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Abstract

Currentroadsafetyinitiativesare approaching thelimit of their effec-
tivenessn developed caintries.A paradigmshiftisneededo addess
the preventabledeahs of thousandson ou roads.Previous g/stems
havefocusedn ore or twoaspectf driving: ervironmentasensing
vehicledynamicsor driver moritoring. Our appoach is to consicer
the driver and the vehicleas part of a combired systempperating
within the road environment. A driver assistancesystemis imple-
mentedthat is not only respnsiveto the road ervironmert and the
driver’s actions but also designed to correlate the driver’s eyegaze
with road ewerts to determinethe driver’s observatiors. Driver ob-
servdion monitoring enablesan immedatein-vehiclesystemableto
detectand act on driver inattertivenessproviding the preciaus sec-
ondsfor aninattentivehuman driver to react. We presenia prototype
systentapale of estimatingthe driver’s obsenationsand detecting
driver inattertivenessDue to the “look but not see” caseit is not
possibleto prove that a road event has beenobservedoy the driver.
We show, howeer, thatit is possibleto detectmissedroadeventsand
warn thedriver appropriately.

1. Introduction

The daily occurrence of traffic accidentshas becomea hor-
rifi ¢ price of moden life. Complaceng aboutthe dangersof
driving contribute to the deathof more thanonemillion peo-
ple worldwide in traffic accidentseachyear (WHO 2001).
Fifty million more are seriouslyinjured (WHO 2001) In The
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Driver Inattention
Detectionbasedon Eye
Gaze—RoadEvent

Corr elation

Organization for Economic Co-operation and Development
(OECD) membercountries,road accidents are the primary
causeof deathfor malesundertheageof 25 (OECD 2006).

Thereis no doubtthat driver error is at the heartof road
fatalities (Treatet al. 1979).1n their landmarkstudy Nealeet
al. (2005)used100 vehiclesequppedwith video and sensor
logging equipmentto study how peopledrive and why they
crash.They foundthat78%of accidentsand 67%of nearacci-
dentsthey witnessednvoved momentaryinatertion (within
3 seconds)peforetheincident

We proposeto detectand actuponmomentarydriver inat-
tenion. Cars offer uniquechalengesn human-machineinter-
adion. Vehiclesarebeaming, in effect, robotic systemshat
collaborte with thedriver. To detectinattentionwe attemptto
estimatethe driver's obsenations in real-ime within the ve-
hicle. Throughtheintegration of driver eye-gazetrackingand
roadscenevent detection the driver behavior canbe validated
agpinsta model of expectedbehavior to determinecasesof
momentanydriver inattention.

Next, we conducta brief analysis of the problemof deah
and injury on theroad.In Sedion 2 we review relatedwork
andderive our approacho roadsakty. Section3 detailssys-
tem componentsdevelopedto implementour reseach. Sec-
tion 4 descrbesseveral inattentiondetection systemsusedto
verify theefficagy of driver obsewation monitoring. Thepaper
concludeswith a discussiorof the next potentialstepsin road
safetyin thelight of theseresults.

1.1.Motivation

Law enforcementjmproved vehicleandroaddesignand pub-
lic awarenesscampégnshave hada marked effecton accident
ratessincethe 1970s(ATSB 2004 OECD 2006) Little, how-
ever, hasbeenacdieved on the hard cases of roadsafety such
asfatigue, distractionand inattention(Treatet a. 1979 Stutts
etal. 2001 Nealeet a. 2005).
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Fig. 1. Roadfatalitiesfrom 1990to 2004 permillio n vehiclesacrossselectedOECD counties.Datafrom OECD (2006)
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Fig. 2. Fatigue correlatedaccidentsand all fatalcrashesDatafrom ATSB (2006).

Figure 1 plots the numberof road fatalities for several
OECD countriesoverthe past15 years While mary countries
suchas Frane and Spain, which were stating from a high
base have steadydeclines,countieswith the lowestfatality
rates,suchas Swedenandthe UK, no longerhave aconstant
decline. Insteadhedecreasén fatalitiesin thesecountriesap-
pearsgo be slowing (OECDECMT 2006) Infact,mostOECD
counties are losingtractiontoward the OECD aim of a 50%
reductonin roadfatalitiesfrom 2000 by 2013OECD/ECMT
2006).

One reasonfor this trend is that as road fatalities from
speedingand drink-driving fall, the diffi cult casesin road

safety fatigue,distractionand inattention, arebecomingmore
prominent.To gaugethis trendwe extracteddatalik ely to cor-
relate well with fatigue-inducedaccdents fromthe Austalian
RoadCrashDatabasgATSB 2006Y. Figure 2 plotsnight-time
single vehicle crashesawith the total numberof fatal crashes.
The plot shows thatthereis no significant downwardtrend in
(likely) fatigueinducedcrasheslespitea deardovnward trend
in fatal crasheser se.

1. Thedataextractedwas thenumberof fatal single vehiclecrashesluring the
night (22:00-7:00) comparedwith the total number of fatalcrasles
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Fig. 3. Diminishing returnsof vehicle autonomy On high-
ways: University of Bundeswehr Munich (UBM's) “Va
MORS” in 1987, Camegie Mellon University (CMU’s)

“Navlab5” in 1995.

It is naturalto concludethat the key to eliminating road
fatalities is to usurpthe failing componentthe humandriver.
Therehave beena numberof impressive featsof autonomous
driving. A famousearly systempioneeredy Dickmannsand
Graet (1988a,b)wasableto steera vehicle at well over 150
km/h on well formedroads.In the 1990sdemonstations of
subsequentvork in the field were also impressie, e.g. the
Navlab “No HandsAcrossAmerica” trial steered 98% of the
4500km trip (PomerleatandJochem1996). However, having
an aubmatedsystemaddressthe remaining2% of road sce-
narios proved extremelydifficult.

As illustrated in Figure 3 aubnomousvehicle capabili-
ties have a diminishing return on effort as the capabilities
becomemore adwanced. Urban scenescontan substntially
more compl«ity andvariancethanthe highway casesmean-
ing that 100% autonomyin urbanand highway scenaios is
much further away (Franle et al. 1998) In recent yearghe
United States Defene Advanced Resarch Projects Ageny
(DARPA) Grand Chalenge,in which roadvehicleshave been
aubmaied to drive in on-road off-roadcompettions, hasgen-
erated renewed intered in full vehicle autonation (DARPA
2004,2005). The eventswhile modelledon the “real world”
are carefully constained (DARPA 2007). While chalengng
to robotsthe test courseswould off er littl e diffi culty to an ex-
periencediriver as, again, handlingthe difficult casess still a
significanttime avay (Thrunet a. 2006).

Although autonomougechnologiesn vehicleswork very
well in their element(over 98%of thetime), thesesystemsre
highly susceptilte to being “tricked” by extremeor unlikely
circumsancegdueto the modelsthey are built on. Humanson
the otherhandareremakably flexible. They are ale to prob-
lem solve onthe fly, even whenprompted by themostimprob-
able situations.Yet they aresuscepible to fatigue,distracion
andinattention.

Maltz andShinar(2004)shavedthateven animperfectau-
tonomougechnologyfor driver assitancecould provide asig-
nificant road safety benefit. Sothe reseach agendashiftedto
driver support.Here we can use autonanous capabiities to
suppot thedriver.

Table 1 summarkesthe compkementarycompetencieof
a humanand an automated driver. Insteadof the traditional
model of a driver applying the control signal to the vehicle
to move throughthe oad environment,we can considertwo
drivers:the humandriver andthe autonomoudlriver, collab-
oratingto control the vehicle. The critical questionthen be-
comeshow dowe combinethe behaior of thetwo controlling
agents?

2.0ur Approach

Fortunatelyther is a readyanalogywhere two driversarein
chamgeof theonevehicle. Aimostevery driver hasexperienced
a warning from a passengerperhapsalerting him or her to
an obscuredcar while merging lanes,or a jaywalking pedes-
trianin ablind spot. Thesewarningsof inattentionsave count-
lesslives every day In arecentkeynoteaddresgRegan 2005),
RoadSafetyResearcheProfessoMichaelRega? highlighted
the factthat, unlike other comple, potentiallydangeousve-
hiclessuchasplanesandships, roadvehicles are operatechy
a single person.Thatsingle personis proneto error and may
be, dueto the day-to-cay natureof driving, ow to recognize
potental hazads. ProfessorRegan speculatedhat the intro-
duction of co-drivers in road vehicles could be the key to a
substantiateductian in roadaccdent.

Our reseach investigdes the implementatiorof an auto-
mated co-driver asarealizationof aroadvehicle equivalentto
aircraft pilot and co-pilot collaboration.

A humanaircraft co-pilot provides relief to the pilot by
assumingcontrd of the vehicle, but the co-pilot also double
checkslife-critical adions and sharesthe burden of adminis-
tration. We ervisagethat an AutomatedCo-driver would pro-
vide a role in road vehicleswhich is an amalgm of a vigi-
lant passengedriver aid and a safety system.An Automated
Co-driver could: doublechecklife-critical actiors relieve the
driver of tediousactiities and,crucially, warn aboutmissed
road events maximizing the readion time available for the
driver.

2.1.Driver Inattention

Given the high proportionof roadaccidentsthatinvolve inat-
tenion, it is our conjecturethat the primary contributing fac-
torsto roadfatalities,speed drink-driving, fatigue andlistrac-

2. ProfessorMichael Reganis a ResearctDirector at INRETS (The French
National. Institute for Trarsport andSafety Research)
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Table 1. Competenciesof human and automateddrivers.
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Humandriver

Automateddriver

Competento drive in 100%o0f roadconditions

Competento drive in 98%of highway conditions

Distractible,inattentve Vigilant

Susceptibleo fatigue Tireless

Subjectto boredomtedium Consistentmultitasking,servile

Highly adaptabé Limited programmedoehaviour change

High ambiguityanduncertaintytolerance
Highly evolvedyetfixed sensoryperception system

Limited programmeduncertaintytolerance
Limited yet extendalbe sensorysystemnot confinedto rangeof

humansensege.g.millimeterwave radar)

Limited reactiontime

Nearinstantarousreactiontime

Contributing factor: Causes:

sl
Inattention
)

Distraction
Alcohol &
drug use

Speeding

Results:

Road
Fatalities

Inattention

Inattention

Fig. 4. Accident contiibuting factorsthat leadto inatenion
which leadsto road fatalities.

tions, are all actually causef inattention.The contributing
factorsall impairthedriver’'s ability to reactin timeto critical
roadevents.Figure4 illustratesthis point. The primary causes
of accidentinducedriver inattenton which canleadto road
fatalities.

By concentatingour efforts on driver inattentioninterven-
tions, we uld break theseevent chains leadingto a sub-
stantial reductionof road fatalities acrossmary road scena-
rios.

2.2.Driver Observaibn Monitoring

Driverinattention is a highly transientstate andcanbe dueto
anidentifiable distractionor simply concentratioron a com-
petng driving task. Monitoring the vehicle provides knowl-
edgeof the vehicle stateand the driver's actions.Monitoring
theroadsceneenableas to identfy roadscere events.How-
ever, only driver inaction, notinattention, canbe estimaedus-
ing vehicleandroadscenemonitoringalone Givenatimewin-
dow of afew secondsdriver inaction detectionwill occurtoo

late to intervene(Nealeet al. 2005) To detecttruedriver inat-
tenion, whatthe driver hasor hasnot seermustbeidentified.
Asillustratedin Figure 5, to detectdriver inattentionrequires
accuratereal-time driver eye-gazemonitoring combinedwith

vehicle and road scenestate.

Our expeiiments will concentrateon combining driver
monitoring with roadscendeatureextractionto achieve driver
obsenation monitoring.

Direct driver monitoring has beenthe subjectof clinical
trials for decades however, monitoring for usein Advanced
Driver Assistance Systens is relatively new.

Head position and eye dosure have been identified as
strong indicators of fatigue (Haworth et al. 1988) How-
ever, whenaugmentedvith informationaboutthe vehicleand
traffic, additionalinferences can bemade

GordonA. D. (1966)conductedin in-depthanalysi of per
ceptualcuesusedfor driving. He descrbeddriving asatrack-
ing problem.In on+oadsystemslandandL ee(1994) investi-
gated thecorrdationbetweeneye-gazediredion and roadcur-
vature, finding thatthedriver tendedo fixate onthetangenof
theroadahead Apostolof andZelinsky (2004)usedgazeand
lanetracking to verify this correlation onloggeddata,alsoob-
servingthatthe driver frequentlymonitoredoncomingtraffic.
Ishikawa et al. (2004) explored backprojecting the driver's
gazedirectiononto thescenebut scenefeaturesverenotiden-
tified. Takemuraetal. (2003)demonstrated numberof corre-
lations betwea headandgazedirection and driving taskson
loggeddata.

Driver monitoring can also be used for validaing road
sceneactivity. By monitoring wherethe driver is looking, us-
ability of the safetysysem canbe improved by suppressig
mary unnecessaryvarnings.As long as a road event, such
asanovertaking car or wanderirg pedestrianis notedby the
driver no actionneedsto betaken.

Thebehavior of the driver several secondsheforeandafter
an importantdetectedoad eventis used to dedde whethe to
issueawarning.Driver monitoringis achiesedvia an eye-gaze
tracking sysemandvelhicle instrumentation.
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Fig. 5. Driver obsenation monitoring: driver eye-gazetracking ard critical road scenefeaure detection are combinel to deter-

minewhatthedriver is sseing(or not seesing).

2.3.AutonomousFunctions For Driver Support

Many groupshave tackledspecific sensingand control prob-
lems for driver suppot. A quick surey of the Intelli-
gent TransportSystems (ITS) literature reveals much work
in lane tracking/lkeeping (Dickmanns and Graefe 1983b

Pomerleauand Jochem 1996 Bertozzi et al. 2000), obsta-
cle/vehicle/pedestrian/signdetection (Hsu and Huang 2001

Franlke andHeinrich 2002 Labaymladeet a. 2002 Grubband
Zelinsky 2004),and driver monitoring(Takemuia ¢ al. 2003).
However, fewer groups have combineddifferent classesof
componergto form integratedsupportsystemswith somere-

centnotableexceptionsbeing Takemuraet a. (2003), Trivedi

etal. (2005)andHolzmannret al. (2006).Interestin integration
is emeping with the goak of multidisciplinary networks aich
asthe EU Humanistand AIDE road safetyprojects(Amditis
etal. 2006).

2.4.Vehicle—Driver Interaction

Holzmannet al. (2006) recenly outlined an architecture for
predictive pathplanningusinga “vir tual driver” model,where
the driver’'s actionsin addition to other inputs are fed into
the driver assistancesystem. The system, basedon its own
confidence and the estimatedfitnessof the driver, generatesa
safevehicle control action.No directdrivermonitoring seemed
to beused.This architectue would be agreatcomplemertary
componento our system.Gerdesand Rosseter (2001) used
forcefeedbackhroughthe steering wheel asa natural human

mechine interface for lane-keeping. The driver feds a gen-
tle force throughthe steerng wheel encouragingthe driver
to maintaina centralposition in the lane. The perceptionto
the driver is that thecar is being guideddown the lane asif
it is on rails, or driving aong a trough The appliedforceis
weakenough however, that the driver can override the force
to overtale or depart.Similarly, Similarly, Carstenand Tate
(2001) usedfeedbackthroughthe accekrator for speedcon-
trol. The acceleratorpedal becomesincreasinglydifficult to
depress as the speel limit is exceedel. Theseinterfacesare
perfect examplesof how a systemcan give feedbackto the
driver in a natural unobtrusve way. To permitusto drive on
public roadswe aould not useactuatedsystemsin our experi-
ments. However, thesefeedbak interfacesarehow we ervis-
agea final systemto operate.

A particularly strong group due to the inclusion of hu-
man factorsand intelligentvehicleresearches, used a sensor
rich vehicle for driver behaior modelng. Moving from driver
behaior analysis to assisance systemsthe group has re-
cently beencorrdating driver headposewith road sceneper-
ception (Trivedi et a. 2005). They show an improved clas-
sification of the driver intentto change lane whenheadpose
datais includedin themodelng.

Matsumotoet al. (1999 demonstratedtheadposeand eye-
gazetrackingas a potential human—machinaterface. There-
searchhasbeendeveloped by SeeingMachines (2001) into
an in-vehicle system.The systemcan acairaely track head
poseand eye-gazedirection dovn to 1 . We will use this
systemto determineeye gazeto corrdate with road scene
events.
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(a)
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Fig. 6. (a) The camera®n-boad the vehicle. The CeDAR active vision platform containingthe stereoroad scenecamerasand
facd. AB™ passie stereocamerasbservingthedriver. (b) CeDAR: CableDrive Active vision Robotin vehicle. Four cameras
are arangedn two stereopairs.Camerasare fitted with polarizing filters andfar-field camerasiseglarehoods.

Usingthis g/stem, Victor (2005)developedthe Percentage
Road Cente (PRC) metric which integratesdriver eye gaze
over timeinto ahistogramto detectdriver alertnessThegroup
usedatrail of colored lightsto leadthe driver’s attention back
to theroad whenthePRCmetric indicatedavisualor cognitive
distraction preoccupying the driver. Since we are monitoring
theinstantaneougazedirectionof the driver we prefernot to
causerival visual stimuli to the driving task so we will use
audtory messages.

2.5.Judging Driver Behavior

The taskof driving is oftendescribedasa trackingtask(Gor-
donA. D. 1966 LandandLeel1994).Thedriverinterpretsthe
road sceneprimarily by vision andthen applies the required
contol signal to the vehicle to maintain the correctrelative
posiion.

GordonA. D. (1966) reportedon a mathematicabraly-
sis of the motion of the road sceneto the driver. He con-
cludedthat, while driving, the roadappearsn steady stateto
thedriver. Driving thenbemmesa lateraltracking(lanekeep-
ing) problem.Roadboundariesnot focusof expansion(asof-
ten thoughj, is the dominantcue for aligning the vehiclein
thelaneslf thevehicle is misalignel laterallythewholeview
field moves asaresult Summalaand Nicminen(1996)demon-
straed thatperipheralvision wassuficientfor short-termlane
keeping. Whenthedriver islanekeepingthe peripheralision
is capableof verifying that smal motionsin the road scene
indicate that the vehicle is on tradk. When the vehicle starts
to diverge from the lane direcion, the inducedwhole view
field motion alerts the driver to take direct notice. Correht-
ing thedriver eye gazewith theroadscenethis meansthatfor
lane keeping the driver doesnot always needto fix ate on the

roadfor safe driving. However, when thevehicle is misaligned
with theroadahead suchas during lanedepartues, the driver
would receve astrongvisualcueto monitor theroadposition.
If thedriver is not observingthe roadat this time, thenthis is
asignificantindicator of inattention.

This leadsto the questionof wherethe driver would look
in the road scenefor attentve lane tracking. In a dinical
trial Landand Lee (1994)investigatedthe correlationbetween
eye-gazedirection and road curature.The group found tha
thedriver tendedo fixate on thetangentof theroadahead.

Road seenefeduressuch as sgns, pedestriansand obsta
clesrequire foveatedvision. Maltz and Shinar(2004) proved
thatperipher visionisinsuficientfor road hazad detection.
For our systemthis meanghatto have seera aiticalroadob-
jectthedriver musthave,atsomestagedirectedthdr eye gaze
direcly attheobject.

3. Developed Capabilities

The vehicle hasbeenfitted with sensorsto gather odometic
information as well as £nsas for monitoring the driver’s ac-
tions suchas strain gaugeson the steerng shaft, turning in-
dicator and brake sensos. The principle sensos usedon the
vehicle are video cameas. Figure 6 shows the vision systems
configuration. Computingis doneon-boardthe vehicle using
several standarddesktopcomputers.

3.1.GazeMonitoring in Vehicles
Thevehicleis fitted with afaceLAB™ eye-gazetracking sys-

tem. face. AB ™ is a driver monitoring systemdeveloped by
SeeingMachineqSeeingMachines2001)in conjunctionwith
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Fig. 7. TheDistillation algorithm is composedf a Cueprocessoranda Parti cle filter runningconcurently.

the Austalian National University (ANU) and Volvo Tech-
nological Development. It usesa passve stereopair of cam-
erasmountedon the dashboardo capure videoimagesof the
driver's head.Theseimagesare processedin real-timeto de-
terminethe 3D poseof thedriver'shead(to 1mm, 1)as
well asthe eye-gazediredion (to 1). Blink ratesand eye
closurecanalsobemeasured.

3.1.1.LaneTracking

A common problem in lane tracking is road appeaance
changesdue to shadaevs, glare and road works (Pomerleau
and Jochem1996 Bertozziet al. 2000) With the excepton
of the physicallimits of the sensor in orderto achieve robust
lanetrackingmultiple mettodsof imageprocessingieedto be
undetakenand integratedbasedon the prevailing road con-
ditions. The generc Distillation algorithm was developedfor
thispurposeTheDistillation algorithmis avisualcueprocess-
ing framework (seeFigure 7). The framavork consgts of two
cycles.Thefirst cycle, the cuefusioncycle, performsa cost—
beneft analysisof the variousvisual cuesto distill the com-
bination of cueswhich provide the besttrackingdiscrimina-
tion. The secondcycle is a particle filter (condensatiorago-
rithm (Isardand Blake 1996) to estimatethe statedistribution.
A detaileddiscussionof the agorithm is given in Apostolof
andZelinsky (2004) Figure 7 shaws a typical laneestimate,
whetr theinitial systemhasbeenextendedto usea dothoidal
road cuvature model and a covariancemetric is usedto in-
crementdly vary thelook aheal distance. Thelane tracker has
beentestedon datafrom a 1800 km roundtrip tracking the
roadalonga variety of roadtypeswithoutadjustment.

3.2.0bstacleDetectbn

The Distillation algoiithm hasaso beenapplied in the ob-
stacledetection system.The obstale detedion systemuses a

setof visual cuesto segmentard track obstacks. The detec-
tion phaseof the systemsegmentspotentialobstaclegrom the
stereodepth map, edge and motion images.Thesepotental

obstaclesare very rough guessesvith mary fase positves.
Thesecandidatesre injectedinto the Distillaton algorithm

menionedabowe. True obstaclegorm clusterswithin the par-

ticle spa@, whereasfalse deteds dissipde. Obstaclesamples
are defined with respectto the lateral and longitudinal lane
posifons, size and \velocity. While the state spaceis in world

coominatesthe sampleevaluaton is doneby projectingback
into the sensorimagespace.

The foll owing equation is used to evaluate eat sample:

N .
I i
It Sp

S — 1)

P

where spi is the pth pixd from thesetof pixels Sgenested by

paticlei, I’ s isthevalueof pixel s from the obsevation
imagel usedfor the jth cue,N is the numberof pixelsin the
regionin imagespace,and (setto 0001) is usedto support
the possibility that the sensoris in error. Figure 9 shows the
leadingvehicletraded by thealgorithm.

3.3.Sign Recognitio

Symbolicsignsare detectedy locatingsigndik e shapesin the
imagestream.The systemusesthe fastradial symmetryoper
ator (originally developedfor eye detection(Loy and Zelinsky
2003))with onlineimageenhancement he systemwasused
to effectively detect speedsignsasthey are the mostfrequent
signsencoungred,but asimilarmethodcouldbe usedto detect
symbolc roadsigns(Fletcheret al. 2005b) Figure 10 shows
the algorithm applied to circular signs in poor road condi-
tions.
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(a) Long look ahead

(b) Short look ahead

Fig. 8. Lanetrackinglook aheaddistancevarieswith certanty measuredy the samplespreadf the dominantmode.

3.4.Pedestian Detecton

A pedestriandetectionsystemwas developed by Grubb and

Zelinsky (2004)(seeFigurell). The systemusedstereoccam-

eras, V-disparity and support vecor machinesto achiere a
high falsenegative rate. This systemand the work of Viola

et al. (2005) hassponsoredhe developmentof a secondsys-

tem by our project collaborators,the National ICT Australia

group (Rasolzadehet a. 2006). Viola et al. (2005) imple-

menteda methodof detectingpedestrans usingHaarfeatures
andAda-boost Themoduleis usedto detectand trackpedes-
triansfor our assistane system

3.5.Visual Monotony Estimation

A gred irony of transportsystemsresarchis that advances
in road andvehicle safetycanendup causingnew threatsto
road users.Thiffault and Bergeron (2003) found that the vi-
sualmonototy isakey inputto driver fatigue.Car manufctur
ersandinfrastructureauthoritieshave mllaboratedo attenuate

3. Ada-bmg isamethodof takinga mllecion d weakclassifiersand “boost-
ing” them so that togethera combinaton of classfiersis derived that can
stronglyclassfy the dataset

stimulationfrom the off-driving tasksandeasethe on-drving
task.An unfortunateconsequece is that sectionsof roadthat
were onceprone, for exampk, to headon collisions are be-
coming (after roadupgradesjatigueaccidentzones.

To automaticallyneasurehevisualmonotory in aroadse-
guencerequresa metic of the variance(or information con-
ten? of thevideosequencever time. Moving PictureExperts
Group (MPEG) encodingfills this requirement MPEG ex-
ploits the propertythatin moving picturesonly smal regions
of theimageactuallychangesubgantially betweerframes En-
codinga set of framesover a diding time window hasshavn
a strong correlation to a humanjudgedmonotory scale.One
failing of the MPEG compressioraes a monototy detectoris
in situationsof poor visibility such as fog. The taskwas not
monotonouyetthevideowill compresswell. We usethelane
tracking look aheadlistanceto detectthesetypesof cases.

We conductedday, duskand night roadtrials. To investi-
gate how bestto use MPEG encodingto representmonotory
we encodeda setof movieswith varying samplng rates ratios
and sequencdengths.Figure 12 shows a result of one trial.
Trendsof smaler compressiorratio (or increasedmonotory)
appeasthevehicle leavesthecity for thehighway andalong
thecountly roadin dayand nighttrials. Thelanetrackinglook
aheadlistancds effective & identfying sectonsof roadwith
a lower morotory than expectedby the MPEG compressin
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Fig. 9. Distillation agorithm trackingtheleading vehicle. Left: Dominantmodeprojectedontotheimage.Right: Visualzation
of thedominantmodein the partide space.

Fig. 10. Sign detectionusing Fast Radial Symmety Transfom (FRST).The bottom left corner shows the FRSTimage,where
theredcrossesighlight detectedsigns.

alone(Fletcheret a. 2005a).Theinitial trials werelatervali-  differenttraffic types.The metric was highly correlatedwith
dated by a1800km roundtrip alonga variety of roadsandfor  thehuman-perceed monotory.
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Fig. 11. Online pedestriardetection. The bask for the sysemusedin the AutomatedCo-driver.
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4. Driver Inattention Experiments

To investigate driver inattentiondetectionwe developed a
numberof prototypesysems:

Roadcenterinattentiondetection- A simpleapplicaton
using the driver obsenation monitoring and the vehi-
cle speedalone.This gystemimplementsinstananeous

driver inattenton detectionusing an assumedoadcen-
ter.

Road ewert inattention detection— This system inte-
gratesa single road event source, namelyspeedsigns,
with gazemonitoringto demonstatethe basiccasef
driver obsenation monitoring accodingto thematrixin
Table 2.



784 THEINTERNATIONAL JOURMNAL OF ROBOTICS RESEARCH/ June2009

Table 2 Driver behavior matrix used by the system to
determine the appropriate state. OK: no action requir ed.
INFO: provide on-screen reminder to operator. WARN:
provide auditory reminder to driver.

Driver “Seen” Missed Acknowledge
Driver Behavior OK OK INFO OK
DriverBehasior Not OK INFO  WARN INFO
sign
40
€
5

<x\>

gaze

Fig. 13. Thescenecameraandgazedirectionis analogougo a
two-camerasystem.

Multiple road event inattentiondetection— The final
systemintegratesall available subsystemgo demon-
strateour bestapproximatbn of afully functionaldriver
inattentiondetectionsystem.

Ourapproachis to considethedriving taskasa dosedloop
systeminvolving thevehicle, driver andtheroadervironment.
The systemseleced intenentions accoding to the behavior
matrixin Table 2.

4.1.Correlating Eye Gazewith the Road Scene

Scenecameraand eye configurationis analogousto a two-
camerasystem (see Figure 13). Gaze directions trace out
epipolar lines in the scene camera.lf we had a depth esti-
mate of the driver's gaze,we could projectto a point in the
scenecameraSimilarly, if we had the objectdepth we could
re-projectonto theeye andestimatetherequiredgaze A depth
estimateof the gazeis hardto obtain.A commonassumpion
is thatthe gazeangle and angle in the seenecameraare the
same.ln practicethis assumptionamountsto supposing that

eithe thescenecameais aufficiently closeto thedriver'shead
(equivaent to atrivial baseline)or thatthe objectsof interest
are nearinfinity (Land andLee 1994 Takemuraet al. 2003
Ishikewa et al. 2004).1n thesecasesrror boundson the gaze
directon (notfixation duration)areinfrequentlyusedand even
lessfrequenty justified.

The objectdept could be estimatedusinga secondscene
camerarunning the same detectionsoftware or assumptions
on objectsize and/or road layout. However, it is desirable to
maintain flexibility of the implementedobjectdetectionsys-
temswhich could usea single cameraand have no strong as-
sumptonson the objectscale.lf we assumehatthe depthof
the objectis unknavn, we caninsteadmodelthe effect of the
disparty error in our confidenceestimae.

The effect of an unknawvn stereodispaity will be adis-
placementlong the epipolar line defined by the gazedirec-
tion on to the scenecamera.The disparity; as with any stereo
configuration,will be mostapparenfor closeobject andre-
ducebyal x relaionshpwith distancefromthebaselineThe
angulardeviation reducesasthe angle becomesmore obtuse.
To getan upperboundof the likely dispaity deviation we can
compuetheworst-caseadisparityfor ourcameraconfiguration.
With referenceto Figure13,andusingthescenecameracenter
asaworld referenceframe,the scenecamen and gazeangles
for asignat Xsign Ysign Zsign Caneasily bederived:

cam gaze
Ksi Xsi X
arctan—2"  arctan—2t 9% ()
sign Zsign Zgaze
cam gaze
Yei Yeign Y,
arctan—2"  arctan—2" _9%¢ ©)
sign Zs.ign Zgaze

The worst-asedispaity thentranslateso whenthe objed is
closestto the vehicle on the driver’s side of the road, equiv-
alentto an objecton the right shoulderof a singledaneroad
(note that our sysem is in a right-handdrive vehicle). The
field of view of the scenecamea limits the closestpoint at
which the objectis visible. The closestvisible objectis at
30 16 80 forthe50 field of view of the canera. The
worst-caseheight of the object relative to the seene camera,
16, would be whenit is on the ground(this is worse than
ary actual caseas the objectwould not be visible dueto the
bonnej. With pessimisticestimatef thedriver (far) eye po-
sition relative to the scenecameramanually measuredo be
Xgaze 022 Ygaze 01 Zgae 02, thefinal errors be-
come

206 187 19 (4)

cam gaze

113 104 09 (5)

cam gaze
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Therefore theworstexpecteddeviation dueto stereadisparity
is 19 horizontally and 09 vertically, which is on a par
with othererror sourcesn the system.Theexpecteddeviation
for themajority of casesvherethe sign is further away is sig-
nificantly less.Thedeviationis twice aslargein thehorizontal
direction,implying that a suitable approximaton of the toler
anceregionwill be anellipsewith a horizontal majoraxis.

To determinethe overall toleranceof the system,two fur-
therfactorsneed to be accommodatedThe gazetracking sys-
tem has an accuracy of 3 and the field of view of the
foveated region of the eye is estimatedto be around 26
(Wandell1995).Theaccumulatedolerancds thesum of these
soucceswhich for our experimentaketupcomesto 75 hor
izontaly and 66 vertically. Thisallows usto claim thatthe
driver was very unlikely to have seenthe objectif the object
andgazedirectionsdeviate by morethanthis tolerance.

\erifying the FoveatedField of View

To getasensef thefield of objectdiscriminationability of the
driver, asimpletrial wasconstructedisinga desktopPC.Wan-
dell (1995)statesthe foveatd region of the eye to be aound

2 6 , athougha substntial conedensit existsup to around
20 . A simple progamwasmadeto presenspeedsignsfeatur
ing varying speedgo the subjectat differentpositionson the
screen Highway roadfootagewas shavn in the backgound
to add a small amountof realismto the scene.The testsub-
ject was asked to fix their gazeon a stationay crosson the
screenandto pressthe correspondingnumberon the keypad
to matchthe presentedsign. If the subjectbroke their gazeor
otherwiseinvalidatedthetrial, they pressedo key or “0” and
theresultwasdiscardedFigure 14 presentsa typical screen-
shotfrom the testprogram. A setof five subjectswith nomal
(or corrected)eye sight were eachpresentedvith 200 signs
(100fixating to theleft, 100fixating toward theright). There-
sults (seeFigure 15) shaw thatreliade discrimination ability
dropsoff at over 4 fromthefixation point. Theuseof thetrial
was to provide a rule of thumbfor the discrimination ability
of the driver in the context of theroadobjecs. The estimated
field of discriminationwill beusedto judgewhetherthedriver
would be able to see apatticular roadobject

In-vehicleVerification

We comducteda verification experimentto testthatthe system
wasindeedjoingto beableto detect whetherthedrivermissed
an objed. Thedriver wasaslked to fix theirgazeonan object in
thescene A sign wasthen placedata ceatain distancefrom the
fixation point Thedriverwasthenaskedto identify theobject.
The objectwas one of eight possibilties. The proportion of
correct classficationswas loggedalong with the driver-gaze
angk and apparentign postion in the scenecamen. 30 m,

Fig. 14. Screenshot of PC testapplicationto gather data on
gaze object recogniton field of view. A test subjectis re-
guestedto fix their gazeon the cross. The Speedsign peri-
odically variesin posiion and speed10,20,3,...,90).A road
video sequencewas playedin the backgroundto add context
for thetrias. The subctenteredthe “guessed’sign via anu-
meric keypad(“1"—*9").

20 m and 10m depthswere testedagainst four differentdis-
placementdetweerthe object and fixation point The object
sizewas 0 45 m in diameter For each combinationof depth
anddisplacementientrials weredone.

Figure16 shows thedriver's objectclassifcationerror rate
versusthe angle betweengazeand objectposition. Expected
recogniion ratesfall asthe objectbecomesmore peliphesd
in the driver's field of view. Theresultsof this trial verify our
expectationthat, while it is hard to prove the driver saw an
object,it is possibleto estimate,with reasmableconfidence,
whenthedriver wasunlikely to have seentheobject.A curious
effect was noticed(representecby a aoss inthemiddle of the
graph)whenthedriver wasvery closeto the object. Thelarge
apparensizeof the objectin thedriver’s field of view seemed
to aid the recogntion rate.However, this only occurredwhen
objectswere closeto the vehicle, which is not whendrivers
typicaly seeroadobjects.Thedriver repored not consciousf
beingable to seethe objectin this case.

This verification demonstratethe expectedstrengthof the
systemtheability to detectwhen the driver has missedan ob-
ject. It is impossibleto determine whetherthe driver saw the
object, as,even with perfectmeasurementf a pefect gazedi-
rection match,the driver’s attentionand depth of focuscannot
be determinedIf the driver is looking in the direction of the
object,it is anambiguousasewheterthe driver noticedthe
object,thusnowarningisissued.
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4.2. AssistancesystenmbDesign

The AutomatedCo-drivers canbe thoughtof (andare imple-
mented)as instance®f the AdvancedDriver AssistanceSys-

tems(ADAS) logic engineshovn in Figure 17.

4.3.RoadCentre Inattention Detection

Thefirst sysemwas developedto demonstatethe beneits of
theimmediag of directdriver gazemonitoring. Previoussys-

temsusedn simulationor roadtrialshave usedmetricssuchas
thevariancein steeringwheelmovementsto gaugethefatigue
level of the driver. Becausehesesystemscomputestatistics
over time, thereis a significantlag béweendriver inattention
and adion by the system.Online real-timedriver gazemoni-
toring caneasily be usedto detectshortperiodsof driver dis-
tracton.

Similar to the percentageroadcentermetric (Victor 2005),
driver gazecanbe analyzedto detect even shorter periods of
driver distracton. The faceLAB™ sydem reaily allows the
implementatiorof an online distracion detecbr. The gazedi-
rection is usedto reseta munter Whenthe driver looks for-
ward attheroadscenethecounterisresetAsthedriver'sgaze
diverges,the counterbeggins. Whenthe gazehasbeendiverted
for more thana specifc time peliod, awarning is given. The
time period of permitted distractionis a function of the speed
of the vehicle.As the speedncreasesthe permittal time pe-
riod coulddropoff either astheinverse(reflectingtime to im-
pact)or theinversesquared(reflecing the stoppingdistance).
We usetheinversesquare .Oncethedriveris obsered to have
hada stablegazeat the roadahead the counterandthe warn-
ing is resetuntil the next diversion.As the vehicle speél is
considerednomal driving doesnot raisethe alarmsince dia-
maic movemens suchasoverthe shoulderheadchecksoccur
atslow speedsandthe overtedgazetoleranceslonger Situa-
tionswhenthevehicleis notmoving, suchaswaiting to meme,
pemit thedriver to look awvay fromthe roadaheadindefinitely
withoutraising thealarm.

Using thefaceLAB™ systemwe monitor driver headpose
andeye-gazedirectionvia the driver stateengine.Thewatch-
dogtimer insidethe driver stateenginewill be usedto verify
whetherthe driver hasnot looked at the roadfor a significant
peliod of time. An auditory warning is givenif the driver is
seernto beinattentve.
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Fig. 17. ImplementedADAS softwarecomponentarchitecture.

Fig. 18. Roadscene inatentiondetectionAutomatel Co-driver screen-shot.

On-roadTrials ) . ) )
setuntil next time. One conclsion from the trials wasthat a

Figure 19 is a sequencef screen-shotshowing the typical ~ roadpositionestimatewould help the sysem. In somecases,
responsavith a distracteddriver. Once the distractionthresh-  whenthe road had significantcurvature, the system wastrig-
old is crossedfor the given speed,audio warningsincrease gered becausehe gazedirection wassubstantiallyaway from
until the driver looksforward again. Thenthewarningsarere-  thestraightaheadposition.
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(c)

(d)

Fig. 19. RoadscendnattentiondetectionsequenceCirclesrepresentriver gaze. (a) Driver looking forward. (b) Driver looking
at right mirror, alarm sounding.(c) Driver till distracted,alarm louder (d) Driver gazehasreturnedto the roadahead,alarm

silenced.

4.4.RoadEvent| nattention Detection

In this systeman autonomousietectionsystemrecognizesa
roadevent,in this casea speedsign.At thesametime, adriver
monitoiing systemverifies whetherthe driver haslooked in
the direction of the road sign. If it appearshat the driver is
awareof theroadsign, theinformationcanbe madeavailable
passiely to thedriver. If it appearghatthedriver is unaware
of the information,anauditoly warning is generated.

For this case, if the driver appearsto have seena speed
sign, the current speedlimit can be simply recordedon the
dashboarddjacentto the speedometeHowever, if it appears
thatthe driver hasnot looked at the roadsign and, over time,
a speedadjustmenis expectedand hasnot occurred,a more
prominentwarning would be given. This dill leavesthedriver
in contrd of thecritical decision,but supportsthemin away
thataimsnot to be overly intrusive. Warnings are only given
when the driver is not aware of the changeof conditions.
Finally, the waming can also be cancelledby observingthe
driver: a glanceat the speedometeconfirmsthatthe driver is
awareof their speedand the new detectedimit.

Using the reasoningn Secton 4.1, the worst expectedde-
viation dueto stereadisparityis 19 horizontallyanrd 09
vertically which isonaparwith other errorsourcesin thesys-
tem. The expecteddeviation for the majority of caseswhere
the sign is further away is significantly less. The deiationis
twice as lamgein the horizontaldirection,implying thata suit-
able appoximationof the toleranceregion will be an ellipse
with ahorizontalmajoraxis.

To determinethe overall toleranceof the system, two
further factors need to be accommodatedThe gaze track-
ing system has an accurag of 3 and the field of view
of the foveatedregion of the eye is estimatedto be around

26 (Wandell1995).The accumulagdtoleranceis the sum
of thesesources,which for our experimentalsetupcomesto

75 horizontally and 66 vertically. This allows us to
claim that the driver was very unlikely to have seenthe sign
if the sign and gazedirectionsdeviate by more thanthis toler-
ance.

To comelake the eye gazewith the sign position, the his-
toriesof the two information sourcesare examined.The sign
detectionsub-systemprovides a history of the sign locaton
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Fig. 20. Screenshot shaving “60” sign detectedandseenby driver. Top left: Live video showing eye gaze(large drcles)and
status(overlaid text). Bottom left: Last detectedsign (small circles)and eye gaze(large circles). Top right: 3D model of cur-
rent vehicle position, eye gaze (oversizehead)and sign locaion. Bottom right: Current deteced speedlimit, vehicle speed,
accelerabn and countdown for speedinggraceperiodin frames.

sincedetectedThis includesall framesfrom whenthe sign
was first detectecbefore the sign was ableto be verified or
classified. Similarly, thefacelAB™ dataprovidesthe histor-
ical headposeand gazedirection.Whenasign hasbeenclas-
sified, the sign anglesand gazedirectionsare checked back
in time to whenthe sign wasfirst deteced. If the anglesfrom
ary previous framefall within the tolerancethe sign is re-
portedas being seenby the driver. If the anglesnever coin-
cide, the sign is reportedas missed.The systemprovides a
4 secondtolerance for the driver to achieve the speedlimit.
The timer is instigatedwhenthe measuredspeedexceedsthe
limit andthemeasurd aceleration isnotsignificantly decrea-
sing.

On-roadTrials

The systemwas ableto detectspeedsignsaroundthe Uni-
versity and evaluatethe implicationsfor the driver. Figure 20
shaws a screen-shotof the system demonstratinga typical
case.Figures21 and 22 ill ustrate the primary scenariosen-
counered. In Figure 21(a) the driver was watching a pedes-
trianandfail edto noticea “40” sign. TheAutomatedCo-driver

hasdetectedthatthedriver did notseethe signandhasissued
a red sign: missed!warning. Figure 21(b) shavs an instance
wherean “80” signwas detected the driver saw the sgn and

the vehicle was not speedingso no red warning was issued.
Similarly, in Figure 22(a) a “40” sign was detectedThedriver

sav the sign, the system assumedhe driver wasintentionally

speedingo awarning wasdisplayedout no soundalertgener

ated.In Figure 22(b) thedriver hasmissedthelastsignandis

speedingor morethana predefinedgraceperiod without de-

celerating.The SLON DOWN! warning is shown and an alert

soundissued.

Figure 23 shows the sgn and the gaze dredion separa-
tion angle for typical signsclassifed as“seen”by the system.
Notethetroughsnthe separatioranglegraphsreflectingtimes
whenthedriver lookedtoward the sign.

At onelocationin the testareathere wasa speedsign just
pastan entry road to the University Due to the intersecibn
geomety andabendshotly alongtheentry roadtheroadsign,
while in plain view on the road shoulder was not prominent.
Afterpassinghesign thedriverswereaskedwhethe they saw
the sign, andnoneof themdid. Figure 24 shows the sign and
the gazedirectionseparationangle for three test drivers. The
systemclassifies thesesigns asmissal. Notice the lack of di-
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(a) ‘40’ missed.

(b) ‘80’ seen.

Fig. 21. The two columnsare typical casesor the speedsign inattention systemwhenthe vehicle wasnot speedag. (a) The
sydem detecied that the driver mog likely missed the road sign. (b) The driver mostlikely obsenred the sign. Top row: Live
videofeedsshaving currentview, eye gaze(dotslarge drcles)and currentstatus(overlaid text) duringscreenshot.Bottomrow:
Lastdetectedsigns(smallcircles)andeye gazeduring detection(dots/large drcles). Thesmall circlesonthehoodandin thesky
in the bottom row are dueto a renderingbug at the time of test. They coincidewith stale returns that had a strong momenéary

circularreturnbut failed classfication.

reded gazetoward thesign, instea gazeis deadyontheroad
andmerging traffic to theright.

In Figure 25 some border line sign gazeangle sepaation
cases are shawn. There gppeasto be somedirected eye move-

mentbut the angleis greaterthan the angle error tolerance.

Watchingthe gazeand sign detecton it becomesbviousthat
the sign may bereadwell beforethe sign is detedable in the
image.Thedriver eye with muchbetteracuity thanthe video
cameracanrecognizethe sign furtheraway.

To addresghis casewe projectedthe sign position back
accordingo therecentvehicle egomoton. Thesign—gazesep-
aration angle wasthentaken as the minimum distanceto this
pah. Figure26 showstheprojectedpathsandtherevisedsign—
gazeangleseparationNow we seethatFigures 26(a)and(b)
are dassified as a1 and(c) remainslassified asmissal. Sim-
ilar to Figure 24, in Figure 26(c) the sign is on a bendin the

roadsothesign locaion remainson theleft of thecameaim-
age

For completenessve include Figures 27 and 28 showing
theimpect of the backprojectionof the “seen” and“missed”
signs.The classficationsremainunchanged.

4.5.Multi ple RoadEvent I nattention Detection

The final experimentis anintegration o the subsystemsut-
linedabove. Thatis, visualmonotory estimation,signreading,
lanetracking,vehicle detectionand pedestian detectioncom-
binedwith driver gazemonitoring.

RoadDeparture Calculation

To determinewhether the vehicle will departthe lanewe use
theintersectiorof the estimaed lane geometrywith the Ack-
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Fig. 22. Typical casegor speedthe sign inatentionsystemwhenthevehicle wasspeedingLeft: Live videofeedshaving current
view, eye gaze( dots/lage drcles)and currentstatus(overlaid text) during screen-shotRight: Lastdetectedsign (smal circles)

andeye gaze(dotslarge drcles).

emanmotion model of the vehicle (seeFigure 29). Theinter

sectionpointprovidesatime until departuresstimateassuming
thatthedriver maintainsthecurrentsteerngangle.To find this

point we solve the lane model and Ackerman equationsnu-

mericaly to find thearclengthto departue and,for a knowvn

speedthetime until depature.

To determne wheter a lane departue is intentional we
usethe depature point, the turning indicabrs andthe driver
eye gaze.If theturning indicatorsare opeiting andthe lane
departire point is in the samedirecion the warning is sup-
pressedThewarningis alsosuppressed thedriver gazehas
beensufficiently closeto thedepartirepoint. If neitherof these
criteriaaremetanauditorywarningis given.

On-lineRoadTrials

Now follows someillustrative casesof the combined sys-
tem. Like all of our systemsthe interfaceis for the experi-
menternat the driver, as audio warnings and gaze cancela-

tion provide the interfaceto the driver. The applicationcycles
througha decisn treeto deermine possble aerts. First po-
tental pedestriancollisions, then obstcles then lane depar
turesare verified. Thensign events, inattention,vehicle sta-
tusand finally monotory eventsare checled. Alertsare given
with unique sounds.Approachingobstaclesand pedestrians
obsened by thedriver ae notwarned,nor are lanedepartures
providedthe driver isindicatng or hasgazedin the departre
direcion.

Figure30showsthe AutomatedCo-driver detectingaspeed
sign. The vehiclewas not speedng so no warning wasgiven.
Thesystemdetecsanacknavledgementvhenthedriver looks
atthe speedoneter anyway.

Figure 31 shows inatention deteced by gazemonitoring.
A glancebackat theroadresetgheinattention alarm.

In Figure 32 theinattenton alarm hasbeenresetalthough
now the driver is speedag. Direct driver obsewation enabled
the systemto verify thatthe speedsign had beerobseved so
avisualwarningis given, theauditory alam is suppressed.
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Fig. 29. Thecurrentlanedepartue pointis foundattheinterseabn of theestmatedanegeometryandthe vehicle motionmodel.

(b)

Fig. 30. Co-driver DAS screen-shoCirclesrepresentriver gaze.(a) Sign detected(b) Driver glancel at speelomeer.
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Fig. 31. Screen-sshotsof the AutomatedCo-driver. Prolonged Fig. 32. Screen-shotsof the Automated Co-driver. Vehi-
inattention detected Large circles: no circles are shavn in cle speeding,althoughlast speedsign was obseved by the
this caseasthe driver's gazeis outside the field of view of driver. Largecircles:driver gaze.

the camera(consistentvith thedriver inattentiondetected).

Fig. 33. A sequenceof screenshotsof the AutomatedCo-diiver. A lanedepartire thatwasseenby the driver is shown. Lage
circles drivergaze

Figures33 and 34 demonstratecasesof detected lanele  driverto permi thedriver to departthelanein the sequencen
pattures.Directdriver obsevation enableshe AutomaedCo-  Figures33.
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Fig. 34. Screen-shotsf the AutomatedCo-driver. Lanedeparturenvarnings. Thefinal caseshowvs whenthe driver wasturninga
cornerwithout indicatingor lookingin the depaturedirection. Largecircles:driver gaze.

(@) (b)

Fig. 35. AutomatedCo-driver screenshot sequenceCircles represent driver gaze (a) Approachingpedestria detected. (b)
Pedestandeterminedo benothreat. Arrow addedmanualy afterwards.

Figure 34 shows several casesof intentional lanedepar  lookedin thatdirection.Direct driver obseretion enablesisto
ture. The final caseshows a lanedepartue without eye-gaze detectthis final casewithouthaving to warn the driver during
verification. Thedriver istuming left but hasnotindicatedor  thefirstthreeintentionalcases.
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(a) (b)
Fig. 36. () Approachingpedestriardetected(b) Pedesian seerby driver. Arrow addedmanualy afterward.

Fig. 37.Sequencef screen-shts of the AutomatedCo-driver showing amonotory warningoccuring. Largecircles:driver gaze.
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Fig. 38. (a) Gazechangeat 19.3 secondsthen intendedane
changeat 19.9seconds(b) Gazechangeat 44.9secondshen
intendedlanechangeat 45.3 seconds(Green“o” and lines),
sampledyazeerror extentsprojectedonto groundplane (Red
“x” andlines),sampéd lanepositionand width.

Figures35 and36 show caseswvhere directdriver obsena
tion enabledthe systemto verify thatthe pedest@anthreathad
beenobsened, soanalertcould be suppressed.

Finally, Figure 37 demonstates a case of a visualy
monotonousstretchof highway. Visual monotory is detected
after several minutesof monotonousroad conditions.A vi-
sualalertis givenindicding the heightenedatiguerisk in this
scenaio. The monototy is broken as the driver approachesa
slower vehicle.

Figure 38 shows the laneestimatewith gazedirection pro-
jected onto the ground plane. In thesecasesthe driver eye

projection (metres)
[5] [22]
T T

-~
T

26.5 2‘1 21‘.5 Eé Eé.ﬁ 23
time {secands)

Fig. 39. Unintendedanechange No discernablegazechange

to correlatewith lanechangeat 20.6secondsDriver revertsto

the original laneat 21.4seconds(Green“o” and lines), sam-

pled gazeerror extents projectedontogroundplane,(Red“x”

andlines) sampledanepostion and width.

gazeshifts focusto thedestinatiorianebefore thelanechange.
Thesecases aredeteded as intendedlanechanges.

In contrast Figure 39 shows anunintendedanecharge. The
vehicle movesinto theadjacentanewithout aneye-gazetran-
sition. The systemreportsthis caseas an unintendedanede-
paiture. Thedriver thencorrectslanepositionbringingthe ve-
hicle backintotheoriginal lane.

Strongdirect sunlightcausedsomeuncertaintyin the lane
tracking and,attimes,evendisruptedhe gazetracking. When
gaztracking wasstrongandthedriverwasattertive atthelane
center uncetainty in the road scenevision did not warranta
warning.

Due to the safety requiremens of the vehicle the trial
driverswerestaff andstudentsof thegroupbut not specifcally
of thisreseach. The constraintmadeit hardto detct genuine
inattentive behaviour. Nonethelessthe system performedas
intendedduring thetrialsanddid produceoccasionaivamings
during othertimeswhich werelikely to be genuinewarnings
of inattentiveress.

5. Condusion

Observingthecomplementargtrengthsandweaknessesf hu-
mansandautonomousysemsiit is reasonals thatan integra-
tion of thetwo providesthe besthopeto improve roadsafety,
thuscombiningtheflexibility andfrailty of humandriverswith
the tirelessnes@nd inflexibility of automatedsystems.Our
conjecturewas that a systemcapableof estimding what the
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driver hasseen(thedriver's obsenations)is key to addessing
driver inattention— a commonunderying factorin mary road
fatalities.

The use of driver eye gazecombinedwith road eventsto
estimatethe to driver's obsenations was developedand the
feasibility of the approachwas verified. Due to the “looking
but not seeing”case,it is not possibleto determne thatroad
eventsareseen for certainby thedriver. However, it was shown
thatroadeventsalmostcertainly missedby thedriver couldbe
identified.

The systemscorrelatethe driver eye gazewith roadscene
everts to estimatethe driver's obsenations. The benefit of
driver obsenation monitoring was also demonstated to sup-
pressedundantvarningsandcancelwarning “with aglance”.
Thesesystemshave the potental to provide the detectionor
earler warning of missedroadevens. Thetimely knowledge
of thesemissedevents would hopefully provide the precious
extra secondgor humanreactiontime.
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