := (1 + δ′)z and, if v′j 6= +∞, we update z = max(z, v′j). We
output v as the sparsity vector for the tree x.

The approximation factor of the algorithm We assume that the vectors si (that we compute
recursively) are (1 + δ)-approximations to the exact sparsity vectors. We compute the vectors r̂j,y

that introduce another 1 + δ′ multiplicative error in the approximation. We then get compressed
sparsity vectors C(r̂j,y), which gives another multiplicative error factor 1+ δ′. To compute every vi,
we need to compute a (max,+)-convolution between compressed sparsity vectors O(log n) times,
which gives (1 + δ′)O(logn) error. The total error from the recursive call is bounded by

(1 + δ) · (1 + δ′) · (1 + δ′) · (1 + δ′)O(logn)

= (1 + δ) · (1 + δ′)O(logn) .

Since the depth of the recursion is O(log n) (from the definition of the heavy-light decomposition),
the error of the algorithm is (1+ δ′)O(log2 n). To make it smaller than 1+ε, we set δ′ = Θ(ε/ log2 n).

The runtime of the algorithm The runtime of the recursive step is dominated by computing
the vectors r̂j,y. Plugging δ′ = Θ(ε/ log2 n) into (3), we get that the runtime of the recursive step
is O(n

ε2
· log11 n · log2 xmax). Since the depth of the recursion of the algorithm is O(log n), the final

runtime is O(n
ε2
· log12 n · log2 xmax).

Acknowledgments

This work was supported in part by an IBM PhD Fellowship, a Google PhD Fellowship, the NSF,
MADALGO, and the Simons Foundation. Some of the work was performed while Ludwig Schmidt
was a visiting student at UC Berkeley and then an intern in the Google Brain team.

We would like to thank Amir Abboud for very helpful comments regarding the complexity of
(max,+)-convolution.

References

[Abb16] Amir Abboud. personal communication, 2016.

11

[AGW15] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equiv-
alences between graph centrality problems, APSP and diameter. In Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1681–
1697. SIAM, 2015.

[AVWY15] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles
and basing hardness on an extremely popular conjecture. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, pages 41–50. ACM,
2015.

[AW14] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong
lower bounds for dynamic problems. In Foundations of Computer Science (FOCS),
2014 IEEE 55th Annual Symposium on, pages 434–443. IEEE, 2014.

[BB94] Marko Bohanec and Ivan Bratko. Trading accuracy for simplicity in decision trees.
Machine Learning, 15(3):223–250, 1994.

[BCD+06] David Bremner, Timothy M Chan, Erik D Demaine, Jeff Erickson, Ferran Hurtado,
John Iacono, Stefan Langerman, and Perouz Taslakian. Necklaces, convolutions, and
x+ y. In Algorithms–ESA 2006, pages 160–171. Springer, 2006.

[BCDH10] Richard G. Baraniuk, Volkan Cevher, Marco F. Duarte, and Chinmay Hegde. Model-
based compressive sensing. IEEE Transactions on Information Theory, 56(4):1982–
2001, 2010.

[BDT16] Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight Hardness Results for
Maximum Weight Rectangles. In International Colloquium on Automata, Languages,
and Programming, 2016.

[BJ93] Richard G. Baraniuk and Douglas L. Jones. A signal-dependent time-frequency repre-
sentation: optimal kernel design. IEEE Transactions on Signal Processing, 41(4):1589–
1602, 1993.

[CL15] Timothy M Chan and Moshe Lewenstein. Clustered integer 3sum via additive combi-
natorics. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, pages 31–40. ACM, 2015.

[CT13] Coralia Cartis and Andrew Thompson. An exact tree projection algorithm for wavelets.
IEEE Signal Processing Letters, 20(11):1026–1029, 2013.

[Don97] David L. Donoho. Cart and best-ortho-basis: a connection. Annals of Statistics,
25(5):1870–1911, 1997.

[HIS14a] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. A fast approximation algorithm
for tree-sparse recovery. In IEEE International Symposium on Information Theory
(ISIT), pages 1842–1846, 2014.

[HIS14b] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. Nearly linear-time model-based
compressive sensing. In Automata, Languages, and Programming (ICALP), volume
8572 of Lecture Notes in Computer Science, pages 588–599. 2014.

12

[HIS15a] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. Approximation algorithms
for model-based compressive sensing. IEEE Transactions on Information Theory,
61(9):5129–5147, 2015. Conference version appeard in the Proceedings of the 25th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2014).

[HIS15b] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. Fast algorithms for structured
sparsity. Bulletin of EATCS, 3(117), 2015.

[HIS15c] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. A nearly-linear time framework for
graph-structured sparsity. In Proceedings of the 32nd International Conference on Ma-
chine Learning (ICML), pages 928–937. JMLR Workshop and Conference Proceedings,
2015.

[LZ93] D Lozovanu and A Zelikovsky. Minimal and bounded tree problems. Tezele Congresului
XVIII al Academiei Romano-Americane, pages 25–26, 1993.

[NvLvdZ12] Jesper Nederlof, Erik Jan van Leeuwen, and Ruben van der Zwaan. Reducing a target
interval to a few exact queries. In International Symposium on Mathematical Founda-
tions of Computer Science, pages 718–727. Springer, 2012.

[PS16] Julianus Pfeuffer and Oliver Serang. A bounded p-norm approximation of max-
convolution for sub-quadratic bayesian inference on additive factors. Journal of Ma-
chine Learning Research, 17(36):1–39, 2016.

[RSM+96] Ramamurthy Ravi, Ravi Sundaram, Madhav V Marathe, Daniel J Rosenkrantz, and
Sekharipuram S Ravi. Spanning trees-short or small. SIAM Journal on Discrete
Mathematics, 9(2):178–200, 1996.

[RZ04] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In Algorithms–ESA
2004, pages 580–591. Springer, 2004.

[Ser15] Oliver Serang. Fast computation on semirings isomorphic to (×,max) on R+. arXiv
preprint arXiv:1511.05690, 2015.

[ST83] Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic trees. Journal
of Computer and System Sciences, 26(3):362–391, 1983.

[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between
path, matrix and triangle problems. In Foundations of Computer Science (FOCS),
2010 51st Annual IEEE Symposium on, pages 645–654. IEEE, 2010.

[WW13] Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting
weighted subgraphs. SIAM Journal on Computing, 42(3):831–854, 2013.

[Zwi98] Uri Zwick. All pairs shortest paths in weighted directed graphs-exact and almost
exact algorithms. In Foundations of Computer Science, 1998. Proceedings. 39th Annual
Symposium on, pages 310–319. IEEE, 1998.

13

A (max,+)-Convolution hardness for the tree sparsity problem

In this section is we provide an evidence that the exact tree sparsity requires nearly quadratic time.
Recall that, given a binary node-weighted tree x of size m, we want to output the largest sum of
weights of nodes of x that we can pick up by choosing a rooted subtree of x of size k ≤ m. The
best known algorithm for this problem runs in time Θ(m2) (see Section D). In this section we show
that this problem cannot be solved in a strongly subquadratic time unless the (max,+)-convolution
problem can be solved in a strongly subquadratic time. This is a well studied problem [BCD+06,
CL15] which is known to be at least as hard as the polyhedral 3SUM problem6 [BCD+06].

Theorem 6. Let x be a binary node-weighted tree of size m. If (max,+)convolution cannot be
computed in m2−Ω(1) time, then the sparsity cannot be computed in m2−Ω(1) time either.

Proof. Follows from Theorems 10 and 14 below.

Definition 7 (SUM1 problem). Given three vectors A,B,C ∈ Zn, output

{k | ∃i, j : k = i+ j and Ai +Bj + Ck ≥ 0} .

Definition 8 (SUM2 problem). Given three vectors A,B,C ∈ Zn, output t = 0, . . . , n−1 such that

t ∈ {k | ∃i, j : k = i+ j and Ai +Bj + Ck ≥ 0}

or report that there is no such an integer.

Definition 9 (SUM3 problem). Given three vectors A,B,C ∈ Zn, decide if the following statement
is true:

∃i, j : Ai +Bj + Ci+j ≥ 0.

If (max,+)-Convolution problem can be solved in strongly subquadratic time, so can SUM3

problem. We will show the opposite direction - if SUM3 problem can be solved in strongly sub-
quadratic time, then (max,+)-Convolution problem can be solved in strongly subquadratic time.
We show this by reducing (max,+)-Convolution problem to SUM1 problem, SUM1 problem to
SUM2 problem, SUM2 problem to SUM3 problem. Our proof of the following theorem uses the
approach from [WW10] (see Sections 4.2 and 8).

Theorem 10. If SUM3 problem can be solved in a strongly subquadratic time, then (max,+)-
Convolution can be solved in a strongly subquadratic time.

Proof. Follows from Lemmas 11, 12 and 13 below.

It can be shown that SUM3 problem is no harder than the 3SUM problem (given a set of
integers, decide if it contains three integers that sum up to 0) [Abb16]. This can be done using
the techniques from [NvLvdZ12] and [WW13] (see Theorem 3.3). This together with Theorem 10
implies that (max,+)-convolution problem is no harder than the 3SUM problem (up to a factor
that is logarithmic in the largest absolute value of an integer in the input).

6Given three vectors A = (A0, . . . , An−1)
T , B = (B0, . . . , Bn−1)

T , and C = (C0, . . . , Cn−1)
T , such that Ai+Bj ≤

Ci+j for all 0 ≤ i, j < n, decide whether Ai + Bj = Ci+j for any 0 ≤ i, j < n. No strongly subquadratic time
algorithm is known for this problem.

14

Lemma 11. Let A,B ∈ Zn be input for (max,+)-Convolution problem. Let W be the largest
absolute value of an integer appearing in vector A or B. If SUM1 can be solved in time O(n2−ε),
then (max,+)-Convolution can be solved in O(n2−ε · logW) time.

Proof. To solve (max,+)-Convolution, we perform O(logW) steps of binary search for all indices
in parallel.

We define two vectors Lk = −10W and Hk = 10W for all k = 0, . . . , n − 1. We perform the
following sequence of steps 100 · logW times:

1. Set A′ ← A, B′ ← B and C ′k ← −
⌊
Lk+Hk

2

⌋
for all k = 0, . . . , n− 1.

2. Run the algorithm for SUM1 on vectors A′, B′ and C ′. Let R be the output set.

3. For every k = 0, . . . , n − 1, consider two cases. If k ∈ R, then update Lk ←
⌊
Lk+Hk

2

⌋
. If

k 6∈ R, then update Hk ←
⌊
Lk+Hk

2

⌋
.

Let C be the output of (max,+)-Convolution instance that we need to output. During the
execution of the algorithm above, we always maintain property that Lk ≤ Ck < Hk for all k =
0, . . . , n− 1. After 100 · logW iterations, we have Lk = Hk − 1. This implies that Lk = Ck for all
k = 0, . . . , n− 1. Therefore, we output Lk as the answer.

Lemma 12. If SUM2 can be solved in time O(n2−ε), then SUM1 can be solved in time O(n2−(ε/2)).

Proof. The idea is to run the algorithm for SUM2 problem to find element t of interest, remove
Ct from vector C and repeat until we found all elements that need to be reported. To achieve the
stated runtime, we split both vectors A and B in

√
n vectors each having

√
n entries. Then we

run the algorithm for SUM2 for each pair of shorter vectors at least once. Below we provide more
details.

Let A = (A0, . . . , An−1)T , B = (B0, . . . , Bn−1)T and C = (C0, . . . , Cn−1)T be the input vectors
for SUM1 problem. Let W be the largest absolute value of an integer in vector A or B. Let
T = ∅ be the set that the algorithm will output. Initially the set is empty set. Let a be parameter
that we will set later (we will set a = 1/2). For each pair of integer (i′, j′), i′ = 0, . . . , n1−a − 1,
j′ = 0, . . . , n1−a − 1, we perform the following sequence of steps (in total, we do the sequence of
steps n2−2a times).

1. For i = 0, . . . , na − 1, we set A′i = A(i′·na)+i. For i = na, . . . , 2na − 2, set A′i = −10W .

2. For j = 0, . . . , na − 1, we set B′j = A(j′·na)+j . For j = na, . . . , 2na − 2, set B′j = −10W .

3. For k = 0, . . . , 2na − 2, we set C ′k = C((i′+j′)·na)+k.

4. Run the algorithm for SUM2 problem on vectors A′, B′ and C ′. If the algorithm outputs an
integer t, add integer t to set T and set Ct = −10W , and go to Step 1.

The correctness of the algorithm follows from its description. It remains to analyse its runtime.
Suppose that the algorithm for SUM2 runs in time O(n2−ε). Since the length of vectors A′, B′ and
C ′ is O(na), every invocation of SUM2 algorithm takes S1 := O(na(2−ε)) time. We run algorithm
for SUM2 for every tuple (i′, j′). The number of tuples is S2 := O(n2−2a). In Step 4 we might need

15

to reiterate execution of the sequence of steps if we received some integer t. However, notice that no
integer t can be reported twice by the definition of SUM2 problem and because we set Ct = −10W .
Therefore, the number of times we might need to reiterate the sequence of steps, is upper bounded
by S3 := n. Thus, the total runtime is upper bounded by

O(S1 · S2 + S1 · S3) = O
(
na(2−ε) · n2−2a + na(2−ε) · n

)
.

By setting a = 1/2, we get that the runtime is upper bounded by O(n2−(ε/2)), as required.

Lemma 13. If SUM3 problem can be solved in time O(n2−ε), then SUM2 problem can be solved
in time O(n2−ε · log n).

Proof. This follows by binary search.

Theorem 14. If tree sparsity can be solved in strongly subquadratic time, then SUM3 problem can
be solved in a strongly subquadratic time as well.

Proof. Let A,B,C ∈ Zn be the input to the SUM3 problem. Let W be equal to 10 times the
largest absolute value of an entry in A,B,C. Consider A ∈ Zn. We first construct a path pA of
n nodes such that the weight of the first node is 11W + A0 and the weight of the i-th nodes is
W + Ai−1 − Ai−2 for i = 2, . . . , n. pB is constructed in the same way. Finally, we construct a
path pC such that the weight of the first node is 11W + Cn−1 and the weight of the i-th nodes is
W + Cn−i − Cn−i+1 for i = 2, . . . , n. We then build the tree x as follows. The root of the tree is
equal to the first node of pA. The left child of the root is equal to the second node of pA. The right
child of the root is equal to the first node of pB. (call it v). The left child of v is equal to the second
node of pB. Finally, the right child of v is equal to the first node of pC . We set m to be the size of
the tree (which is 3n), and set k to be equal to n+ 2. Observe that

max
Ω∈Tk

‖xΩ‖1 ≥ (2 + n)W + 30W

iff there are i, j ∈ {0, 1, . . . , n− 1} such that Ai +Bj + Ci+j ≥ 0.
To show the above inequality, let kA, kB, kC ≥ 1 be the number of nodes that we pick up from

paths pA, pB, pC , respectively, in the tree x in the optimal support Ω. kA, kB, kC are positive because
we assign very large weights to the first nodes of the paths. We have that kA+kB +kC = k = 2+n.
It is easy to verify that the contributions from paths pA, pB, pC are 10W + kAW + AkA−1, 10W +
kBW+BkB−1, 10W+kCW+Cn−kC , respectively. Since kA+kB+kC = 2+n, the total contribution
from the three paths is 30W + (2 + n)W +AkA−1 +BkB−1 + C(kA−1)+(kB−1), as required.

B Constant factor head approximation in nearly linear time

Before we give the main algorithm of this section, we setup some auxiliary sub-routines.

B.1 Subroutines

First, we state the following sub-routine which extracts a subtree of bounded size and proportional
“density” from a given tree. A similar sub-routine has appeared before in [HIS15c], but here we give
a variant that maintains exact sparsity.

16

Algorithm 1 Extracting a dense subtree.
1: function DenseSubtree(x,Ω, k′)
2: Let T be a tour through the nodes in Ω as they appear in a depth-first traversal.
3: Let I = (i1, . . . , i2|Ω|−1) be the node indices in order of the tour T .

4: Let x′j =

{
xij if position j is the first appearance of ij in I
0 otherwise

5: Let S = (ij , . . . , ij+k′−1) be a contiguous subsequence of I with 1
k′
∑j+k′−1

`=j x′` ≥
1

2|Ω|‖xΩ‖1.
6: return Ω′, the set of nodes in S.

Lemma 15. Let x ∈ Rn+ be a vector of node weights and let Ω be a subtree. Moreover, let k′ ∈ N be
the target sparsity. Then DenseSubtree(x,Ω, k′) returns a subtree Ω′ of size |Ω′| ≤ k′ such that

‖xΩ′‖1 ≥
k′

2|Ω|
‖xΩ‖1 .

Moreover, DenseSubtree runs in time O(|Ω|).

Proof. We use the notation set up in the algorithm DenseSubtree (see Algorithm 1). By a simple
averaging argument, we know that at least one contiguous length-k′ subsequence of I achieves at
least the density of the sequence I, which is

1

|I|

|I|∑
j=1

x′j >
1

2|Ω|

|I|∑
j=1

x′j =
1

2|Ω|
‖xΩ‖1 .

The second inequality follows from the definition of x′ (every node value in Ω appears exactly once
in the sum).

Therefore, Line 5 of the algorithm always succeeds and we find a subset Ω′ ⊆ Ω corresponding
to a subsequence S = (ij , . . . , ij+k′−1) such that

‖xΩ′‖1 =

j+k′−1∑
`=j

x′` ≥
k′

2|Ω|
‖xΩ‖1 .

Finally, we can find such a dense contiguous sequence in linear time by maintaining a sliding
window over the sequence I.

Moreover, we use the following sub-routine for solving the Lagrangian relaxation of the tree
sparsity problem [HIS14a].

Fact 16 ([HIS14a]). There is an algorithm SolveRelaxation with the following guarantee. Let
x ∈ Rn+ be a vector of node weights and let λ be the Lagrangian trade-off parameter. Then
SolveRelaxation(x, λ) returns a subtree Ω such that

‖xΩ‖1 − λ|Ω| ≥ max
Ω′∈T
‖xΩ′‖1 − λ|Ω

′| . (4)

Moreover, SolveRelaxation runs in time O(n).

17

Algorithm 2 Finding an unrooted head approximation.
1: function UnrootedHead(x, k, α)
2: xmax ← maxi∈[n] xi
3: λl ← xmax

2k
4: Ωl ← SolveRelaxation(x, λl)
5: if |Ωl| ≤ 2k then
6: return DenseSubtree(x,Ωl, αk)

7: λr ← 2‖x‖1
8: ε← xmax

4k
9: while λr − λl > ε do

10: λm ← λl+λr
2

11: Ωm ← SolveRelaxation(x, λm)
12: if |Ωm| > 2k then
13: λl ← λm
14: else
15: λr ← λm
16: Ωl ← SolveRelaxation(x, λl)
17: Ω′l ← DenseSubtree(x,Ωl, αk)
18: Ωr ← SolveRelaxation(x, λr)
19: Ω′r ← DenseSubtree(x,Ωr, αk)
20: if ‖Ω′l‖1 ≥ ‖Ω′r‖1 then
21: return Ω′l
22: else
23: return Ω′r

B.2 Unrooted head approximation

We now give an algorithm for finding an unrooted subtree that achieves a constant-factor head
approximation. While the resulting subtree is not connected to the root, we have sufficiently tight
control over the sparsity so that we can later post-process the subtree by connecting it to the root.

Theorem 17. Let x ∈ Rn+ be a vector of node weights, let k ∈ N be the target sparsity, and let
0 < α < 1 be a sparsity control parameter. Then UnrootedHead(x, k, α) returns a subtree Ω of
size |Ω| ≤ αk such that

‖xΩ‖1 ≥
α

16
max
Ω′∈Tk

‖xΩ′‖1 .

Moreover, UnrootedHead runs in time O(n log n).

Proof. We adopt the notation of Algorithm 2. Moreover, let Ω∗ be an optimal subtree of size k,
i.e., we have Ω∗ ∈ Tk and ‖xΩ∗‖1 = maxΩ′∈Tk‖xΩ′‖1.

There are three cases in which UnrootedHead returns a subtree: Lines 6, 21, and 23. We
consider these three cases separately. Note that in every case, the final subtree is the result of
a call to DenseSubtree with sparsity parameter αk. Hence the final subtree Ω returned by
UnrootedHead always satisfies |Ω| ≤ αk (see Lemma 15). It remains to show that the subtree Ω
also satisfies the desired head approximation guarantee.

18

Case 1: We start with Line 6. Substituting Ω∗ into the guarantee of SolveRelaxation (see
Fact 16), we get the following inequalities:

‖xΩl‖1 − λl|Ωl| ≥ max
Ω′∈T
‖xΩ′‖1 − λl|Ω

′| ≥ ‖xΩ∗‖1 − λlk

‖xΩl‖1 ≥ ‖xΩ∗‖1 − λl(k − |Ωl|) . (5)

Equation (5) and its variant for λr will become useful again later in the proof. Now, we substitute
λl = xmax

2k and get

‖xΩl‖1 ≥ ‖xΩ∗‖1 −
1

2
xmax .

Since we can assume that the sparsity k is at least the depth of the tree, a k-sparse rooted subtree
can always pick up the largest node weight xmax. So ‖xΩ∗‖1 ≥ xmax and hence ‖xΩl‖1 ≥

1
2‖xΩ∗‖1.

To complete this case, we invoke the guarantee of DenseSubtree (Lemma 15) to get

‖xΩ‖1 ≥
αk

2|Ωl|
‖xΩl‖1

≥ α

4
‖xΩl‖1

≥ α

8
‖xΩ∗‖1 .

Case 2: We now consider the case that the algorithm performs the binary search over λ and
returns in Line 21 or 23. Note that we initialize the binary search so that we always have |Ωl| > 2k
and |Ωr| ≤ 2k. Moreover, at the end of the binary search we also have λl ≤ λr ≤ λl + ε.

We now distinguish two sub-cases: in the first sub-case, we assume that the solution |Ωl| has a
good density ‖xΩl

‖1
|Ωl| , which implies that the subtree Ω′l is sufficiently good. In the complementary

case, we can then use the low density of Ωl to show that Ω′r is a good solution.

Sub-case 2a:
‖xΩl

‖1
|Ωl| ≥

1
4
‖xΩ∗‖1

k . Substituting this inequality into the guarantee provided by
DenseSubtree gives

‖xΩ′l
‖1 ≥

αk

2|Ωl|
‖xΩl‖1 ≥

α

8
‖xΩ∗‖1

as desired.

Sub-case 2b:
‖xΩl

‖1
|Ωl| < 1

4
‖xΩ∗‖1

k . We lower bound ‖xΩr‖1 via the guarantee provided by SolveRelaxation,
which we re-arrange as in Case 1 to get:

‖xΩr‖1 ≥ ‖xΩ∗‖1 − λr(k − |Ωr|)
≥ ‖xΩ∗‖1 − λrk . (6)

In order to control the RHS above, we need an upper bound on λr (note that |Ωr| can be less than
k). We establish this via an upper bound on λl and using that λl and λr are close at the end of the

19

binary search. Re-arranging Equation (5) gives:

λl ≤
‖xΩl‖1 − ‖xΩ∗‖1
|Ωl| − k

≤
‖xΩl‖1
|Ωl| − k

<
2‖xΩl‖1
|Ωl|

≤ 1

2

‖xΩ∗‖1
k

where we used |Ωl| > 2k and the low-density assumption for Ωl in this sub-case.
Substituting this upper bound and λr ≤ λl + ε back into Equation (6) gives

‖xΩr‖1 ≥ ‖xΩ∗‖1 −
1

2
‖xΩ∗‖1 − εk

≥ 1

4
‖xΩ∗‖1

where we used xmax ≤ ‖xΩ∗‖1 as in Case 1.
We now invoke the guarantee of DenseSubtree. As mentioned above, we maintain |Ωr| ≤ 2k

as an invariant in the binary search. Hence we get

‖xΩ′r‖1 ≥
αk

2|Ωr|
‖xΩr‖1 ≥

α

16
‖xΩ∗‖1 .

Finally, we prove the running time of UnrootedHead. Since both subroutines SolveRelax-
ation and DenseSubtree run in linear time, the overall time complexity is dominated by the
binary search. We can upper bound the number of iterations by the logarithm of

λr
ε

=
8k‖x‖1
xmax

≤ 8nk ≤ 8n2 ,

which implies the running time bound in the theorem.

B.3 Final head approximation algorithm

We now state our overall head approximation algorithm. The main idea is to invoke Unrooted-
Head form the previous subsection with a sufficiently small sparsity control parameter α so that
we can connect the resulting subtree to the root without violating our sparsity constraint.

Theorem 18. There is an algorithm HeadApprox with the following guarantee. Let x ∈ Rn+ be
a vector of node weights, let d be the depth of the tree, and let k ∈ N be the target sparsity. Then
HeadApprox returns a rooted subtree Ω of size |Ω| ≤ k such that

‖xΩ‖1 ≥
k − d
16k

max
Ω′∈Tk

‖xΩ′‖1 .

Moreover, HeadApprox runs in time O(n log n).

20

Proof. Let Ω′ be the subtree returned by UnrootedHead(x, k, k−dk). Hence Ω′ satisfies |Ω′| ≤ k−d
and

‖xΩ′‖1 ≥
k − d
16k

Next, let Ωp be the path from the root of the subtree Ω′ to the root of the overall tree. Since
the depth of the overall tree is d, we have |Ωp| ≤ d.

We now let Ω = Ω′ ∪ Ωp be the final subtree. Clearly, Ω is a rooted subtree and still satisfies
the same head approximation guarantee as Ω′. Moreover, we have |Ω| = |Ω′|+ |Ωp| ≤ d as desired.

The running time of HeadApprox follows directly from Theorem 17.

Corollary 19. Assume that the depth of the input tree is at most a constant fraction of the sparsity
k. Then HeadApprox is a constant-factor head-approximation algorithm with exact sparsity k.

B.4 A boosted algorithm

Prior work shows that it is possible to “boost” a head-approximation algorithm so that the ap-
proximation ratio improves arbitrarily close to one while only incurring a small increase in spar-
sity [HIS15a].

Fact 20 ([HIS15a]). Let Head be a head-approximation algorithm with approximation ratio cH
and output sparsity αk. Then BoostedHeadt is a head-approximation algorithm with approxima-
tion ratio c′H = 1 − (1 − cH)t and output sparsity tαk. Moreover, BoostedHead runs in time
O(t · THEAD), where THEAD is the time complexity of a single invocation of the algorithm Head.

We can invoke Fact 20 and our new head approximation algorithm to give a range of trade-offs
between sparsity increase and head-approximation ratio. It is worth noting that Fact 20 has only
a logarithmic dependence on the gap between cH and an exact head “approximation” with factor
1. For node weights x coming from a bounded range, this allows us to achieve an exact head (and
hence also tail) approximation with only logarithmic increase in sparsity. More precisely, we get the
following theorem, where we assume that the depth of the tree d is at most k/2 in order to simplify
the bounds.

Theorem 21. There is an algorithm BoostedHeadApprox with the following guarantee. Let
x ∈ Nn+ be a vector of node weights bounded as xi ≤ ∆, and let k ∈ N be the target sparsity. Then
BoostedHeadApprox(x, k) returns a rooted subtree Ω such that |Ω| ≤ 33k log 2k∆ and

‖xΩ‖1 ≥ max
Ω′∈Tk

‖xΩ′‖1 .

Moreover, BoostedHeadApprox runs in time O(n (log n) (log k∆)).

Proof. First, note that we can restrict our attention to trees with depth at most k. Any node that
has larger distance from the root cannot participate in the optimal solution due to the sparsity
constraint.

Next, we show that increasing our output sparsity by a constant factor allows us to get a
result independent of the depth of the tree (this is in contrast to Theorem 18 and Corollary 19).
We can construct an algorithm HeadApprox’ that achieves a head approximation ratio of 1

32 by
invoking UnrootedHead from Theorem 17 with parameter α = 1

2 . We ensure that the output is
an unrooted tree by connecting it to the root. This increases the sparsity by at most the depth,

21

which we just bounded by k. Hence the total sparsity of the output is αk + k = 3
2α. Moreover,

HeadApprox’ runs in time O(n log n).
We now boost our new head approximation algorithm HeadApprox’. Rearranging the guar-

antee in Fact 20 shows that

t =
log 1

ε

log 1
1−cH

≤ 22 log
1

ε

suffices for a boosted head approximation ratio of c′H = 1− ε.
Since we have integer node weights, the gap between an optimal head approximation and the

second-best possible head approximation is at least 1. Moreover, the total weight of an optimal
k-sparse subtree is at most k∆. Hence it suffices to set ε = 1

2k∆ in order to guarantee that a (1−ε)-
head approximation is exact. As a result, invoking BoostedHead with t = 22 log 2k∆ produces a
subtree Ω with the desired properties.

Each iteration of BoostedHead invokes HeadApprox’ once. So the running time of HeadAp-
prox’ (see Theorem 18) and our bound on t imply the running time bound of the theorem.

C Approximating (max,+) and (min,+)-convolutions

C.1 Approximating (max,+) and (min,+)-convolutions between two sequences

Let A,B ∈ Nn be two integer vectors with positive entries. Let W be the largest value of an entry
in A or B. Let C ∈ Nn be the (max,+)-convolution of A and B. We can output a vector C ′ ∈ Nn
such that C ′k ≤ Ck ≤ (1 + ε)C ′k for all k = 0, . . . , n− 1 in time

O
(n
ε2
· log n · log2W

)
.

An analogous statement holds if C is the (min,+)-convolution of A and B. We can output a
vector C ′ ∈ Nn such that C ′k ≤ Ck ≤ (1 + ε)C ′k for all k = 0, . . . , n− 1 in the same runtime.

Proof. Given a vector D ∈ Nn with positive entries and an integer i ≥ 0, we define a binary vector
χ(D, i):

χ(D, i)k :=

{
1 if (1 + ε)i ≤ Dk < (1 + ε)i+1,

0 otherwise.

For all pairs of integers 0 ≤ i, j ≤ log1+εW , define vector χi,j := χ(A, i) ∗ χ(B, j). Computing all
vectors χi,j takes total time

O
(
(log2

1+εW) · n log n
)
.

Finally, we set
C ′k := max

0≤i,j≤log1+εW
s.t. (χi,j)k=1

(1 + ε)i + (1 + ε)j (7)

for all k = 0, . . . , n− 1. The runtime and the correctness follows from the description.
The proof for (min,+) convolution is analogous.

22

C.2 Approximating (max,+) and (min,+)-convolutions between multiple sequences

Let A1 ∈ Nn1 , . . . , Al ∈ Nnl be l ≥ 2 vectors with positive entries. We assume that the entries of the
vectors are indexed starting with 0, i.e., Ai =

(
Ai0, . . . , A

i
ni−1

)T for every i = 1, . . . , l. Let B ∈ Nn,
n = n1 + . . .+ nl be the (min,+)-convolution between the l vectors A1, . . . , Anl defined as follows:

Bj = min
m1+...+ml=j

s.t. 0≤mt≤nt−1 ∀t=1,...,l

(
A1
m1

+ . . .+Alml

)
for every j = 0, . . . , n− 1. We can output a vector B′ ∈ Nn such that B′k ≤ Bk ≤ (1 + ε)B′k for all
k = 0, . . . , n− 1 in time

O
(n
ε2
· log n · log2W · log3 l

)
,

where W denotes the largest entry in the vectors A1, . . . , Al.
An analogous statement holds for (max,+)-convolution (we replace min in the equation for Bj

with max). The runtime stays the same and we output a vector B′ ∈ Nn such that B′k ≤ Bk ≤
(1 + ε)B′k for all k = 0, . . . , n− 1.

Proof. We repeatedly use the fast algorithm for approximately computing (min,+)-convolution. Let
B′′ be the (min,+)-convolution between the vectorsA1, . . . , Abl/2c and letB′′′ be the (min,+)convolution
between the vectors Abl/2c+1, . . . , Al. Then B is the (min,+)convolution between the two vectors
B′′ and B′′′. This gives a natural recursive algorithm for computing B′: recursively approximate
B′′ and B′′′ and use the approximation algorithm from Theorem 2.2 to compute get B′. If B′′ and
B′′′ are approximated within factor (1 + ε′) and we set approximation factor to be (1 + ε′′) in the
algorithm from Theorem 2.2, we get (1 + ε′)(1 + ε′′) approximation factor for B′. Since the depth
of the recursion is log2 l, we get that the final approximation factor of B is (1 + ε′′)log2 l. Setting
ε′′ := O

(
ε

log l

)
gives the required approximation factor for B′. Since the number of the recursion

levels is O(log l) and every level takes O
(
n
ε′′2 · log n · log2W

)
, we get the required runtime.

The proof for (max,+) is analogous.

D Tree Sparsity in time O(kn) on unbalanced trees

Theorem 22. Given a binary tree of size n and an integer k, we can solve the Tree Sparsity problem
in time O(n2).

Proof. We show this inductively.
Consider the recursive algorithm for solving the Tree Sparsity problem. Consider a tree with

the left subtree is of size L and the right subtree is of size R. The size of the tree is 1 + L + R.
For some constant C we can compute the sparsity vector of size L + 1 for the left subtree in time
C ·L2 and the sparsity vector of size R+ 1 for the right subtree in time C ·R2. These two sparsity
vectors can be combined to get the sparsity vector for the root. As can be easily verified, combining
the sparsity vectors takes time C ′ · LR for some constant C ′. Thus, overall time to compute the
sparsity vector for the root is

C · L2 + C ·R2 + C ′ · LR ≤ C · (1 + L+R)2

if C ≥ C ′ as required.

23

Theorem 23. Given a binary tree of size n and an integer k, we can solve the Tree Sparsity problem
in time O(kn).

Proof. We observe that for every node we need to compute k + 1 entries of the sparsity vector.
Consider the original tree. A node it heavy if both left and the right subtrees are of size ≥ k. If

both subtrees are of size < k, the node is light. Otherwise, the node is average.
The runtime corresponding to heavy, average and light vertices can be analyzed as follows.

• A simple counting reveals that the total number of heavy nodes is O(n/k). The total run-
time corresponding to the heavy nodes is O(n/k) · O(k2) = O(nk), where O(k2) comes from
combining two sparsity vectors of size k + 1.

• Consider an average node u. The runtime corresponding to it is upper bounded by O(nuk)
where nu is the size of the subtree of u. This is because one sparsity vector is of size nu + 1
and the other is of size k + 1. The total runtime corresponding to the average nodes is∑

uO(nuk) = O(nk), where the summation is over all average nodes.

• Consider a light node u whose parent is average or heavy. Let su be the size of the tree
rooted at u. The runtime corresponding to this tree is O(s2

u) by Theorem 22. The total
runtime corresponding to the light nodes is upper bounded by

∑
uO(s2

u) = O(nk) where the
summation is over all light nodes whose parents are heavy or average. The inequality follows
because

∑
u su = O(n) and su = O(k) for all such nodes u.

24

	Introduction
	Preliminaries
	Head and tail approximation
	Generalized convolutions

	1+eps tail approximation in nearly linear time
	1+eps head approximation in nearly linear time
	First attempt to solve the problem
	Second attempt to solve the problem

	(max, +)-Convolution hardness for the tree sparsity problem
	Constant factor head approximation in nearly linear time
	Subroutines
	Unrooted head approximation
	Final head approximation algorithm
	A boosted algorithm

	Approximating (max, +) and (min, +)-convolutions
	Approximating (max, +) and (min, +)-convolutions between two sequences
	Approximating (max, +) and (min, +)-convolutions between multiple sequences

	Tree Sparsity in time O(kn) on unbalanced trees

