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Abstract— Automated fatigue detection devices show much
promise in combating fatigue related accidents. One aspect
which hampers the introduction of these technologies is context
awareness. In this paper we develop and evaluate a road scene
monotony detector. The detector can be used to give context
awareness to fatigue detection tools to minimise false positives.
The approach could also be used by road makers to quantify
monotony on fatigue prone stretches of road. The detector
uses MPEG compression to measure the change in information
content of the road scene over time. We show that the detector
correlates highly with human identified monotonous scenes. The
technique is consistent over time and applicable for day and night
operation. The compression is augmented with lane tracking data
to distinguish between otherwise difficult cases. The detector is
integrated into a Fatigue Management Driver Assistance System.

I. INTRODUCTION

A great irony of transport systems research is that advances
in road and vehicle safety can end up causing new threats to
road users.
Drivers now enjoy:

• suspension design to minimise skeletal repetitive strain
injury.

• sound damping to reduce road and traffic noise.
• mirror placement and instrumentation design to minimise

driver effort.
• climate control to maintain a constant temperature regard-

less of the weather.
• cruise control to reduce the strain of driving over long

periods.
• smooth low-curvature divided roads.
• multiple lanes or overtaking zones to reduce instances

where drivers are stuck behind slower vehicles or need
to overtake using the oncoming traffic lane.

In effect car manufacturers and infrastructure authorities have
collaborated to attenuate stimulation from the off-driving tasks
and ease the on-driving task. The unfortunate consequence is
that drivers, now more than ever, are disengaged with the road
environment other than the lane keeping task. If the task of
lane keeping is under-stimulating, even for periods less than 20
minutes, the driver is susceptible to fatigue [1]. Consequently,
sections of road that were once prone, for example, to head
on collisions, are become fatigue accident zones (after divided
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Fig. 1. Introducing driver observation to supplement driver action monitoring.

multi-lane road redesigns). Ingersen et. al. [2] found that in
Australia most fatigue accidents occur on a few high quality
routes.

To address this problem, research has begun into how to
monitor and maintain driver vigilance. Driver Fatigue detec-
tion and intervention is an active topic in the driver assistance
systems. Unlike many other crash causes fatigue has proved
notoriously hard to police. Driver log books are the primary
tool used to manage fatigue in professional drivers however the
systematic under reporting of driving hours remains common.
In-vehicle driver monitoring has shown much promise for the
detection of inattention and fatigue. Per-close eye closure,
percentage road center eye gaze[3] and variance in steering
wheel movement (SWM) are a few examples of metrics found
to significantly benefit fatigue detection. One aspect which
hampers these metrics is lack of context awareness. For ex-
ample, many fatigue monitoring techniques struggle in urban
and suburban driving scenarios; frequent blind-spot checking
and intersection negotiation disrupt eye monitoring, frequent
manoeuvring disrupts steering metrics. By detecting monotony
in the road scene, fatigue monitors can be made context aware
and thereby able to bias their metrics to minimise false positive
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Fig. 2. Endogenous and exogenous factors contributing to fatigue [4].

warnings.

II. DRIVER ASSISTANCE SYSTEMS

Cars offer unique challenges in human-machine interaction.
Vehicles are becoming, in effect, robotic systems that collab-
orate with the driver. As the automated systems become more
capable, how best to manage the on-board human resources is
an intriguing question. Combining the strengths of machines
and humans, and mitigating their shortcomings is the goal of
intelligent-vehicle research.

In the past many fatigue metrics use indirect driver moni-
toring. The driver’s actions are measured and the driver’s state
was inferred. As vision systems have improved direct driver
monitoring has become feasible. Per-close and Percentage
Road Centre eye gaze metrics are the fruits of direct driver
monitoring. Now we can go a step further, by integrating road
scene data with driver data we can infer far more about the
driver’s behaviour - not only through the driver’s actions, but
also by the driver’s observations (as illustrated in Figure 1).

III. DETECTING FATIGUE

The contributing factors of fatigue can be divided into
endogenous (internal origin) and exogenous (external origin)
sources. Lack of sleep can be considered an endogenous factor
while lying in a darkened room would be an exogenous factor.
Figure 2 shows the decomposition of contributing factors of
fatigue. A recent trend in the psychology literature is to define
monotony as an exogenous factor as opposed to a mental
state (which would be endogenous, similar to boredom)[4].
In this way monotony can be used as an attribute of a task in
a particular context. That is a task can be explicitly labeled
as monotonous or non-monotonous (stimulating). The key
point is that the monotony of the task can be decoupled
from the actual mental state of the person. So regardless
of how a task effects a person, if there are infrequent (or
periodic) stimulus, low cognitive demand and low variance

Road Type Scenery Disruptions Road Curvature Monotony

Urban road Cluttered Frequent High Low
Country road Moderate Few Varying Moderate
Minor highway Sparse Varying Moderate Moderate
Major highway Periodic Varying Low High
Outback road Sparse Few Low High

TABLE I
DIFFERENT DRIVING ENVIRONMENTS AND LIKELY MONOTONY LEVEL.

of task, it can be termed monotonous. The task of driving
on a straight country road with little scenery on a clear day
can be described as monotonous regardless of whether the
driver is becoming fatigued or not. Whether a driver actually
finds the trip fatiguing is dependent on the combined effect of
the internal and external factors. A person driving home after
being fired from their job is unlikely to become fatigued by a
monotonous task.

IV. MONOTONY DETECTION

As the primary sense used for driving, vision is also the
primary sense to maintain alertness. We close our eyes and
prefer a darkened room to sleep however sounds, smells and
touch can be slept through. The monotony of the driving task
can be decomposed into a visual stimulus component and non-
visual component. As mentioned earlier the non-visual sensory
stimuli have been attenuated by road and vehicle design, so
we aim to measure the visual stimulus component.

Table I categorises a number of common road conditions
into contributing factors for a monotonous environment. Fig-
ure 3 shows some sampled frames from a number of different
road sequences. As experienced drivers, by observing the
sampled frames a estimate of the monotony of the driving
task for each sequence can be made.

To automatically measure the monotony in a road sequence
we require a metric of the variance of the video sequence over
time. In essence we need to estimate the information content
of the sequence, the Kolmogorov-Chaitin complexity is just
such an estimate. Kolmogorov-Chaitin complexity of a some
original data is defined as the size of the smallest program (or
encoding) which can reproduce the data [5]. That is the amount
an information source can be compressed is a measure of the
information content. Practically we need the measure that is
robust against lighting variations common in outdoor scenes,
periodic motion, and simple translational camera ego motion,
MPEG encoding fills these requirements. MPEG encoding
can be thought of as an estimate of the Kolmogorov-Chaitin
complexity, though because the compression is lossy, it is
not strictly valid. For our purposes the lossy nature of the
compression and the effect on the metric is convenient as we
will examine.

A. MPEG Compression as a measure of monotony

Moving Picture Experts Group (MPEG) encoding is a
scheme for compressing a series of video or movie frames.
MPEG exploits the property that in moving pictures only small
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Fig. 3. Different driving environments with approximately 3 seconds
between frames. (a): city traffic, not monotonous. (b): roundabout on otherwise
straight road, not monotonous.(c): dual lane road gentle curvature, potentially
monotonous. (d): no lane marks, not monotonous.

regions of the image actually change substantially between
frames. Most of the frame is static or translates in the
image, varying marginally. Impressive compression ratios are
achieved by coupling an effective lossy compression scheme
with an update procedure that can efficiently represent small
motions and appearance changes between frames. Briefly, the
video sequence is encoded as a sequence of three kinds of
frames. Key (I) frames are compressed but otherwise complete
frames using compression similar to but not identical to
JPEG compression. Prediction (P ) frames consist of the set
of changes required to modify the previous frame into the
current one. The frame consists of a set of motion vectors
detailing how each subregion of the image has moved between
frames and a correction representing what needs to be done
to the previous subregion to make it match the current frame.
Bidirectional prediction (B) frames are similar to P -frames
except both previous and next frames are used to reconstruct
the image. Benchmarking has shown that compression rates
for each frame are typically approach: 1-bit/pixel for I-frames,
0.1 bits/pixel for P -frames and 0.015 bits/pixel for B-frames
[6].

The compression and correction is done using the discrete
cosine transform (DCT) which effectively is a frequency
domain transformation. Motion between frames is measured
using block matching techniques common to computer vision
such as Sum of Absolute Difference (SAD) correlation. MPEG
compressed sequences have been used in computer vision to:

• generate scene indexes of movies by the automatic de-
tection of scene changes by large discontinuities between
frames [7].

• detect pedestrians using P -frame motion vectors for
optical flow [8].

MPEG4 compression has the following attributes which
make it especially suitable for monotony detection:

• JPEG like compression of I-frames achieves better com-
pression for ”natural” images and worse compression for
sharp edges, e.g. near-field cars compress badly.

• YUV color-space means some tolerance to lighting
changes, a shadow across a region of the image com-
presses as scalar multiple of the subregion.

• Sum of Absolute Difference motion detection.
• With optimising encoders I-frames are included as re-

quired based on error margin. So dramatic changes in
the scene like close moving vehicles will cause more I-
frames to be added increasing the file size. One off scene
changes, like entering a tunnel, will cause a single I-frame
to be introduced.

• MPEG compression hardware makes embedded solutions
easier.

MPEG compression as a measure of monotony is tempered
by the following drawbacks:

• no guarantee that motion detection is capturing any
meaningful motion in scene.

• fog or otherwise smoothed images compress well (though
not monotonous).

B. Verification

To verify that MPEG encoding correlates with the monotony
of a scene a monotony detector was implemented using the
open source libavcodec library which provides an MPEG4
encoder.

Every 30th image was selected from the scene camera for
compression. This represents a 1 second gap between frames.
A sliding window of 150 images were compressed represent-
ing a time period of 2 minute 30 second window. The frames
were 320x240 colour images and compression took around
1 second on a Pentium IV 3.0GHz machine. Compression
was performed every 10 seconds. Most compression settings
were left at the default values. Sum of Absolute Difference
(SAD) correlation was selected for motion vector estimation.
A high maximum bit rate of 8000 Kbit/s was selected allowing
the compressor to use as much data as needed to encode
high frequency changes in the image. Lower maximum bit
rates forsake high frequency changes in the sequence to
minimise the bit rate, which causes the kinds of changes we
are interested in to be lost.

Table II shows the file sizes for various MPEG encoded
sequences similar to those shown in figure 3. The encoded files
have a good spread of sizes with a factor of two difference
between the smallest and largest files. The MPEG/JPEG ratio
shows that there is no correlation between the size of a JPEG
sequence (representing only scene complexity) and the MPEG
sequence (representing the change in the image over time).

When compared to a human judged monotony scale the
MPEG file size has a strong correlation (see figure 4). The sole



Sequence MPEG JPEG Seq. MPEG/JPEG
File Size (Kb) Size (Kb) Ratio

Seq. G. figure 3(a) 3664 5168 0.71
Seq. B. 2976 4672 0.63
Seq. C. 2684 4460 0.60
Seq. N. 2604 10080 0.26
Seq. H. figure 3(b) 2548 4460 0.57
Seq. A. 2504 4324 0.57
Seq. E. 2412 4364 0.55
Seq. L. 2248 9836 0.23
Seq. D. 2176 4216 0.52
Seq. J. 2108 9352 0.23
Seq. I. figure 3(c) 2024 4452 0.45
Seq. M. 1972 9276 0.21
Seq. K. figure 3(d) 1784 8708 0.20

TABLE II
COMPRESSION OF VIDEO SEQUENCES.
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Fig. 4. Graph of various video file sizes versus a human evaluated monotony
scale. 1 = very monotonous, 10 = very stimulating

outlier is the no lane markings sequence (figure 3(d)), which
compresses very well but would have not been considered
monotonous. The lack of sharp lane boundaries seems to allow
a gentle transition between the frames. The course of the
road is quite straight throughout the sequence (on par with
figure 3(c)), but the lack of lane markings adds to the degree
of difficulty to the lane keeping task decreasing the monotony.

C. Augmenting Compression with Lane Tracking

The primary failing of the MPEG monotony detector is
in situations of poor visibility such as fog. The task is not
monotonous yet the video will compress well. Detecting these
cases would be possible as other groups have demonstrated
systems capable of estimating the visibility of the road ahead.
Hautiere et. al. [9] implemented a system that decomposed the
luminance of the road ahead to judge the visibility range. As
we have a previously developed lane tracking system we will
use the lane tracking look-ahead distance as a similar measure.

The lane tracking subsystem is based on [10]. The system
has been augmented to use a clothoidal road curvature model.
A confidence measure is used to vary the look-ahead distance.

Fig. 5. Lane tracking look ahead distance varies with certainty.

When the variance of the primary road state variables ( lateral
offset, vehicle yaw and road width ) increase beyond a small
tolerance the look ahead distance is reduced to concentrate on
robustly tracking the road directly in front of the vehicle at the
expense of the far-field. As the near-field estimate converges
the look ahead distance is increased. Figure 5 illustrates how
road curvature estimate and look ahead vary.

The lane tracking look-ahead distance has the additional
benefit in the monotony detection system of detecting other
subtle cases such as crests (which may not show up as
significant changes in the compressed sequence) and the gravel
road case shown in figure 3(d). On a gravel road the lane
tracker is still capable of tracking road using the colour dif-
ference between the road and the road shoulder and the weak
edge information at the gravel boundary, but the increased
uncertainty of the soft lane edges serves to keeps the look
ahead distance low, indicating non-monotonous conditions.

V. FATIGUE COUNTERMEASURE DRIVER ASSISTANCE
SYSTEM

Per-close is a common metric often used to identify fatigue,
it is the percentage of time the eye is closed over time window
of several minutes. Fatigue is detected by checking for a
critical maximum threshold of eye closure of the the time
window. [3] uses the gaze direction to define the ”Percent
Road Centre” distraction index. In this index the portion of
time spent looking forward is measured over a time window.
Unlike per-close this metric has an upper and lower bound for
safe driving. If the index is too low the driver is likely to be
distracted or falling asleep, if the index is too high the driver
is staring not scanning the road scene indicating daydreaming
or fatigue.

In this system we use Per-close and steering wheel move-
ments (SWM) to detect fatigue. Fatigued steering motions are
detected as a the mean steering wheel motion after subtration
by a running mean. Mean steering wheel motions of more than
6 degrees over 5 minute intervals are declared fatigued.

A. Implementation

Previously [11], we introduced a driver assistance system
framework designed around the key objectives of:

• Integrated video based driver monitoring.
• Video based road scene monitoring.
• Multi-hypothesis, ambiguity tolerant algorithms.
• Intuitive, unobtrusive, override-able, integrated driver as-

sistance systems.
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Fig. 6. (a) The cameras in the test vehicle. The CeDAR active vision platform
containing the scene camera and FaceLAB passive stereo cameras are labelled.
(b) Driver head pose and eye gaze tracking using FaceLAB[13].
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Fig. 7. Driver Assistance System architecture. Components used in this
system are highlighted.

• Modular distributed architecture.
The framework has been used for integrating road scene

understanding such as sign and pedestrian detection with the
driver gaze for driver observation monitoring [12]. Figure 7
shows the system model for this application.

Figure 6(a) shows the scene cameras and driver monitoring
cameras in the vehicle. The monotony detector and lane
tracking system used a scene camera closest to the driver’s
head position. For this system the FaceLAB tracking system
was used for the per-close estimate. FaceLAB is a driver
monitoring system developed by SeeingMachines [13] in con-
junction with ANU and Volvo Technological Development.
It uses a passive stereo pair of cameras mounted on the
dashboard to capture video images of the driver’s head. These
images are processed in real-time to determine the 3D pose
of the person’s face (±1mm, ±1 deg) as well as the eye gaze
direction (±3 deg), blink rates and eye closure. Figure 6(b)
shows a screen-shot of this system measuring the driver’s head
pose and eye gaze.

The steering column is fitted with an encoder and strain
gauges to measure the steering direction and torque.

B. Road trials

We conducted trials during the day, dusk and at night. Each
time the vehicle was driven from the city out on an aterial
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Fig. 8. MPEG compression and lane tracking look-ahead during afternoon
trial on city and arterial roads. Sample images from the camera are shown at
the corresponding numbered points with the lane tracking look-ahead distance.

road, onto a highway then back on a country road to the city.
To investigate how best to use MPEG encoding to represent

monotony we encoded a set of movies every 20 seconds on
varying the sampling rate and the length of the sequence. We
trialed sampling at frequencies of: 4Hz (15[/60 frames]), 3Hz
(20), 2Hz (30), 1Hz (60), 0.5Hz (120) with total durations of
10 seconds to 5 minutes. Figures 8 and 9 show the results of a
day trial driving out from the city and back on the country road
respectively. Figure 10 shows the result of a night trial along
the same route. Overall the results were very promising. Both
graphs show the largest trough in the MPEG file size when
the car was stopped for a prelonged period at road works.
Trends of smaller file size (or increased monotony) appear
as the vehicle leaves the city for the highway and along the
country road both during the day and at night. There is a
good consistency across all MPEG frequencies and durations
showing the monotony measure is well conditioned and not
just an artifact of a particular sampling rate or total interval.
As would be expected the smaller duration sequences are more
responsive to brief changes in conditions while the longer
sequences reflect the longer term trends. The faster frame rates
seem to vary more regardless of the total durations indicating
a better use of motion compensation. In the slower frame
rates the vehicle motion between frames causes a significant
difference in the image appearance which is to be too dramatic
to capture using the motion compensation. The compression
for these longer rates still represents a measure of the similarity
of the scene over time, but more of the a general scene
appearance instead of sequential motion. The lane tracking
look-ahead distance was effective in identifying sections of
road with a higher monotony level than expected by the
MPEG compression alone. Particularly cases such as moderate
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Fig. 9. MPEG compression and lane tracking look-ahead during afternoon
trial on a country road back into the city. Sample images from the camera are
shown at the corresponding numbered points with the lane tracking look-ahead
distance.

curvature country roads, crests and sections with no lane
marks were identified as less monotonous than the compressed
MPEG file would suggest.

The per-close and steering angle measurements showed
produced a flat result showing the driver eye closer and
steering angle variance was low indicating an alert driver
which was correct and is the limit of such a small trial.

VI. CONCLUSION

A monotony detector has been proposed using MPEG
compression to measure the change of information content
of the road scene over time. The detector shows promise as
a useful measure of the monotony of the driving task. Such
a measure can be used to reduce false positives of fatigue
monitoring systems. Though the correlation between MPEG
compressibility and monotonous sequences is high there are
some special cases such as low visibility weather and gravel
roads that need to be handled explicitly. Using additional
image analysis in the form of the lane tracking look ahead
these cases can be managed. Finally, the monotony detector
was integrated into a fatigue intervention driver assistance
system and trials are under way.

A reasonably fast frame rate (2-4 Hz) over a long duration
(¿5 minutes) seems to be the most promising for capturing
monotony.

In future we hope to use detection to which reduce au-
tonomous functions of the vehicle to raise driver alertness.
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