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Abstract

Currentroadsafetyinitiativesareapproaching thelimit of their effec-
tivenessin developed countries.A paradigmshift isneededto address
thepreventabledeaths of thousandson our roads.Previous systems
havefocusedon oneor twoaspectsofdriving: environmental sensing,
vehicledynamicsor driver monitoring. Our approach is to consider
the driver and the vehicleas part of a combined system,operating
within the road environment. A driver assistancesystemis imple-
mentedthat is not only responsiveto the road environment and the
driver’s actions but also designed to correlate the driver’s eyegaze
with road events to determinethe driver’s observations. Driver ob-
servation monitoring enablesan immediatein-vehiclesystemableto
detectandact on driver inattentiveness,providing theprecioussec-
ondsfor an inattentivehuman driver to react.Wepresenta prototype
systemcapable of estimatingthe driver’s observationsanddetecting
driver inattentiveness.Due to the “look but not see” caseit is not
possibleto prove that a roadeventhas beenobservedby thedriver.
Weshow, however, that it is possibleto detectmissedroadeventsand
warn thedriver appropriately.

1. Int roduction

The daily occurrence of traffic accidentshas becomea hor-
rifi c price of modern life. Complacency aboutthe dangersof
driving contribute to thedeathof more thanonemillion peo-
ple worldwide in traffic accidentseachyear (WHO 2001).
Fifty million moreare seriouslyinjured(WHO 2001). In The
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Organization for Economic Co-operation and Development
(OECD) membercountries,road accidents are the primary
causeof deathfor malesundertheageof 25 (OECD2006).

Thereis no doubt that driver error is at the heartof road
fatalities (Treatet al. 1979).In their landmarkstudy Nealeet
al. (2005)used100 vehiclesequippedwith video andsensor
logging equipmentto study how peopledrive and why they
crash.They foundthat78%of accidentsand67%of nearacci-
dentsthey witnessedinvolved momentaryinattention (within
3 seconds)beforetheincident.

We proposeto detectand actuponmomentarydriver inat-
tention. Carsoffer uniquechallengesin human–machineinter-
action. Vehiclesarebecoming, in effect, robotic systemsthat
collaboratewith thedriver. To detectinattentionweattemptto
estimatethe driver’s observations in real-time within the ve-
hicle.Throughtheintegrationof driver eye-gazetrackingand
roadsceneevent detection thedriverbehavior canbevalidated
against a model of expectedbehavior to determinecasesof
momentarydriver inattention.

Next, we conducta brief analysis of the problemof death
and injury on the road.In Section 2 we review relatedwork
andderive our approachto roadsafety. Section3 detailssys-
tem componentsdevelopedto implementour research. Sec-
tion 4 describesseveral inattentiondetectionsystemsusedto
verify theeff icacy of driver observationmonitoring.Thepaper
concludeswith a discussionof thenext potentialstepsin road
safetyin thelight of theseresults.

1.1.Motivation

Law enforcement,improved vehicleandroaddesignandpub-
lic awarenesscampaignshavehadamarked effectonaccident
ratessincethe1970s(ATSB 2004� OECD2006). Little, how-
ever, hasbeenachievedon thehardcases of roadsafety, such
asfatigue,distractionand inattention(Treatet al. 1979� Stutts
etal. 2001� Nealeet al. 2005).
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Fig. 1. Roadfatalitiesfrom 1990to 2004permillio n vehiclesacrossselectedOECDcountries.Datafrom OECD(2006).

Fig. 2. Fatiguecorrelatedaccidentsandall fatalcrashes.DatafromATSB(2006).

Figure 1 plots the numberof road fatalities for several
OECDcountriesover thepast15 years.While many countries
suchas France and Spain, which were starting from a high
base,have steadydeclines,countrieswith the lowest fatality
rates,suchasSwedenandtheUK, no longerhave aconstant
decline. Instead,thedecreasein fatalitiesin thesecountriesap-
pearsto beslowing (OECD/ECMT 2006). In fact,mostOECD
countries are losingtractiontoward the OECD aim of a 50%
reduction in roadfatalitiesfrom 2000 by 2012(OECD/ECMT
2006).

One reasonfor this trend is that as road fatali ties from
speedingand drink-driving fall, the diffi cult casesin road

safety, fatigue,distractionand inattention,arebecomingmore
prominent.To gaugethis trendwe extracteddatalikely to cor-
relatewell with fatigue-inducedaccidents from theAustralian
RoadCrashDatabase(ATSB2006)1. Figure2 plotsnight-time
single vehiclecrasheswith the total numberof fatal crashes.
The plot shows that thereis no significant downwardtrend in
(likely) fatigueinducedcrashesdespitea cleardownward trend
in fatal crashesperse.

1.Thedataextractedwasthenumberof fatal singlevehiclecrashesduringthe
night (22:00–7:00) comparedwith the total numberof fatalcrashes
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Fig. 3. Diminishing returnsof vehicle autonomy. On high-
ways: University of Bundeswehr, Munich (UBM’s) “Va-
MORS” in 1987, Carnegie Mellon University (CMU’s)
“Navlab5” in 1995.

It is natural to concludethat the key to eliminating road
fatalities is to usurpthe failing component, thehumandriver.
Therehave beena numberof impressive featsof autonomous
driving. A famousearlysystempioneeredby Dickmannsand
Graefe (1988a,b)wasableto steera vehicle at well over 150
km/h on well formed roads.In the 1990sdemonstrationsof
subsequentwork in the field were also impressive, e.g. the
Navlab “No HandsAcrossAmerica” trial steered98%of the
4500km trip (PomerleauandJochem1996). However, having
an automatedsystemaddressthe remaining2% of roadsce-
nariosprovedextremelydifficult.

As il lustrated in Figure 3 autonomousvehicle capabili-
ties have a diminishing return on effort as the capabilities
becomemore advanced.Urban scenescontain substantially
morecomplexity andvariancethanthe highway casesmean-
ing that 100% autonomyin urbanand highway scenarios is
much further away (Franke et al. 1998). In recent yearsthe
United States Defense Advanced Research Projects Agency
(DARPA) Grand Challenge,in which roadvehicleshave been
automated to drive in on-roadoff-roadcompetitions,hasgen-
erated renewed interest in full vehicle automation (DARPA
2004,2005). The eventswhile modelledon the “real world”
are carefully constrained (DARPA 2007).While challenging
to robotsthetest courseswould offer littl e diffi culty to an ex-
perienceddriver as,again,handlingthedifficult casesisstill a
significant time away (Thrunet al. 2006).

Although autonomoustechnologiesin vehicleswork very
well in theirelement(over 98%of thetime),thesesystemsare
highly susceptible to being “ tricked” by extremeor unlikely
circumstancesdueto themodelsthey arebuilt on.Humanson
theotherhandareremarkably flexible. They are able to prob-
lemsolveonthe fly, even whenprompted bythemostimprob-
able situations.Yet they aresusceptible to fatigue,distraction
andinattention.

Maltz andShinar(2004)showedthateven animperfectau-
tonomoustechnologyfor driver assistancecouldprovideasig-
nificant road safety benefit.So the research agendashiftedto
driver support.Here we can use autonomouscapabilities to
support thedriver.

Table 1 summarizes the complementarycompetenciesof
a humanand an automated driver. Insteadof the traditional
model of a driver applying the control signal to the vehicle
to move throughthe roadenvironment,we canconsidertwo
drivers: the humandriver andthe autonomousdriver, collab-
orating to control the vehicle. The critical questionthen be-
comeshow dowecombinethe behavior of thetwo controlling
agents?

2. Our Approach

Fortunatelythere is a readyanalogywhere two driversare in
chargeof theonevehicle.Almostevery driver hasexperienced
a warning from a passenger, perhapsalerting him or her to
an obscuredcar while merging lanes,or a jaywalking pedes-
trian in ablind spot.Thesewarningsof inattentionsave count-
lesslivesevery day. In arecentkeynoteaddress(Regan 2005),
RoadSafetyResearcher ProfessorMichaelRegan2 highlighted
the fact that,unlike other complex, potentiallydangerousve-
hiclessuchasplanesandships,roadvehiclesare operatedby
a single person.Thatsinglepersonis proneto errorand may
be,dueto theday-to-day natureof driving, slow to recognize
potential hazards. ProfessorRegan speculatedthat the intro-
duction of co-drivers in road vehicles could be the key to a
substantialreduction in roadaccidents.

Our research investigates the implementationof an auto-
mated co-driver asarealizationof a roadvehicleequivalent to
aircraft pilot andco-pilot collaboration.

A humanaircraft co-pilot provides relief to the pilot by
assumingcontrol of the vehicle, but the co-pilot also double
checkslife-critical actions and sharesthe burden of adminis-
tration.We envisagethatanAutomatedCo-driver would pro-
vide a role in roadvehicleswhich is an amalgam of a vigi-
lant passenger, driver aid and a safetysystem.An Automated
Co-driver could: doublecheckli fe-critical actions� relieve the
driver of tediousactivities� and,crucially, warn aboutmissed
road events maximizing the reaction time available for the
driver.

2.1.Driver Inattention

Given thehigh proportionof roadaccidentsthat involve inat-
tention, it is our conjecturethat theprimary contributing fac-
torsto roadfatalities,speed,drink-driving, fatigue anddistrac-

2. ProfessorMichaelReganis a ResearchDirector at INRETS (The French
National. Institute for Transport andSafetyResearch)
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Table1. Competenciesof human and automateddri vers.

Humandriver Automateddriver

Competentto drive in 100%of roadconditions Competentto drive in 98%of highwayconditions

Distractible,inattentive Vigilant

Susceptibleto fatigue Tireless

Subjectto boredom,tedium Consistent,multitasking,servile

Highly adaptable Limited programmedbehaviourchange

High ambiguityanduncertaintytolerance Limitedprogrammeduncertaintytolerance

Highly evolvedyet fixedsensoryperceptionsystem Limitedyetextendablesensorysystem,not confinedto rangeof
humansenses(e.g.millimeter-wave radar)

Limited reactiontime Nearinstantaneousreactiontime

Fig. 4. Accident contributing factorsthat leadto inattention
which leadsto road fatalities.

tions, are all actuallycausesof inattention.The contributing
factorsall impair thedriver’s abilit y to reactin timeto critical
roadevents.Figure4 illustratesthispoint.Theprimarycauses
of accidentsinducedriver inattention which canleadto road
fatalities.

By concentratingour efforts on driver inattentioninterven-
tions, we could break theseevent chains leading to a sub-
stantial reductionof road fatalities acrossmany road scena-
rios.

2.2.Driver Observation Monitoring

Driver inattention is ahighly transientstate,andcanbedueto
an identifiable distractionor simply concentrationon a com-
peting driving task.Monitoring the vehicle provides knowl-
edgeof the vehiclestateand the driver’s actions.Monitoring
theroadsceneenablesus to identify roadscene events.How-
ever, only driver inaction, not inattention,canbe estimatedus-
ingvehicleandroadscenemonitoringalone.Givenatimewin-
dow of a few seconds,driver inaction detectionwill occurtoo

late to intervene(Nealeet al. 2005). To detecttruedriver inat-
tention, whatthedriver hasor hasnot seenmustbeidentified.
As il lustratedin Figure5, to detectdriver inattentionrequires
accuratereal-timedriver eye-gazemonitoringcombinedwith
vehicleandroadscenestate.

Our experiments will concentrateon combining driver
monitoringwith roadscenefeatureextractionto achievedriver
observation monitoring.

Direct driver monitoring hasbeenthe subjectof clinical
trials for decades� however, monitoring for use in Advanced
DriverAssistanceSystems is relatively new.

Head position and eye closure have been identified as
strong indicators of fatigue (Haworth et al. 1988). How-
ever, whenaugmentedwith informationaboutthevehicleand
traffic, additionalinferences can bemade.

GordonA. D. (1966)conductedan in-depthanalysisof per-
ceptualcuesusedfor driving. Hedescribeddriving asa track-
ing problem.In on-roadsystems,LandandLee(1994) investi-
gated thecorrelationbetweeneye-gazedirection androadcur-
vature, findingthatthedriver tendedto fixateonthetangentof
theroadahead.Apostoloff andZelinsky (2004)usedgazeand
lanetracking to verify thiscorrelation onloggeddata,alsoob-
servingthat thedriver frequentlymonitoredoncomingtraffic.
Ishikawa et al. (2004) explored backprojecting the driver’s
gazedirectiononto thescene,but scenefeatureswerenotiden-
tified. Takemuraetal. (2003)demonstratedanumberof corre-
lationsbetween headandgazedirection and driving taskson
loggeddata.

Driver monitoring can also be used for validating road
sceneactivity. By monitoring wherethedriver is looking, us-
ability of the safetysystem canbe improved by suppressing
many unnecessarywarnings.As long as a road event, such
asanovertaking caror wandering pedestrian,is notedby the
drivernoactionneedsto betaken.

Thebehavior of thedriver several secondsbeforeandafter
an importantdetectedroad event is used to decide whether to
issueawarning.Drivermonitoringis achievedvia an eye-gaze
trackingsystemandvehicle instrumentation.
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Fig. 5. Driver observation monitoring: driver eye-gazetracking and critical road scenefeaturedetection are combined to deter-
minewhatthedriver is seeing(or not seeing).

2.3.AutonomousFunctionsFor Driver Support

Many groupshave tackledspecific sensingandcontrol prob-
lems for driver support. A quick survey of the Intelli-
gent TransportSystems (ITS) literature reveals much work
in lane tracking/keeping (Dickmanns and Graefe 1988b�
Pomerleauand Jochem1996� Bertozzi et al. 2000), obsta-
cle/vehicle/pedestrian/signdetection(Hsu and Huang 2001�
Franke andHeinrich 2002� Labayradeet al. 2002� Grubband
Zelinsky 2004),anddrivermonitoring(Takemura et al. 2003).
However, fewer groups have combineddifferent classesof
components to form integratedsupportsystems,with somere-
centnotableexceptionsbeingTakemuraet al. (2003),Trivedi
etal. (2005)andHolzmannet al. (2006).Interestin integration
is emerging with thegoals of multidisciplinary networks such
asthe EU Humanistand AIDE roadsafetyprojects(Amditis
etal. 2006).

2.4.Vehicle–Driver Interaction

Holzmannet al. (2006) recently outlined an architecture for
predictivepathplanningusinga “vir tualdriver” model,where
the driver’s actionsin addition to other inputs are fed into
the driver assistancesystem.The system, basedon its own
confidence and theestimatedfitnessof thedriver, generatesa
safevehiclecontrol action.Nodirectdrivermonitoringseemed
to beused.This architecture would be agreatcomplementary
componentto our system.Gerdesand Rossetter (2001)used
forcefeedbackthroughthesteering wheel asa natural human

machine interface for lane-keeping. The driver feels a gen-
tle force through the steering wheel encouragingthe driver
to maintaina centralposition in the lane. The perceptionto
the driver is that thecar is being guideddown the lane asif
it is on rails, or driving along a trough. The appliedforce is
weakenough,however, that the driver can override the force
to overtake or depart.Similarly, Similarly, Carstenand Tate
(2001)usedfeedbackthroughthe accelerator for speedcon-
trol. The acceleratorpedal becomesincreasinglydifficult to
depress as the speed limit is exceeded. Theseinterfacesare
perfect examplesof how a systemcan give feedbackto the
driver in a natural unobtrusive way. To permit us to drive on
public roadswe could not useactuatedsystemsin our experi-
ments.However, thesefeedback interfacesarehow we envis-
agea final systemto operate.

A particularly strong group due to the inclusion of hu-
man factorsand intelligentvehicleresearchers,used a sensor-
rich vehicle for driverbehavior modeling.Moving from driver
behavior analysis to assistance systemsthe group has re-
cently beencorrelating driver headposewith roadsceneper-
ception(Trivedi et al. 2005). They show an improved clas-
sification of the driver intentto changelanewhenheadpose
datais includedin themodeling.

Matsumotoet al. (1999) demonstratedheadposeand eye-
gazetrackingasapotential human–machineinterface.There-
searchhasbeendeveloped by SeeingMachines (2001) into
an in-vehicle system.The systemcan accurately track head
poseand eye-gazedirection down to � 1� . We will use this
systemto determineeye gaze to correlate with road scene
events.
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Fig. 6. (a) Thecamerason-board thevehicle. TheCeDAR active vision platform containingthestereoroadscenecamerasand
faceLABTM passive stereocamerasobservingthedriver. (b) CeDAR: CableDrive Active vision Robotin vehicle.Four cameras
are arrangedin two stereopairs.Camerasare fittedwith polarizing fil tersandfar-field camerasuseglarehoods.

Usingthis system, Victor (2005)developedthePercentage
Road Centre (PRC) metric which integratesdriver eye gaze
over timeinto ahistogramto detectdriver alertness.Thegroup
useda trail of colored lightsto leadthedriver’s attention back
to theroadwhenthePRCmetric indicatedavisualor cognitive
distraction preoccupying the driver. Since we aremonitoring
theinstantaneousgazedirectionof thedriver we prefernot to
causerival visual stimuli to the driving task so we will use
auditory messages.

2.5.JudgingDriver Behavior

The taskof driving is oftendescribedasa trackingtask(Gor-
donA. D. 1966� LandandLee1994).Thedriver interprets the
roadsceneprimarily by vision andthenapplies the required
control signal to the vehicle to maintain the correctrelative
position.

GordonA. D. (1966) reportedon a mathematicalanaly-
sis of the motion of the road sceneto the driver. He con-
cludedthat,while driving, the roadappearsin steadystateto
thedriver. Driving thenbecomesa lateraltracking(lanekeep-
ing) problem.Roadboundaries,not focusof expansion(asof-
ten thought), is the dominantcue for aligning the vehicle in
thelanes.If thevehicle is misaligned laterallythewholeview
field moves asaresult. SummalaandNicminen(1996)demon-
strated thatperipheralvisionwassufficient for short-termlane
keeping.Whenthedriver is lanekeepingtheperipheralvision
is capableof verifying that small motionsin the road scene
indicate that the vehicle is on track. When the vehicle starts
to diverge from the lane direction, the inducedwhole view
field motion alerts the driver to take direct notice.Correlat-
ing thedriver eye gazewith theroadscenethis meansthatfor
lanekeeping thedriver doesnot always needto fixate on the

roadfor safedriving. However, when thevehicle ismisaligned
with theroadahead,suchas during lanedepartures, thedriver
wouldreceive astrongvisualcueto monitor theroadposition.
If thedriver is not observingtheroadat this time, thenthis is
asignificantindicatorof inattention.

This leadsto the questionof wherethe driver would look
in the road scene for attentive lane tracking. In a clinical
trial LandandLee(1994)investigatedthecorrelationbetween
eye-gazedirection and road curvature.The group found that
thedriver tendedto fixateon thetangentof theroadahead.

Road scenefeaturessuch as signs, pedestriansandobsta-
clesrequire foveatedvision. Maltz and Shinar(2004)proved
thatperipheral vision is insufficientfor roadhazard detection.
For oursystem,thismeansthatto haveseena critical roadob-
ject thedriver musthave,atsomestage, directedtheir eyegaze
directly at theobject.

3. DevelopedCapabilities

The vehiclehasbeenfi tted with sensorsto gather odometric
information as well as sensors for monitoring thedriver’s ac-
tions suchasstrain gaugeson the steering shaft, turning in-
dicatorand brake sensors. The principle sensors usedon the
vehicle are videocameras.Figure 6 shows thevisionsystems
configuration.Computingis doneon-boardthe vehicleusing
several standarddesktopcomputers.

3.1.GazeMonitoring in Vehicles

Thevehicleis fitted with a faceLABTM eye-gazetracking sys-
tem. faceLABTM is a driver monitoring systemdeveloped by
SeeingMachines(SeeingMachines2001)in conjunctionwith
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Fig. 7. TheDistillation algorithm is composedof aCueprocessorandaParticle filter runningconcurrently.

the Australian National University (ANU) and Volvo Tech-
nologicalDevelopment.It usesa passive stereopair of cam-
erasmountedon thedashboardto capturevideoimagesof the
driver’s head.Theseimagesare processedin real-timeto de-
terminethe3D poseof thedriver’s head(to � 1 mm, � 1� ) as
well as the eye-gazedirection (to � 1� ). Blink ratesandeye
closurecanalsobemeasured.

3.1.1.LaneTracking

A common problem in lane tracking is road appearance
changesdue to shadows, glare and road works (Pomerleau
and Jochem1996� Bertozzi et al. 2000). With the exception
of thephysical limits of the sensor, in orderto achieve robust
lanetrackingmultiple methodsof imageprocessingneedto be
undertakenand integratedbasedon the prevailing roadcon-
ditions.Thegeneric Distillation algorithm was developedfor
thispurpose.TheDistillationalgorithmis avisualcueprocess-
ing framework (seeFigure 7). Theframework consists of two
cycles.The fi rst cycle, the cuefusioncycle, performsa cost–
benefit analysisof the variousvisual cuesto distill the com-
binationof cueswhich provide the besttrackingdiscrimina-
tion. The secondcycle is a particle fi lter (condensationalgo-
rithm (IsardandBlake1996)) to estimatethestatedistribution.
A detaileddiscussionof the algorithm is given in Apostoloff
andZelinsky (2004). Figure 7 shows a typical laneestimate,
where theinitial systemhasbeenextendedto usea clothoidal
roadcurvature model and a covariancemetric is usedto in-
crementally vary thelook ahead distance.Thelane tracker has
beentestedon datafrom a 1800km round trip tracking the
roadalongavarietyof roadtypeswithoutadjustment.

3.2.ObstacleDetection

The Distillation algorithm has also beenapplied in the ob-
stacledetection system.Theobstacle detection systemuses a

setof visual cuesto segmentand track obstacles.The detec-
tion phaseof thesystemsegmentspotentialobstaclesfrom the
stereodepthmap, edge and motion images.Thesepotential
obstaclesare very rough guesseswith many false positives.
Thesecandidatesare injectedinto the Distillation algorithm
mentionedabove. Trueobstaclesform clusterswithin thepar-
ticle space, whereasfalse detects dissipate. Obstaclesamples
are defined with respectto the lateral and longitudinal lane
positions,size and velocity. While thestate spaceis in world
coordinatesthesampleevaluation is doneby projectingback
into thesensorimagespace.

The followingequation is used to evaluate each sample:

P�e� j �
t �si

t � �
1

� � N

�

� �
N�

p

I � j �
t � s� i �

p �

�

� (1)

wheres� i �
p is the pth pixel from thesetof pixelsSgenerated by

particle i , I � j �
t � s� is thevalueof pixel s from the observation

imageI usedfor the j th cue,N is the numberof pixelsin the
region in imagespace,and � (setto 0�001) is usedto support
the possibility that the sensoris in error. Figure 9 shows the
leadingvehicletracked by thealgorithm.

3.3.Sign Recognition

Symbolicsignsaredetectedby locatingsign-likeshapesin the
imagestream.Thesystemusesthefastradialsymmetryoper-
ator(originally developedfor eyedetection(Loy andZelinsky
2003))with onlineimageenhancement.Thesystemwasused
to effectively detect speedsignsasthey are themostfrequent
signsencountered,but asimilarmethodcouldbeusedto detect
symbolic roadsigns(Fletcheret al. 2005b). Figure 10 shows
the algorithm applied to circular signs in poor road condi-
tions.
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Fig. 8. Lanetrackinglook aheaddistancevarieswith certainty measuredby thesamplespreadof thedominantmode.

3.4.Pedestrian Detection

A pedestriandetectionsystemwasdevelopedby Grubb and
Zelinsky (2004)(seeFigure11).Thesystemusedstereocam-
eras, V-disparity and support vector machinesto achieve a
high false-negative rate.This systemand the work of Viola
et al. (2005)hassponsoredthedevelopmentof a secondsys-
tem by our projectcollaborators,the National ICT Australia
group (Rasolzadehet al. 2006). Viola et al. (2005) imple-
menteda methodof detectingpedestriansusingHaarfeatures
andAda-boost3. Themoduleisusedto detectandtrackpedes-
triansfor ourassistancesystem.

3.5.VisualMonotonyEstimation

A great irony of transportsystemsresearch is that advances
in roadandvehiclesafetycanendup causingnew threatsto
roadusers.Thiffault and Bergeron (2003) found that the vi-
sualmonotony isakey inputto driverfatigue.Carmanufactur-
ersandinfrastructureauthoritieshave collaboratedtoattenuate

3.Ada-boost isamethodof takinga collection of weakclassifiersand“boost-
ing” them so that togethera combination of classifiers is derived that can
stronglyclassify thedataset

stimulationfrom theoff-driving tasksandeasetheon-driving
task.An unfortunateconsequenceis thatsectionsof roadthat
were onceprone, for example, to headon collisions are be-
coming (after roadupgrades)fatigueaccidentzones.

To automaticallymeasurethevisualmonotony in aroadse-
quencerequiresa metric of thevariance(or informationcon-
tent) of thevideosequenceover time.Moving PictureExperts
Group (MPEG) encodingfills this requirement.MPEG ex-
ploits thepropertythat in moving picturesonly small regions
of theimageactuallychangesubstantiallybetweenframes.En-
codinga set of framesover a sliding time window hasshown
a strong correlation to a humanjudgedmonotony scale.One
failing of the MPEG compressionas a monotony detectoris
in situationsof poor visibility such as fog. The taskwasnot
monotonousyet thevideowill compresswell. Weusethelane
tracking look aheaddistanceto detectthesetypesof cases.

We conductedday, duskand night roadtrials. To investi-
gate how bestto useMPEG encodingto representmonotony
weencodedasetof movieswith varyingsamplingrates,ratios
and sequencelengths.Figure 12 shows a result of one trial.
Trendsof smaller compressionratio (or increasedmonotony)
appearasthevehicle leavesthecity for thehighwayandalong
thecountry roadin dayandnight trials.Thelanetrackinglook
aheaddistanceis effective at identifying sectionsof roadwith
a lower monotony thanexpectedby the MPEGcompression
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Fig. 9. Distillation algorithm trackingthe leading vehicle. Left: Dominantmodeprojectedontothe image.Right: Visualization
of thedominantmodein theparticlespace.

Fig. 10. Sign detectionusing Fast Radial Symmetry Transform (FRST).Thebottom left cornershows the FRSTimage,where
theredcrosseshighlight detectedsigns.

alone(Fletcheret al. 2005a).The initial trials werelatervali-
dated bya1800km roundtrip alongavariety of roadsand for

differenttraffic types.The metric washighly correlatedwith
thehuman-perceived monotony.
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Fig. 11.Onlinepedestriandetection.Thebasis for thesystemusedin theAutomatedCo-driver.

Fig. 12. MPEG compressionandlanetracking look aheadduring an afternoontrial on city and arterial roads.Sampleimages
from thecameraareshown at the correspondingnumberedpointswith thelanetrackinglookaheaddistance.Thedifferenttraces
in thegraph representvariousframerate(0.5–4Hz) andsliding timewindow (2.5–10minute)combinations.Higherframerates
capture periodic yet potentially monotonousscenes.Longertime windows smoothtransientperiods of lit tle motion but add
latency to themonotony detection.

4. Dri ver Inattention Experiments

To investigate driver inattentiondetection we developed a
numberof prototypesystems:

� Roadcenterinattentiondetection–A simpleapplication
using the driver observation monitoring and the vehi-
cle speedalone.This systemimplementsinstantaneous

driver inattention detectionusing an assumedroadcen-
ter.

� Road event inattention detection– This system inte-
gratesa single roadevent source, namelyspeedsigns,
with gazemonitoringto demonstratethebasiccasesof
driverobservation monitoring accordingto thematrix in
Table2.
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Table 2. Dr iver behavior matr ix used by the system to
determine the appropriate state. OK: no action requir ed.
INFO: provide on-screen reminder to operator. WARN:
provideauditory reminder to dri ver.

Driver “Seen” Missed Acknowledge

DriverBehavior OK OK INFO OK

DriverBehavior Not OK INFO WARN INFO

Fig. 13.Thescenecameraandgazedirectionisanalogousto a
two-camerasystem.

� Multiple road event inattentiondetection– The final
systemintegratesall available subsystemsto demon-
strateourbestapproximationof a fully functionaldriver
inattentiondetectionsystem.

Ourapproachis toconsiderthedriving taskasa closedloop
systeminvolving thevehicle,driverandtheroadenvironment.
The systemselected interventions according to the behavior
matrix in Table2.

4.1.CorrelatingEyeGazewith theRoadScene

Scenecameraand eye configuration is analogousto a two-
camerasystem(see Figure 13). Gaze directions trace out
epipolar lines in the scene camera.If we had a depthesti-
mateof the driver’s gaze,we could project to a point in the
scenecamera.Similarly, if we had theobjectdepth we could
re-projectonto theeyeandestimatetherequiredgaze.A depth
estimateof the gazeis hardto obtain.A commonassumption
is that the gazeangle and angle in the scenecameraare the
same.In practicethis assumptionamountsto supposing that

either thescenecamerais sufficiently closeto thedriver’shead
(equivalent to a trivial baseline)or that theobjectsof interest
are near infinity (Land andLee1994� Takemuraet al. 2003�
Ishikawa et al. 2004).In thesecaseserror boundson thegaze
direction (notfixation duration)areinfrequentlyusedand even
lessfrequently justified.

Theobjectdepth could be estimatedusinga secondscene
camerarunning the samedetectionsoftware or assumptions
on objectsize and/or roadlayout.However, it is desirable to
maintain flexibility of the implementedobjectdetectionsys-
temswhich could usea single cameraand have no strongas-
sumptionson the objectscale.If we assumethat thedepthof
the objectis unknown, we caninsteadmodel theeffect of the
disparity error in ourconfidenceestimate.

The effect of an unknown stereodisparity will be a dis-
placementalong the epipolar line defined by the gazedirec-
tion on to thescenecamera.Thedisparity, as with any stereo
configuration,wil l bemostapparentfor closeobjects andre-
ducebya1� x relationshipwith distancefromthebaseline.The
angulardeviation reducesastheanglebecomesmoreobtuse.
To getan upperboundof the likely disparity deviationwecan
computetheworst-casedisparityforourcameraconfiguration.
With referenceto Figure13,andusingthescenecameracenter
asa world referenceframe,thescenecamera and gazeangles
for asignat � Xsign� Ysign� Zsign� caneasilybederived:

�� � �� cam � � gaze�

� arctan
Xsign

Zsign
� arctan

Xsign � Xgaze

Zsign � Zgaze
� (2)

�	 � �	 cam � 	 gaze�

� arctan
Ysign

Zsign
� arctan

Ysign � Ygaze

Zsign � Zgaze
� (3)

The worst-casedisparity thentranslatesto whentheobject is
closestto the vehicle on the driver’s sideof the road,equiv-
alent to an objecton the right shoulderof a single-laneroad
(note that our system is in a right-handdrive vehicle). The
field of view of the scenecamera limi ts the closestpoint at
which the object is visible. The closestvisible object is at
� � 3�0� � 1�6� 8�0� for the50� field of view of the camera. The
worst-caseheight of the object relative to the scenecamera,
� 1�6, would be whenit is on the ground(this is worsethan
any actual caseas the objectwould not be visible dueto the
bonnet). With pessimisticestimatesof thedriver (far) eye po-
sition relative to the scenecameramanuallymeasuredto be
� Xgaze � 0�22� Ygaze � 0�1� Zgaze � 0�2� , thefinal errors be-
come

�� � �� cam � � gaze� � � 20�6� � 18�7� � � 1�9� � (4)

�	 � �	 cam � 	 gaze� � � 11�3� � 10�4� � � 0�9� � (5)
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Therefore,theworstexpecteddeviationdueto stereodisparity
is � 1�9� horizontally and� 0�9� vertically, which is on a par
with othererror sourcesin thesystem.Theexpecteddeviation
for themajority of caseswherethe sign is further away is sig-
nificantly less.Thedeviation is twiceas largein thehorizontal
direction,implying that a suitableapproximation of the toler-
anceregionwill beanellipsewith ahorizontalmajoraxis.

To determinethe overall toleranceof the system,two fur-
therfactorsneed to be accommodated.Thegazetracking sys-
tem has an accuracy of � 3� and the field of view of the
foveated region of the eye is estimatedto be around � 2�6�

(Wandell1995).Theaccumulatedtoleranceis thesum of these
sourceswhich for ourexperimentalsetupcomesto � 7�5� hor-
izontally and� 6�6� vertically. Thisallowsus to claim thatthe
driver was very unlikely to have seenthe objectif the object
andgazedirectionsdeviateby morethanthis tolerance.

Verifying theFoveatedFieldof View

Togetasenseof thefield of objectdiscriminationability of the
driver, asimpletrial wasconstructedusingadesktopPC.Wan-
dell (1995)statesthe foveated region of theeye to be around
� 2�6� , althoughasubstantial conedensity existsup to around
20� . A simpleprogramwasmadeto presentspeedsignsfeatur-
ing varying speedsto thesubjectat differentpositionson the
screen.Highway roadfootagewasshown in the background
to adda small amountof realismto the scene.The testsub-
ject was asked to fix their gazeon a stationary crosson the
screenandto pressthe correspondingnumberon the keypad
to matchthepresentedsign. If thesubjectbroke their gazeor
otherwiseinvalidatedthetrial, they pressedno key or “0” and
the resultwasdiscarded.Figure14 presentsa typical screen-
shotfrom the testprogram.A setof f ive subjectswith normal
(or corrected)eye sight were eachpresentedwith 200 signs
(100fixating to theleft, 100fixating toward theright). There-
sults (seeFigure15) show that reliable discriminationabili ty
dropsoff at over 4� fromthefixationpoint.Theuseof thetrial
was to provide a rule of thumbfor the discrimination abili ty
of thedriver in thecontext of theroadobjects. Theestimated
field of discriminationwill beusedto judgewhetherthedriver
wouldbe able to see aparticular roadobject.

In-vehicleVerification

Weconductedaverif icationexperimentto testthatthesystem
wasindeedgoingto beableto detect whetherthedrivermissed
an object. Thedriver wasasked to fix theirgazeonan object in
thescene. A sign wasthen placedata certain distancefrom the
fixation point. Thedriverwasthenaskedto identify theobject.
The object was one of eight possibilities. The proportion of
correct classificationswas loggedalong with the driver-gaze
angle and apparentsign position in the scenecamera. 30 m,

Fig. 14. Screen-shot of PC testapplicationto gather data on
gaze object recognition field of view. A test subject is re-
questedto fix their gazeon the cross.The Speedsign peri-
odically variesin position and speed(10,20,30,...,90).A road
video sequencewasplayedin the backgroundto addcontext
for thetrials. Thesubjectenteredthe“guessed”sign via a nu-
meric keypad(“1”–“9” ).

20 m and 10m depthswere testedagainst four differentdis-
placementsbetweentheobjectand fixationpoint. Theobject
sizewas 0�45 m in diameter. For eachcombinationof depth
anddisplacement,tentrialsweredone.

Figure16 shows thedriver’s objectclassificationerror rate
versusthe angle betweengazeandobjectposition.Expected
recognition ratesfall as the object becomesmore peripheral
in thedriver’s field of view. Theresultsof this trial verify our
expectationthat, while it is hard to prove the driver saw an
object,it is possibleto estimate,with reasonableconfidence,
whenthedriver wasunlikely to haveseentheobject.A curious
effect was noticed(representedby a cross inthemiddleof the
graph)whenthedriver wasvery closeto theobject.Thelarge
apparentsizeof theobjectin thedriver’s field of view seemed
to aid therecognition rate.However, this only occurredwhen
objectswerecloseto the vehicle, which is not whendrivers
typically seeroadobjects.Thedriver reported notconsciously
beingable to seetheobjectin thiscase.

This verification demonstratestheexpectedstrengthof the
system:theability to detectwhen thedriver hasmissedan ob-
ject. It is impossibleto determine whetherthe driver saw the
object, as,even with perfectmeasurementof aperfect gazedi-
rectionmatch,thedriver’s attentionand depth of focuscannot
be determined.If the driver is looking in the direction of the
object,it i s anambiguouscasewhether thedriver noticedthe
object,thusnowarning is issued.
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Fig. 15.GazePCtest error rate. Above a4�5� anglefrom thefixation point thetestsubjectswererecognizingonein two signs
correctly.

Fig. 16.Driver recognitionrateof objects in peripheralvision
for variousdepths. Thedottedhorizontal lineshows expected
valuedueto chance.Theverticaldashedline represents� 7�5�

derived tolerance.Squares,30 m points� circles, 20 m points�
crosses,10m points.

4.2.AssistanceSystemDesign

TheAutomatedCo-drivers canbe thoughtof (andare imple-
mented)as instancesof the AdvancedDriver AssistanceSys-
tems(ADAS) logic engineshown in Figure17.

4.3.RoadCentre Inattention Detection

Thefirst systemwas developedto demonstratethebenefits of
theimmediacy of directdriver gazemonitoring.Previoussys-

temsusedin simulationor roadtrialshaveusedmetricssuchas
thevariancein steeringwheelmovementsto gaugethefatigue
level of the driver. Becausethesesystemscomputestatistics
over time, thereis a significant lag betweendriver inattention
and action by thesystem.Online real-timedriver gazemoni-
toring caneasily be usedto detectshortperiodsof driver dis-
traction.

Similar to the percentageroadcentermetric (Victor 2005),
driver gazecanbe analyzedto detect even shorterperiodsof
driver distraction. The faceLABTM system readily allows the
implementationof an online distraction detector. Thegazedi-
rection is usedto reseta counter. Whenthe driver looks for-
ward attheroadscene,thecounterisreset.As thedriver’sgaze
diverges,thecounterbegins.Whenthegazehasbeendiverted
for more thana specific time period, a warning is given. The
time period of permitteddistraction is a functionof thespeed
of thevehicle.As thespeedincreases,thepermitted time pe-
riod coulddropoff eitherastheinverse(reflectingtime to im-
pact)or theinversesquared(reflecting thestoppingdistance).
Weusetheinversesquare.Oncethedriver is observed to have
hada stablegazeat theroadahead,thecounterandthewarn-
ing is resetuntil the next diversion.As the vehicle speed is
considered,normal driving doesnot raisethealarmsince dra-
matic movementssuchasover theshoulderheadchecksoccur
atslow speeds,and theovertedgazetoleranceis longer. Situa-
tionswhenthevehicleis notmoving,suchaswaiting tomerge,
permit thedriver to lookawayfromtheroadaheadindefinitely
withoutraising thealarm.

Using thefaceLABTM system,wemonitordriver headpose
andeye-gazedirectionvia thedriver stateengine.Thewatch-
dogtimer insidethedriver stateenginewil l beusedto verify
whetherthedriver hasnot lookedat theroadfor a significant
period of time. An auditory warning is given if the driver is
seento beinattentive.
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Fig. 17. ImplementedADAS softwarecomponentarchitecture.

Fig. 18.Roadscene inattentiondetectionAutomated Co-driver screen-shot.

On-roadTrials

Figure 19 is a sequenceof screen-shotsshowing the typical
responsewith a distracteddriver. Oncethe distractionthresh-
old is crossedfor the given speed,audio warningsincrease
until thedriver looksforward again. Thenthewarningsarere-

setuntil next time. One conclusion from the trials wasthat a
roadpositionestimatewould help thesystem.In somecases,
when the roadhadsignificantcurvature, thesystem wastrig-
gered becausethegazedirection wassubstantiallyaway from
thestraightaheadposition.
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Fig. 19.Roadsceneinattentiondetectionsequence.Circlesrepresentdriver gaze.(a) Driver looking forward.(b) Driver looking
at right mirror, alarm sounding.(c) Driver still distracted,alarm louder. (d) Driver gazehasreturnedto the roadahead,alarm
silenced.

4.4.RoadEvent InattentionDetection

In this systeman autonomousdetectionsystemrecognizesa
roadevent,in thiscaseaspeedsign.At thesametime,adriver
monitoring systemverif ies whetherthe driver haslooked in
the direction of the road sign. If it appearsthat the driver is
awareof theroadsign,theinformationcanbemadeavailable
passively to thedriver. If it appearsthat thedriver is unaware
of the information,anauditory warning isgenerated.

For this case, if the driver appearsto have seena speed
sign, the current speedlimit can be simply recordedon the
dashboardadjacentto thespeedometer. However, if it appears
that thedriver hasnot lookedat theroadsign and, over time,
a speedadjustmentis expectedandhasnot occurred,a more
prominentwarningwouldbegiven.This still leavesthedriver
in control of thecritical decision,but supportsthemin a way
that aimsnot to be overly intrusive. Warnings areonly given
when the driver is not aware of the changeof conditions.
Finally, the warning can also be cancelledby observingthe
driver: a glanceat thespeedometerconfirmsthat thedriver is
awareof their speedand thenew detectedlimit.

Using thereasoningin Section 4.1, theworst expectedde-
viation dueto stereodisparityis � 1�9� horizontallyand � 0�9�

vertically which isonaparwith othererrorsourcesin thesys-
tem. The expecteddeviation for the majority of caseswhere
thesign is further away is significantly less.The deviation is
twice as largein thehorizontaldirection,implying thata suit-
ableapproximationof the toleranceregion will be an ellipse
with ahorizontalmajoraxis.

To determinethe overall toleranceof the system, two
further factorsneed to be accommodated.The gaze track-
ing system has an accuracy of � 3� and the field of view
of the foveatedregion of the eye is estimatedto be around
� 2�6� (Wandell1995).Theaccumulatedtolerance is thesum
of thesesources,which for our experimentalsetupcomesto
� 7�5� horizontally and � 6�6� vertically. This allows us to
claim that the driver was very unlikely to have seenthe sign
if the sign and gazedirectionsdeviateby morethanthis toler-
ance.

To correlate the eye gazewith the sign position, the his-
toriesof the two information sourcesare examined.Thesign
detectionsub-systemprovides a history of the sign location
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Fig. 20. Screen-shot showing “60” sign detectedandseenby driver. Top left: Live video showing eye gaze(large circles)and
status(overlaid text). Bottom left: Last detectedsign (small circles)andeye gaze(large circles).Top right: 3D model of cur-
rent vehicle position,eye gaze(oversizehead)and sign location. Bottom right: Current detected speedlimit, vehicle speed,
acceleration andcountdown for speedinggraceperiodin frames.

sincedetected.This includesall framesfrom when the sign
was first detectedbefore the sign was ableto be verified or
classified. Similarly, thefaceLABTM dataprovidesthehistor-
ical headposeand gazedirection.Whena sign hasbeenclas-
sified, the sign anglesandgazedirectionsare checked back
in time to whenthesign wasfirst detected. If theanglesfrom
any previous framefall within the tolerance,the sign is re-
portedas being seenby the driver. If the anglesnever coin-
cide, the sign is reportedas missed.The systemprovides a
4 secondtolerance for the driver to achieve the speedlimit.
The timer is instigatedwhenthemeasuredspeedexceedsthe
limit andthemeasured acceleration isnotsignificantly decrea-
sing.

On-roadTrials

The systemwas ableto detectspeedsignsaroundthe Uni-
versity and evaluatethe implicationsfor thedriver. Figure20
shows a screen-shotof the system demonstratinga typical
case.Figures21 and 22 ill ustrate the primary scenariosen-
countered. In Figure 21(a) the driver waswatching a pedes-
trianandfailedtonoticea “40” sign.TheAutomatedCo-driver

hasdetectedthatthedriver did notseethesignandhasissued
a red sign: missed!warning. Figure 21(b) shows an instance
wherean “80” signwas detected� the driver saw the sign and
the vehiclewas not speedingso no red warningwas issued.
Similarly, in Figure22(a)a “40” sign wasdetected.Thedriver
saw thesign,thesystem assumedthedriver wasintentionally
speedingso awarning wasdisplayedbut nosoundalertgener-
ated.In Figure22(b)thedriver hasmissedthelastsignandis
speedingfor morethana predefinedgraceperiod without de-
celerating.TheSLOW DOWN! warning is shown and an alert
soundissued.

Figure 23 shows the sign and the gaze direction separa-
tion angle for typical signsclassifiedas“seen”by thesystem.
Notethetroughsin theseparationanglegraphsreflectingtimes
whenthedriver lookedtoward thesign.

At onelocationin the testareathere wasa speedsign just
pastan entry road to the University. Due to the intersection
geometry andabendshortly alongtheentry roadtheroadsign,
while in plain view on the roadshoulder, was not prominent.
Afterpassingthesign thedriverswereaskedwhether they saw
thesign, andnoneof themdid. Figure24 shows thesign and
the gazedirectionseparationangle for three test drivers. The
systemclassifies thesesignsasmissed. Notice the lack of di-
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Fig. 21. The two columnsare typical casesfor the speedsign inattentionsystemwhenthe vehicle wasnot speeding. (a) The
system detected that the driver most likely missed the road sign. (b) The driver most likely observed the sign.Top row: Live
videofeedsshowing currentview, eyegaze(dots/large circles)andcurrentstatus(overlaid text) duringscreen-shot.Bottomrow:
Lastdetectedsigns(smallcircles)andeyegazeduring detection(dots/large circles).Thesmall circlesonthehoodandin thesky
in thebottom row are dueto a renderingbugat the timeof test. They coincidewith stale returns thathada strongmomentary
circularreturnbut failedclassification.

rected gazetoward thesign, instead gazeis steadyon theroad
andmerging traffic to theright.

In Figure25 someborder line sign gazeangle separation
casesareshown. There appears to besomedirectedeyemove-
ment but the angleis greaterthan the angle error tolerance.
Watchingthegazeand signdetection it becomesobviousthat
thesign may bereadwell beforethesign is detectable in the
image.Thedriver eye with muchbetteracuity thanthevideo
cameracanrecognizethesign furtheraway.

To addressthis casewe projectedthe sign position back
accordingto therecentvehicleegomotion. Thesign–gazesep-
aration anglewasthentaken as theminimumdistanceto this
path. Figure26showstheprojectedpathsandtherevisedsign–
gazeangleseparation.Now we seethatFigures 26(a)and(b)
are classifiedas seenand(c) remainsclassifiedasmissed.Sim-
ilar to Figure 24, in Figure 26(c) the sign is on a bendin the

roadsothesign location remainson theleft of thecamera im-
age.

For completenesswe includeFigures 27 and28 showing
the impact of the backprojectionof the “seen” and“missed”
signs.Theclassificationsremainunchanged.

4.5.Multi ple RoadEvent Inattention Detection

The final experimentis an integration of the subsystemsout-
linedabove.Thatis, visualmonotony estimation,signreading,
lanetracking,vehicle detectionand pedestriandetectioncom-
binedwith driver gazemonitoring.

RoadDepartureCalculation

To determinewhether thevehicle will departthe lanewe use
the intersectionof theestimated lanegeometrywith theAck-
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Fig.22.Typicalcasesfor speedthesign inattentionsystemwhenthevehiclewasspeeding.Left: Livevideofeedshowingcurrent
view, eye gaze( dots/large circles)and currentstatus(overlaid text) during screen-shot.Right: Lastdetectedsign (small circles)
andeyegaze(dots/large circles).

ermanmotionmodelof thevehicle (seeFigure29). Theinter-
sectionpointprovidesatimeuntil departureestimateassuming
thatthedriver maintainsthecurrentsteeringangle.To find this
point we solve the lane model and Ackerman equationsnu-
merically to find thearc lengthto departure and,for a known
speed,thetimeuntil departure.

To determine whether a lanedeparture is intentional we
usethe departure point, the turning indicators andthe driver
eye gaze.If the turning indicatorsare operating andthe lane
departure point is in the samedirection the warning is sup-
pressed.Thewarningis alsosuppressedif thedriver gazehas
beensufficiently closeto thedeparturepoint.If neitherof these
criteriaaremetanauditorywarning isgiven.

On-lineRoadTrials

Now follows some il lustrative casesof the combined sys-
tem. Like all of our systemsthe interfaceis for the experi-
menternot the driver, as audio warnings and gazecancella-

tion provide theinterfaceto thedriver. Theapplicationcycles
througha decision treeto determine possible alerts.First po-
tential pedestriancollisions, then obstacles then lane depar-
turesare verified. Thensign events, inattention,vehicle sta-
tusand finally monotony eventsare checked.Alertsare given
with uniquesounds.Approachingobstaclesand pedestrians
observed by thedriver arenot warned,nor are lanedepartures
providedthe driver is indicating or hasgazedin thedeparture
direction.

Figure30showstheAutomatedCo-driver detectingaspeed
sign.Thevehiclewas not speeding sono warning wasgiven.
Thesystemdetectsanacknowledgementwhenthedriver looks
at thespeedometeranyway.

Figure31 shows inattention detected by gazemonitoring.
A glancebackat theroadresetstheinattention alarm.

In Figure 32 the inattention alarm hasbeenresetalthough
now the driver is speeding. Direct driver observation enabled
thesystemto verify that thespeedsign had beenobserved so
avisualwarningis given, theauditoryalarm is suppressed.
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Fig. 23. “Seen”sign, eye-gazedirectionseparation angle.Theorigin on thetime axisrepresents thefinal detection of thesign.
Top: (“o”) , eyegaze� (“+”), signposition.Bottom:Sign–gazeseparationangle.Dashedlines:1 	 2 	 3 	 7�5o errortolerance.

Fig. 24. “Missed” sign,eye-gazedirection separationangle.Top: (“o”), eyegaze� (“+”), signposition. Bottom: Sign–gazesepa-
rationangle.Dashedlines:1 	 2 	 3 	 7�5o errortolerance.
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Fig. 25. “Borderline” sign,eye-gazedirectionseparation angle.Top: (“o”) , eye gaze� (“+”) , sign position. Bottom: Sign–gaze
separationangle.Dashedlines:1 	 2 	 3 	 7�5o errortolerance.

Fig. 26.Sign positionprojected backin timeto estimatesign–gazedirectionseparationanglebeforethesignwas large enough
to track. Top: (“o”), eyegaze� (“+”), signposition� (“*”), projectedgazepointonsignpath.Bottom: Sign–gazeseparationangle.
Dark plot: original separation� lightplot, backprojectedseparation� dashedlines:1 	 2 	 3 	 7�5o errortolerance.
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Fig. 27. “Seen”sign, eye-gazedirectionseparation angle.Theorigin on thetime axisrepresents thefinal detection of thesign.
Top: (“o”) , eye gaze� (“+”), sign position.Bottom: Sign–gazeseparation angle.Dark plot: original separation� light plot, back
projectedseparation� dashedlines:1 	 2 	 3 	 7�5o errortolerance.

Fig. 28. “Missed” sign,eye-gazedirectionseparationangle. Top: (“o”), eye gaze� (Red“+”), sign position. Bottom:Sign–gaze
separationangle.Darkplot: original separation� lightplot,backprojectedseparation� dashedlines: 1	 2	 3	 7�5o errortolerance.
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Fig.29.Thecurrentlanedeparturepoint is foundattheintersection of theestimatedlanegeometryandthevehiclemotionmodel.

Fig. 30.Co-driver DAS screen-shot.Circlesrepresentdriver gaze.(a)Sign detected.(b) Driver glanced at speedometer.
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Fig.31.Screen-shotsof theAutomatedCo-driver. Prolonged
inattention detected.Large circles:no circles are shown in
this caseasthe driver’s gazeis outsidethe field of view of
thecamera(consistentwith thedriver inattentiondetected).

Fig. 32. Screen-shotsof the AutomatedCo-driver. Vehi-
cle speeding,althoughlast speedsign wasobserved by the
driver. Largecircles:drivergaze.

Fig. 33. A sequenceof screen-shotsof theAutomatedCo-driver. A lanedeparture thatwasseenby thedriver is shown. Large
circles: drivergaze.

Figures33 and34 demonstratecasesof detected lanede-
partures.Directdriver observation enablestheAutomatedCo-

driver to permit thedriver to departthelanein thesequencein
Figures33.
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Fig. 34.Screen-shotsof theAutomatedCo-driver. Lanedeparturewarnings.Thefinal caseshows whenthedriver wasturninga
cornerwithout indicatingor lookingin thedeparturedirection.Largecircles:driver gaze.

Fig. 35. AutomatedCo-driver screen-shot sequence.Circles represent driver gaze. (a) Approachingpedestrian detected. (b)
Pedestriandeterminedto beno threat.Arrow addedmanually afterwards.

Figure 34 shows several casesof intentional lanedepar-
ture.The final caseshows a lanedeparture without eye-gaze
verif ication.Thedriver is turning left but hasnot indicatedor

lookedin thatdirection.Direct driverobservation enablesusto
detectthis final casewithouthaving to warn thedriver during
thefirst threeintentionalcases.
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Fig. 36.(a) Approachingpedestriandetected.(b) Pedestrianseenby driver. Arrow addedmanually afterward.

Fig.37.Sequenceof screen-shotsof theAutomatedCo-driver showing amonotony warningoccurring.Largecircles:driver gaze.
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Fig. 38. (a) Gazechangeat 19.3 secondsthen intendedlane
changeat 19.9seconds.(b) Gazechangeat 44.9secondsthen
intendedlanechangeat 45.3seconds.(Green“o” and lines),
sampledgazeerror extentsprojectedonto groundplane� (Red
“x” and lines),sampled lanepositionandwidth.

Figures35 and36 show caseswhere directdriver observa-
tion enabledthesystemto verify thatthepedestrianthreathad
beenobserved, soanalertcouldbesuppressed.

Finally, Figure 37 demonstrates a case of a visually
monotonousstretchof highway. Visual monotony is detected
after several minutesof monotonousroad conditions.A vi-
sualalertisgivenindicating theheightenedfatiguerisk in this
scenario. The monotony is broken as the driver approachesa
slowervehicle.

Figure38 shows thelaneestimatewith gazedirection pro-
jected onto the ground plane. In thesecasesthe driver eye

Fig. 39.Unintendedlanechange.No discernablegazechange
to correlatewith lanechangeat20.6seconds.Driver reverts to
theoriginal laneat 21.4seconds.(Green“o” and lines),sam-
pledgazeerror extents projectedontogroundplane,(Red“x”
andlines), sampledlaneposition andwidth.

gazeshiftsfocusto thedestinationlanebeforethelanechange.
Thesecasesaredetectedas intendedlanechanges.

In contrastFigure39showsanunintendedlanechange.The
vehiclemovesinto theadjacentlanewithoutaneye-gazetran-
sition. Thesystemreportsthis caseas an unintendedlanede-
parture.Thedriver thencorrectslanepositionbringingtheve-
hiclebackinto theoriginal lane.

Strongdirectsunlightcausedsomeuncertaintyin the lane
trackingand,at times,evendisruptedthegazetracking.When
gazetrackingwasstrongandthedriverwasattentiveatthelane
center, uncertainty in the roadscenevision did not warrant a
warning.

Due to the safety requirements of the vehicle the trial
driverswerestaff andstudentsof thegroupbut not specifically
of this research.Theconstraintmadeit hardto detect genuine
inattentive behaviour. Nonetheless,the system performedas
intendedduring thetrialsanddid produceoccasionalwarnings
during other timeswhich werelikely to begenuinewarnings
of inattentiveness.

5. Conclusion

Observingthecomplementarystrengthsandweaknessesof hu-
mansandautonomoussystems,it is reasonablethatan integra-
tion of thetwo providesthebesthopeto improve roadsafety,
thuscombiningtheflexibility andfrailty of humandriverswith
the tirelessnessand inflexibility of automatedsystems.Our
conjecturewas that a systemcapableof estimating what the
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driver hasseen(thedriver’s observations)is key to addressing
driver inattention– a commonunderlying factorin many road
fatalities.

The useof driver eye gazecombinedwith road eventsto
estimatethe to driver’s observations was developedand the
feasibility of the approachwas verified. Due to the “looking
but not seeing”case,it i s not possibleto determine that road
eventsareseen for certainby thedriver. However, it was shown
thatroadeventsalmostcertainly missedby thedrivercouldbe
identified.

The systemscorrelatethe driver eye gazewith roadscene
events to estimatethe driver’s observations. The benefit of
driver observation monitoring was also demonstrated to sup-
pressredundantwarningsandcancelwarning“with aglance”.
Thesesystemshave the potential to provide the detectionor
earlier warning of missedroadevents. The timely knowledge
of thesemissedevents would hopefully provide the precious
extrasecondsfor humanreactiontime.

References

Amditis, A. et al. (2006).Systemarchitecturefor integrated
adaptive HMI Solutions.Proceedingsof IEEE Intelligent
VehiclesSymposium. June,pp.388–393.

Apostoloff, N. and Zelinsky, A. (2004).Vision in and out of
vehicles:integrateddriver androadscenemonitoring.Inter-
nationalJournalof RoboticsResearch, 23(4-5): 513–538.

ATSB(2004).AustralianTransportSafetyBureau,Seriousin-
jury due to roadcrashes:roadsafety statisticsreport. Tech-
nical Report, AustralianGovernment.

ATSB(2006). AustralianTransportSafetyBureau, Fatal Road
Crash Database. http:www.atsb.gov.auroadfatal_road_
crash_database.aspx.

Bertozzi,M., Broggi,A. andFascioli, A. (2000). Vision-based
intelligent vehicles:State of the art andperspectives. Ro-
boticsandAutonomousSystems, 32: 1–16.

Carsten,O. andTate,F. (2001). Intelligentspeedadaptation:
The best collision avoidancesystem?Proceedingsof the
17th InternationalTechnical Conferenceon the Enhanced
Safetyof Vehicles, June, Amsterdam.

DARPA (2004). Defense Advanced Research Projects
Agency, Grand Challenge 2004. http://www.darpa.mil/
grandchallenge04/index.htm.

DARPA (2005). Defense Advanced Research Projects
Agency, Grand Challenge 2005. http://www.darpa.mil/
grandchallenge05/index.htm.

DARPA (2007). Defense Advanced Research Projects
Agency, Grand Challenge 2007. http://www.darpa.mil/
grandchallenge.

Dickmanns,E. D. andGraefe, V. (1988a).Applicationsof dy-
namicmonocularmachinevision.Machine Vision andAp-
plications, 1(4): 241–261.

Dickmanns,E. D. and Graefe, V. (1988b).Dynamicmonocu-
lar machinevision.MachineVisionandApplications, 1(4):
223–240.

Fletcher, L., Petersson, L., and Zelinsky, A. (2005a).Road
Scene Monotony Detection in a Fatigue Management
DriverAssistanceSystem. Proceedingsof theIEEEIntelli-
gent VehiclesSymposium.

Fletcher, L. et al. (2005b).Correlating driver gazewith the
roadscene for driver assistance systems.Robotics andAu-
tonomousSystems, 52(1): 71–84.

Franke, U. et al. (1998). Autonomousdriving approaches
downtown. IEEEIntelligentSystems, 9(6): 40–48.

Franke, U. andHeinrich,S. (2002).Fastobstacledetectionfor
urbantraffic situations. IEEE Transactionson Intelligent
Transportation Systems, 3(3): 173–181.

Gerdes,J. C. andRossetter, E.J.(2001).A unifiedapproachto
driverassistancesystemsbasedonartificial potentialfields.
Journal of Dynamic Systems,Measurement and Control,
123(3): 431–438.

Gordon,A. D. (1966). Perceptual basisof vehicularguidance.
PublicRoads, 34(3): 53–68.

Grubb,G. andZelinsky, A. (2004).3D vision sensing for im-
proved pedestriansafety. Proceedingsof the IEEE Intelli-
gent VehiclesSymposium. June,pp.19–24.

Haworth,N. L., Triggs,T. J. andGrey, E. M. (1988). Driver fa-
tigue:Concepts,measurement andcrashcountermeasures.
Technical Report, FederalOffice of RoadSafetyContract
Report 72,HumanFactors Group,MonashUniversity, De-
partmentof Psychology.

Holzmann,F. et al. (2006). Introductionof a full redundant
architectureinto avehicle by integrationof avirtual driver.
Proceedingsof the IEEE Intelligent VehiclesSymposium,
June,pp.126–131.

Hsu, S.-H.and Huang,C.-L. (2001).Roadsign detectionand
recognition usingmatchingpursuitmethod.ImageandVi-
sionComputing, 19: 119–129.

Isard,M. andBlake, A. (1996). Contourtracking bystochastic
propagation of conditionaldensity. Proceedingsof theEu-
ropeanConferenceon Computer Vision, April, Vol. 1, pp.
343–356.

Ishikawa, T., Baker, S. andKanade,T. (2004).Passive driver
gazetrackingwith active appearancemodels.Proceedings
of the 11th World Congresson Intelligent Transportation
Systems. October.

Labayrade,R., Aubert,D. and Tarel, J.-P. (2002). Real time
obstacledetection in stereovision onnon flat road geom-
etry throughv-disparityrepresentation.Proceedingsof the
IEEEIntelligentVehicleSymposium, France,June,pp.646–
651.

Land,M. andLee,D. (1994).Where we look whenwe steer.
Nature, 369(6483):742–744.

Loy, G. and Zelinsky, A. (2003). Fast radial symmetry
for detectingpointsof interest. IEEETransactions on Pat-
ternAnalysisandMachine Intelligence, 25(8): 959–973.



FletcherandZelinsky / Driver Inattention DetectionbasedonEyeGaze–RoadEvent Correlation 801

Maltz, M. andShinar, D. (2004).Imperfectin-vehiclecollision
avoidancewarningsystemscanaiddrivers. HumanFactors,
46(2): 357–366.

Matsumoto,Y., Heinzmann,J. andZelinsky, A. (1999).The
essential componentsof human-friendly robots.Proceed-
ings of the International Conferenceon Field and Service
RoboticsFSR’99, August,pp.43–51.

Neale,V. L. et al. (2005).Overview of the 100-CarNatural-
istic study and findings.Proceedingsof the International
ConferenceonEnhancedSafety of Vehicles, June.

OECD (2006).Organisation for EconomicCo-operation and
Development, Factbook 2006 – Economic, Environment
andSocial Statistics: Quality of life. http://www.sourcecd.
org, December.

OECD/ECMT(2006).AmbitiousRoadSafetyTargetsand the
SafeSystemApproach,OECDPublishing.

Pomerleau,D. and Jochem,T. (1996). Rapidly adaptingma-
chinevision for automatedvehicle steering.IEEE Expert:
SpecialIssueonIntelligentSystemsandtheir Applications,
11(2): 19–27.

Rasolzadeh,B., Petersson,L. and PetterssonN. (2006). Re-
sponsebinning: improved weak classifiers for boosting.
Proceedings of the IEEE Intelligent Vehicles Symposium,
June,pp.344–349.

Regan, M. A. (2005). Keynote address.Proceedingsof the
Australasian College of Road Safety (acrs), NSW Joint
parliamentarystandingcommittee(Staysafe)International
ConferenceonDriver Distraction, June,pp.29–73.

Seeing Machines(2001).FaceLAB: A faceandeye tracking
system.http:www.seeingmachines.com.

Stutts,J. et al. (2001).Therole of driver distractionin traff ic
crashes. Technical Report, Foundationfor Traffic Safety,
USA.

Summala,H. andNicminen,T. (1996).Maintaining laneposi-
tion with peripheralvision during in-vehicle tasks.Human
Factors, 38: 442–451.

Takemura,K. et al. (2003).Driver monitoringsystembasedon
non-contactmeasurementsystemof driver’sfocusof visual
attention. Proceedingsof the IEEE Symposium on Intelli-
gent Vehicles, June,pp.581–586.

Thiffault, P. and Bergeron,J. (2003). Monotony of road en-
vironmentand driver fatigue: a simulator study. Accident
AnalysisandPrevention, 35: 381–391.

Thrun,S.etal. (2006). Stanley: therobotthatwontheDARPA
GrandChallenge.FieldRobotics, 23(9): 661–692.

Treat,J. et al. (1979). Tri-level study of the causesof traff ic
accidents:� nal report – executive summary. Technical Re-
port DOT-HS-034-3-535-79-TAC(S), Institutefor Research
in PublicSafety, University of Indiana,USA.

Trivedi, M. M., Gandhi,T., andMcCall, J. (2005).Looking-
in and looking out of a vehicle: selectedinvestigationsin
computer vision basedenhancedvehicle safety. IEEE In-
ternationalConferenceonVehicular ElectronicsandSafety,
October, pp.29–64.

Victor, T. (2005).Keepingeyeand mind on the road. Ph.D.
Thesis, Departmentof Psychology, Uppsala University,
Sweden.

Viola,P., Jones,M. J.andSnow, D. (2005).Detectingpedestri-
ansusingpatternsof motion andappearance.International
Journalof ComputerVision, 63(2): 153–161.

Wandell, B. A. (1995). Foundations of Vision. Sunderland,
USA, SinauerAssociates.

WHO (2001).World health report. Technical Report, World
Health Organisation, http://www.who.int/whr2001/2001/
main/en/index.htm.


