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Abstract

This paper explores the issues involved in de-
ployment of mobile robots in real-world situations
and presents solutions and approaches under de-
velopment at the Australian National University.
For deployment of mobile robots outside of the lab-
oratory, long-term operation is required. Hence,
we have developed an automatic recharging sys-
tem. In addition, a web-based teleoperation sys-
tem is used to provide missions to test the long-
term reliability of the robot. The final aspect of
real-world operation that is explored here is op-
erations in dynamic environments. To date, Te-
searchers have assumed static environments for
mapping and localisation. Here we propose meth-
ods to avoid this restriction.

1 Introduction

Mobile robotics is today reaching the point
where deployment into real-world situations seems
possible. Enabling technologies such as path plan-
ning, localisation and obstacle avoidance have all
been proven in laboratory situations.
long-term experiments with mobile robots are still
quite rare. This paper describes the mobile robot
and the framework for long-term experiments that
is being established at the Australian National
University. In addition, we discuss the common
assumption made, that the environment of the
mobile robot is static, and propose approaches to
remove this restrictions.

However,

To date, only a few researchers have considered
the problems of long-term mobile robotics. The
robot Xavier [1] has been in operation for a num-
ber of years, available for teleoperation on the web.
However, Xavier possesses no automatic recharg-

ing system and therefore is only available some of
the time!. Since the batteries are charged man-
ually there is some supervision of Xavier’s oper-
ation. Two generations of museum tour guides
developed by Burgard et al. [2] and Thrun et al.
[3, 4] both demonstrated longer term operations,
online for a total of 32 hours 18 minutes and 94
hours and 23 minutes, respectively. Again, these
systems required manual battery charging and so
had a degree of supervision. In Japan, Yuta and
Hada [5, 6] have started a project to develop an au-
tomatic recharging system but this system has yet
to be demonstrated with long-term experiments.
Our goal is to develop a system that can run 24
hours a day, 7 days a week for up to a year with no
supervision. Once this goal has been achieved, we
will know that mobile robotics has reached matu-
rity.

A second, important consideration for the de-
ployment of mobile robots in the real world is that
they must be able to deal with dynamic environ-
ments. There are two factors that are generally
neglected when considering the environment of the
robot. The first is that there are truly dynamic ob-
jects, such as people, moving around at the same
time as the robot is building its map and later
when it is using the map to determine its posi-
tion. Methods are needed which detect motion
of objects in the environment and reject sensor
data from those areas. Secondly, the environment
of the robot will change over time as furniture is
moved, doors are opened and closed, etc. While
robots can successfully localise by treating any
changes in the environment as noise (see for ex-
ample, Thrun et al. [7, 8]), this is sub-optimal.
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Figure 1: Overview of the hardware and software components that are used for the mobile robot

Clearly, techniques are required for localisation in
dynamic environment and to maintain the map of
the robot over time.

This paper presents our initial steps towards
the development of a reliable mobile robot system
which can operate autonomously for long periods
in real-world environments. Section 2 presents
an overview of the hardware and software com-
ponents of our robot. In Section 3, we discuss
the problems of batteries, power management and
recharging. Section 4 outlines our web-based tele-
operation system which will be used to provide
tasks for the mobile robot over a long time. In
Section 5, we discuss the static environment as-
sumption and its removal, including methods for
detecting motion and proposals for maintaining
maps. Finally, we conclude with a discussion in
Section 6

2 System Overview

The hardware and software systems required to
build and run a mobile robot are extremely varied
and complex. Clearly, we, the robotics commu-
nity, must develop methods to manage this com-
plexity or we will be unable to create reliable and
scalable robot systems. Experimentation on real-
world robot systems is required to gain the experi-
ence and insight to address the issue of complexity.

The system developed for our mobile robot is
shown in Figure 1. The robot contains two on-
board computers, both 200MHz Pentium CPUs.
The lower CPU runs the navigation software, con-
sisting of localisation, path planning and obsta-
cle avoidance modules. At this stage, we are us-
ing a navigation system kindly supplied by Sebas-

tian Thrun though we are working on our own
system[9]. In addition, the mapping and map
maintenance (discussed in Section 5 below) runs
on the lower computer. The upper CPU has video
capture cards and is used to process the incoming
video data.

3 Batteries and Recharging

One of the important aspects for autonomous
operation of a mobile robot is its power source.
Most mobile robots today use batteries to provide
power both for motion and for computation. Bat-
teries can only store a finite amount of energy.
Therefore, the management of the energy supply
of the robot is a crucial function for long-term op-
erations. The robot must monitor the state of the
batteries and periodically recharge them. There
are many possible ways to implement recharging.
Figure 2 shows the recharging station that has
been built at the ANU. The recharging system for
our robot has been implemented as follows: at the
top there is an infrared beacon which is used to lo-
cate the recharger from a distance; once the robot
is fairly close to the recharger, the robot servos
using the laser scanner and the reference grid in
the middle of the recharging station; finally, the
robot docks with the power plug just below the
grid (see Figure 2).

The robot is equipped with current and volt-
age measurement circuitry which can be used to
estimate the amount of charge remaining in the
batteries and hence the amount of time before the
robot must dock and recharge. At present, we are
having problems with the battery charging circuit
which cause the batteries to be unevenly charged



Figure 2: Recharging station

and so we are having problems estimating the re-
maining charge. However, we are making mod-
ifications to the charging circuit to remedy this
problem. Also, we believe that the data gathered
from longer term experiments will permit us to
build a good model for the batteries.

4 Web-based Teleoperation

One of the requirements for long-term experi-
mentation with a mobile robot is a task or series of
tasks to conduct which will take considerable time.
An option is to just generate random points within
our building and send the robot to them. Instead,
we have chosen to make the robot available on the
web for remote users. Figure 3 shows the user in-
terface that is presented. Remote users can click
on a map of the building, sending the robot to
those locations. For feedback, remote users are
provided with position information, current laser
scans and images from the web camera. The tele-
operation system includes landmark-based locali-
sation scheme which keeps track of the robot’s po-
sition, a graph-based navigation system for find-
ing paths to user goals and an obstacle avoidance
module to avoid un-mapped obstacles.

For the moment, the teleoperation system is
used simply to provide an ongoing set of tasks for
the robot to complete. In the future we would
like to investigate methods to allow remote users
greater control and perhaps even the ability to
write Java programs to control the robot.

5 Dynamic Environments

To date, almost no research has been conducted
on the effects of dynamic environments on the lo-
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Figure 3: Web-based teleoperation interface

calisation and navigation schemes that are nec-
essary for operation of a mobile robot. Existing
localisation schemes treat motion as noise and so
are less robust than is possible [10, 11, 12]. Most
mapping schemes ignore the problems of creating
and maintaining a map in an environment which
contains moving objects (e.g. [13]). An assump-
tion of a static environment is almost universal.
However, this assumption cannot be justified in
the vast majority of mobile robot applications be-
cause there are humans moving about and furni-
ture and other objects which also change position
over time. This project will extend previous work
in feature-based mapping [14, 15| to dynamic en-
vironments. This area is particularly important
if mobile robots are to be used in the real world
where laboratory assumptions do not hold.

5.1 Localisation in dynamic environments

People, the most common type of dynamic ob-
ject in the indoor mobile robotics environment,
disturb localisation schemes. To keep the prob-
lem tractable the static environment assumption
remains a cornerstone of most localisation ap-
proaches. To localise in an environment with dy-
namic objects the objects must be detected and
filtered from the sensor data. As mentioned in [7],
dynamic objects introduce systematic rather than
Gaussian noise into the sensor readings. In order
for the Markov assumption to still hold researchers
must either filter sensor readings to remove motion
or augment the robot state to track the dynamic
objects. Clearly, discarding sensor readings that



Figure 4: Example flow and depth-map images

come from dynamic objects in the environment is
by far the simpler approach [7].

Our approach similar, using stereo vision we
want to: detect the presence of dynamic obstacles,
estimate their trajectory and mask their data from
other sensors used for localisation. A depth-map
and 3D flow field will be generated in real time to
detect the dynamic obstacles. The depth-map and
3D flow field are created following the method of
[16]. This method exploits computational redun-
dancy, cache optimisation and the Intel proces-
sor MMX instructions to produce a real-time 3D
flow field. Figure 4 shows the real-time flow field
and depth-map of a dynamic object. The 3D flow
field effectively highlights motion in the scene that
is not due to egomotion of the robot. Detecting
dynamic objects becomes a process of segmenting
the 3D flow field into regions where the magnitude
is large. The trajectory is estimated using the av-
erage of the flow vectors associated with the ob-
ject. We will combine the stereo vision detection
of motion with our previous systems for [11, 12, 17]
localisation to improve their robustness.

In future the disparity map and 3D flow field
may also be used for reactive path planning. The
trajectory of people walking about the robot can
be estimated and then a path can be planned to
swerve around the persons if possible. Person fol-
lowing experiments are also planned as CeDAR,
an active stereo camera platform will soon replace
the fixed stereo pair for the robot. CeDAR is
shown in Figure 5 and described in [18].

5.2 Mapping of semi-static environments

Semi-static environments are an important
class to consider because there are immediate ap-

Figure 5: CeDAR active vision system

plications in industrial situations such as ware-
houses, where there are less people but the en-
vironment does change slightly over time. This
is an important issue for map maintenance. For
example, many maps slowly become inaccurate
as the furniture is moved. In a typical room a
significant number of landmarks lie on the furni-
ture and so are frequently moved. To deal with
the slow changes in the environment, techniques
are required for map maintenance. Present tech-
niques gradually decay the certainty of moved ob-
jects and create new objects in the new position
[19, 13]. Note, however, that this takes quite some
time as a considerable number of measurements
must be aggregated. Also, this treatment of semi-
static objects is undesirable because it does not
remember anything further about the object. In-
telligent techniques are needed which can extract
more information from the motion of semi-static
objects to more rapidly detect when the object
moves.

We will build on previous work in map making
and extend it to semi-static environments. Our
approach is to develop feature-based maps (grid-
based maps require considerable memory and,
given that we want to study the map over long
periods of time, storage is a big issue) and we
formulate the mapping process as a minimisation
problem, in which an explicit error function is
minimised [14, 15]. The feature-based mapping
problem is much too complex to determine the
optimal solution, the global minimum of the error
function. Instead, sub-optimal solutions must be
sought. We define two sets of operations which:
a) integrate new sensor readings into the existing
map and b) clean up the resulting map. When a
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Figure 6: Map built using the optimisation technique [15]

new sensor reading is taken, each of the additive
operations is tried and the one which minimises
the error function is selected. After the integra-
tion of a sensor measurement, the cleaning opera-
tions are used to remove some of the errors caused
by real-world data. Map optimisation proceeds by
finding the best operation to apply at each step.

Note that casting the mapping process as an
optimisation problem directly results in the abil-
ity to correct past mistakes. Consider a case where
a sonar reading is assigned to a line segment in the
map and later information reveals that this data
point has been assigned to the wrong map feature.
As part of the optimisation process, a cleaning op-
eration can then be applied which takes the out-
lying sonar reading and assigns it to the correct
object in the map (assuming that the set of oper-
ations is correctly chosen [14]). In this manner, if
a decision is made which, in the light of new data,
turns out to be false, the cleaning operations can
correct the mistake.

Figure 6 presents results of the map build-
ing process from six laser scans taken in a corri-
dor. This figure demonstrates the promise of this
method, it is able to build a good map of the en-
vironment from a small amount of sensor data.
Rejection of the smaller line segments will further
improve the quality of the map. This map con-
tains 45 line segments and so requires little mem-
ory to store, an important consideration when we
are studying the map over time.

A particular problem for robots, and particu-
larly in computer vision, is to associate each of
the sensor values with an object in the environ-
ment. For vision, this means dividing the picture
into sections that are associated with the various
objects in the picture. For a human, who under-
stands the way the objects in the picture behave,
this problem is fairly simple. However, a robot
does not have our extensive knowledge and expe-

rience. Modeling of the motion of objects over
time can provide an automated solution to this
problem, endowing the robot with experience. For
example, Dar et al. [20] present a preliminary ap-
proach to recovering the behaviour of objects from
image sequences and Beetz et al. [21] present a
semi-automatic method for acquiring all of the ob-
jects within designated area of the environment.
However, both of these methods require a consid-
erable amount of information be provided man-
ually. Robots must obtain this information auto-
matically if they are to be successful. By modeling
semi-static objects, this project will develop fully
automated methods for object acquisition.

5.3 Mapping of dynamic environments

To the best of our knowledge, all existing map-
ping techniques assume that the environment con-
tains no moving or dynamic objects. This is a
strong assumption which cannot be justified out-
side the laboratory. Existing mapping techniques
treat data arising from moving objects as noise
and, hence, the map takes longer to build because
more sensor measurements must be aggregated.
Also, dynamic objects are not made available for
path planning and so obstacle avoidance methods
[22] must be used.

Detection of dynamic objects requires high
bandwidth sensing and so vision must be used.
Vision is a promising sensor which provides rich
information and is ideally suited to dynamic en-
vironments. Our method, based on the work of
Kagami et al. [23, 16] provide real-time depth and
motion information and demonstrate the possibil-
ities of this sensor in dynamic and unstructured
environments.

6 Discussion

Our goals is to develop a complete mobile robot
system which is capable of reliable operation 24



hours a day, 7 days a week for months on end with-
out supervision. We believe that mobile robotics is
today reaching the level where deployment in real-
world situations seems possible. However, there
are two issues remaining: 1) there has been little
study of the long-term robustness of existing tech-
niques and 2) there has been almost no consider-
ation of the fact that the environment of a mobile
robot is dynamic, not static as is commonly as-
sumed.

Long-term experiments are crucial to test the
reliability of existing methods and to demonstrate
that mobile robotics has reached some level of ma-
turity. Our robot will be responding to commands
from web users over a period of many months and
any failures that occur will allow us to develop a
more reliable and robust system.

In addition to testing the reliability of a mobile
robot system, this project allows us to address one
of the significant remaining issues for localisation
and mapping. Over longer periods of time it is
impossible to consider the environment as static
and localisation and mapping must both explic-
itly address the changes that occur over time. We
will build on our earlier works in localisation and
mapping and test the approaches outlined in Sec-
tion 5 above. Another interesting aspect of this
project is that the robot will have the ability to
study its environment over time, hopefully learn-
ing more. If we consider humans, it is clear that a
considerable amount of time is spent studying the
nature of the world and learning the nature of a
wide variety of objects in the environment. Per-
haps this experiment will provide suitable data for
robots to similarly learn about their environment.
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