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Abstract

A vision system is demonstrated that adaptively allocates
computational resources over multiple cues to robustly
track a target in 3D. The system uses a particle filter
to maintain multiple hypotheses of the target location.
Bayesian probability theory provides the framework for
sensor fusion, and resource scheduling is used to intelli-
gently allocate the limited computational resources avail-
able across the suite of cues. The system is shown to track
a person in 3D space moving in a cluttered environment.

1 Introduction

Visually acquiring and tracking targets is a key problem
in computer vision, and new and innovative techniques are
constantly being developed. However, despite the impres-
sive results obtained, it is clear that no single cue can per-
form reliably in all situations. The key to an efficient and
robust vision system for tracking is to intelligently combine
information from a number of different cues, whilst effec-
tively managing the available computational resources.

The development of such a system must address sev-
eral issues: which cue(s) should be used and when, how
should the cues be combined, and how much computational
resource should be expended on each cue?

This paper presents a framework for a vision system that
addresses these issues by fulfilling the following criteria:

• efficiently allocate finite computational resources
when calculating cues, accounting for the cue’s ex-
pected utility and resource requirement.

• facilitate cues running at different frequencies.

• locate a target in multi-dimensional state space, eg. de-
termining the target’s 3D location and orientation.

• allow tracking of multiple hypotheses.

Section 2 of this paper reviews related work on sensor fu-
sion for person tracking and Section 3 reviews the Bayesian
approach to target localisation. Section 4 describes the ar-
chitecture of the system, Section 5 details the sensing meth-
ods used, Section 6 reports on the system’s performance,
and Section 7 presents the conclusions.

2 Related Work

A number of researchers have utilised multiple cues to de-
tect and track people in scenes, however, there have been
few attempts to develop a system that considers the alloca-
tion of finite computational resources amongst the available
cues, the notable exception being Crowley and Berard [2].

Crowley and Berard [2] use multiple visual cues to track
a face in video for compression and transmission purposes.
This system shows the advantage of selectively activat-
ing and deactivating cues based on confidence values, and
achieves real-time performance with a Kalman filter fusing
the active cues. However, each cue is limited to returning
only a single hypothesis.

Recent work by Soto and Khosla [8] presents a system
based onintelligent agentsthat adaptively combines multi-
dimensional information sources (agents) to estimate the
state of a target. A particle filter is used to track the target’s
state, and metrics are used to quantify the performance of
the agents. Initial results for person tracking in 2D show a
good deal of promise for this particle filter based approach.

Triesh and von der Malsburg [10] presented a system
suitable for combining a number of cues to track a target’s
2D location in an image. The output of each sensor was
compared to a prototype describing the target (a face) with
respect to that sensor. An adaptive weighting was given to
each cue based on the cue’s performance over recent frames,
and the final result for each frame was determined as the
weighted sum of the probability images. The system adapts
to targets with changing appearance by dynamically updat-
ing the prototypes based on the sensor outputs at the target
location over recent frames.



3 Bayesian Approach to Target Localisation

Given a state space of possible target poses, the problem
of target localisation can be expressed probabilistically as
the estimation of the posterior probability density function
over the space of possible poses, based on the available
data. That is, at timet estimate the posterior probability
P (st|e0...t) of a statest given all available evidencee0...t

from time0 to t.
Using Bayesian probability theory and applying the

Markov assumption1 the desired probabilityP (st|e0...t) can
be expressed recursively in terms of the current evidence
and knowledge of the previous states. This is referred to as
Markov Localisastionand is represented mathematically by
the following equation,

P (st|e0...t) = ηtP (et|st)∑
st−1

P (st|st−1)P (st−1|e0...t−1) (1)

whereηt is a constant normaliser that ensures the probabil-
ities sum to one,ηt = 1/P (e0...t−1).

The derivation, as detailed by Thrun [9], sequentially ap-
plies Bayes rule, the Markov assumption, the theorem of to-
tal probability and the Markov assumption again, and is as
follows,

P (st|e0...t) = ηtP (et|e0..t−1, st)P (st|e0...t−1)
= ηtP (et|st)P (st|e0...t−1)
= ηt(et|st)∑

st−1

P (st|e0...t−1, st−1)P (st−1|e0...t−1)

= ηtP (et|st)∑
st−1

P (st|st−1)P (st−1|e0...t−1)

4 System Architecture

The system detailed in this paper uses a particle filter to
track a population of target hypotheses in state space. A
number of cues are calculated from image and state infor-
mation and combined to provide evidence strengthening or
attenuating the belief in each hypothesis.

Figure 1 shows the structure of the system. It consists of
two subsystems: a particle filter and a cue processor, each
of which cycle through their loops once per frame. These

1TheMarkov assumptionstates that the past is independent on the fu-
ture given the current state.

subsystems interact as shown by the thick arrows in the fig-
ure. The particle filter passes the current particle locations
to the cue processor. The cue processor determines proba-
bilities for the particles and passes these back to the particle
filter. The inner workings of these subsystems are discussed
below.

4.1 Particle Filter

The particle filter approach to target localisation, also
known as the condensation algorithm [3] and Monte Carlo
localisation [9], uses a large number of particles to ’explore’
the state space. Each particle represents a hypothesised tar-
get location in state space. Initially the particles are uni-
formly randomly distributed across the state space, and each
subsequent frame the algorithm cycles through the steps il-
lustrated in Figure 1:

1. Deterministic drift: particles are moved according to a
deterministic motion model (a damped constant veloc-
ity motion model was used).

2. Update probability density function (PDF): Determine
the probability for every new particle location.

3. Resample particles:90% of the particles are resampled
with replacement, such that the probability of choosing
a particular sample is equal to the PDF at that point; the
remaining10% of particles are distributed randomly
throughout the state space.

4. Diffuse particles: particles are moved a small distance
in state space under Brownian motion.

This results in particles congregating in regions of high
probability and dispersing from other regions, thus the par-
ticle density indicates the most likely target states. See [3]
for a comprehensive discussion of this method.

The key strengths of the particle filter approach to lo-
calisation and tracking are its scalability (computational re-
quirement varies linearly with the number of particles), and
its ability to deal with multiple hypotheses (and thus more
readily recover from tracking errors). However, the particle
filter was applied here for several additional reasons:

• it provides an efficient means of searching for a target
in a multi-dimensional state space.

• reduces the search problem to a verification problem,
ie. is a given hypothesis face-like according to the sen-
sor information?

• allows fusion of cues running at different frequencies.

The last point is especially important for a system operat-
ing multiple cues with limited computational resources, as
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Figure 1. System architecture.

it facilitates running some cues slower than frame rate (with
minimal computational expense) and incorporating the re-
sult from these cues when they become available.

If a cue takesn frames to return a result, by the time the
cue is ready, the particles will have moved from where they
weren frames ago. To facilitate such cues the system keeps
a record of every particle’s history over a specified num-
ber of framesk. The cue value determined for a particle
n ≤ k frames ago can then be assigned to the children of
that particle in the current frame, thus propagating forward
the cue’s response to the current frame. Conversely, prob-
abilities associated with particles that were not propagated
are discarded.

4.2 Cue Processor

The cue processor deals with the calculation and fusion of
cues. It also determines metrics measuring the performance
of each cue, and the allocation of computational resources
to individual cues.

Each frame the cue processor cycles through the steps
illustrated in Figure 1:

1. Update cues: accesses recently calculated cues.

2. Fuse data: fuses the results of different cues to esti-
mate the overall probability for each hypothesised tar-
get state.

3. Calculate metrics: Determine the metrics quantifying
the performance of each cue on the last image frame.

4. Allocate resources: based on the anticipated perfor-
mance of the individual cues, allocate computational
resources to maximise the quality of information ob-
tained.

The calculate cuescomponent of the system accepts re-
quests for cue measurements and handles the requests us-
ing only the quantity of computational resource allocated

to it by theallocate resourcescomponent. Some calcula-
tions may take longer than a single frame, but as discussed
in the previous section, the update PDF component is able
to accommodate these slow cues and propagate their effect
through to the current probability values.

4.2.1 Quantifying Cue Performance

The performance, orutility, of each active cue is estimated
every frame, and used to decide the distribution of compu-
tational resources across the cues (see Section 4.2.2).

Fusing the results of all available cues is assumed to give
the best estimate of the true PDFP (et|st) across the state
space . So the performance of thejth cue can be quantified
by measuring how closely the cue’s PDFP (ej,t|st) matches
P (et|st). This can be done using the relative entropy, or
the Kullback-Leibler distance [6], an information theoretic
measure of how accurate an approximation one PDF is to
another, given by

δt (P (et|st), P (ej,t|st)) =
∑
st

P (et|st) log
P (et|st)
P (ej,t|st)

wherest are the particle states at timet. Soto and Khosla [8]
used this metric to rate the performance of their cues, and
Triesh and von der Malsburg [10] considered it, but opted
for a simplerad hocmeasure.

The utility of thejth cue at timet is defined as

ut(j) = −δt(P (et|st), P (ej,t|st))

4.2.2 Resource Allocation

The computational resources of the system are dynamically
allocated based on the performance metrics that predict the
future performance of each cue. This configuration not only
optimizes the performance of the cues for the current situ-
ation, as it dynamically chooses the most suited cues to the
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Figure 2. Sensing process

current conditions, but it also makes the system flexible to
future changes in hardware and software.

The operation of the resource allocator is a simple pro-
cess of searching through the complete space of possible
cue combinations for the one that has the best overall util-
ity. The overall utility of a combination of cues is the sum
of the performance metrics of each cue.

A certain fraction of the time between each frame is de-
voted to cues running at frame rate, while the rest of the
time is devoted to those cues that run at speeds less than
frame rate. The performance metric of a cue running at a
rate slower than frame rate is reduced exponentially by a
discount factor for each frame it is late. The discount factor
was introduced on the premise that a result obtained over 8
frames is worth less than one that is obtained over 2 frames.

The resource allocator starts by generating all cue com-
binations that can run in the time allocated for cues run-
ning at frame rate. It then chooses the combination with the
best overall utility. A list of all combinations of the remain-
ing cues over all possible slower frame rates is generated
such that no combination exceeds the time allocated for the
slower cues. Initially the slower rates were set to once every
2, 4, and 8 frames. Taking into account the discount factor
for slow cues, the combination that has the best overall util-
ity is chosen.

5 Sensing

The system was implemented with two weakly calibrated
colour stereo video cameras as sensors. The images from
these cameras undergo some preprocessing and are then
passed to the cues where each target location hypothesis is
tested by computing all active cues. Figure 2 shows the
sensing process when all cues are active. Both the prepro-
cessing and hypothesis testing are discussed below.

(a) (b)

(c) (d)

(e) (f)

Figure 3. (a) Intensity image, (b) Radial sym-
metry image, (c) Facial symmetry image,
(d) Depth map, (e) Skin colour likelihood im-
age, (f) Radial symmetry of skin colour likeli-
hood image searching for a radius of 15 pixels.

5.1 Preprocessing

Preprocessing is only performedoncefor each new set of
images, whereas hypothesis testing requires one test forev-
ery target hypothesis generated by the particle filter. The
preprocessing required for each frame is governed by the
cues that are to be computed. These dependencies are illus-
trated by the network in Figure 2.

Figure 3 shows the output from the preprocessing of a
stereo pair of320× 240 images.

5.1.1 Depth Map

A dense depth map is generated from intensity images using
the approach of Kagamiet al [4]. The depth map presents
the depths as viewed from Camera 2.

5.1.2 Skin Colour Detection

A skin colour likelihood image is generated from one chan-
nel of the stereo image stream. The skin colour likeli-
hood of each pixel is determined by reference to a pre-
computed skin colour histogram. The histogram was gen-
erated by plotting skin colour samples inCIE Lab colour
space, discretising the colour space into16× 64× 64 bins,
and blurring these by convolution with Gaussian spheres,



then normalising so the maximum value is unity.173, 000
skin colour samples were used from346 images of faces
of people of varying race captured under different lighting
conditions (none of these samples were from people later
tracked by the system). This method is an extension of the
approach presented by Cia and Goshtasby [1] who built a
two-dimensional histogram of skin chrominance in theCIE
ab chrominance space. The three-dimensional histogram
used in this paper provides more reliable performance by
reducing the number of false positives.

5.1.3 Radial Symmetry

Loy and Zelinsky’s radial symmetry operator [7] is applied
to the skin colour likelihood image to highlight regions of
skin that are approximately circular and of a size appropri-
ate to be a face.

The operator is also applied to the intensity image to
highlight small dark regions such as the eyes. This output
is then convolved with a blurred annulus to highlight the re-
gions between potential eye pairs, and is referred to as the
facial symmetry image.

Each application of the radial symmetry operator is per-
formed at three different radiuses to detect targets at three
ranges of depth away from the camera.

5.2 Hypothesis Testing

Each particle from the particle filter presents an hypothesis
target location in state space. Using a pinhole camera model
and the generic head model in Figure 4(a), the size, location
and orientation of each hypothesis is determined in the im-
age. All active cues are calculated for each hypothesis.

Each cue returns a set of probabilitiesP (ej |st) indicat-
ing theith active cue’s belief in thejth hypothesis. These
probabilities are fused to determine the overall belief in the
jth hypothesisbj as follows

P (e|st) =
∏
j

(P (ej |st)(1− α) + α)

whereα ∈ (0, 1) is included to prevent a zero value for a
singleP (ej |st) forcing P (e|st) to zero. In this paperα =
0.1 was used.

5.2.1 Cue Suite

The cues were chosen on the grounds of simplicity and ef-
ficiency. All cues use the head model dimensions shown in
Figure 4(a). In the proceeding descriptions theface region
and face boundaryrefer respectively to the light and dark
grey regions in Figure 4(b).

1. Elliptical Skin Region Cue returns the average skin
likelihood of the pixels within the face region.
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Figure 4. (a) Generic head target with dimen-
sions in meters, (b) Elliptical face region (light)
and face boundary region (dark), (c) Search re-
gions for integral projection.

2. Skin Detector Cue returns0.5 if any of the pixels
sampled in the face region had skin likelihood values
within the top10% of values in the current skin likeli-
hood image, and0 otherwise.

3. Non-skin Boundary Cuereturns a high value if there
are few skin colour pixels in the face boundary region.

4. Radially Symmetric Skin Cue is the value of appro-
priate (as determined by the hypothesised depth) skin-
based radial symmetry image at the target location.

5. Radially Symmetric Intensity Cue is the value of ap-
propriate (as determined by the hypothesised depth) fa-
cial symmetry image at the target location.

6. Radially Symmetric Eye Cue is the value of appro-
priate (as determined by the hypothesised depth) radial
symmetry image at the hypothesised eye locations.

7. Eye Location Cue uses integral projection [5] to
search the regions in Figure 4(c) of the intensity im-
age for the darkest bands aligned with the horizontal
axis of the head. A high value is returned if these are
close to the hypothesised eye locations.

8. Head Depth Cuecompares the depths in the face re-
gion with the hypothesised depth of the target, return-
ing a high value when these are in agreement.

9. Head Boundary Depth Cuecompares the depths in
the face boundary region to the hypothesised target
depth, giving a high value when these are different.

6 Experimentation

An initial implementation of the system was developed as
an object orientated algorithm in Matlab. To simulate real-
time resource requirements the computational cost for each
cue was estimated from the CPU time required. Stereo im-
age sequences were captured at 30Hz with a pair of uncali-
brated NTSC video cameras.



Figure 5. Frame in tracking sequence showing
(clockwise) particles in image, in 3D space and
particle distributions over x, y and z, θ states.

The system’s performance was demonstrated tracking
a human face in a cluttered scene. A sample frame of
the sequence is shown in Figure 5 along with particle dis-
tributions. The full sequence can be viewed online at
www.syseng.anu.edu.au/rsl. Cues were dynamically sched-
uled to run once every 1, 2, 4 or 8 frames according to their
calculated utility and computational cost.

Figure 6 shows the cue utility and processing delay for
a cue during a tracking sequence. Note that as the cues
utility decreases relative to the other cues (ie. from frames
50 to 60) its processing delay grows as it is allocated less
resources.

The simplicity of the cues means no one cue is able to re-
liably track the head in 3D space, however, by fusing mul-
tiple cues the ambiguity in the target location is reduced.
Furthermore, by adaptively rescheduling the cues the sys-
tem is able to enhance the tracking performance possible
under a given resource constraint.

7 Conclusions

A vision system has been presented that uses multiple cues
to track a target in a multi-dimensional state space. Finite
computational resources are efficiently allocated across the
cues, taking into account the cue’s expected utility and re-
source requirement. The system can accommodate for cues
running at different frequencies, allowing cues performing
less well to be run slowly in the background for added ro-
bustness with minimal additional computation.

Figure 6. Top: Utility for the elliptical skin re-
gion cue (solid) and all other cues (+’s) during
a portion of a tracking sequence. Bottom: Cue
processing delay for the elliptical skin region
cue.
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