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Abstract

We formulate and interpret several registration methods in the context of a
unified statistical and information theoretic framework. A unified interpretation
clarifies the implicit assumptions of each method yielding a better understanding
of their relative strengths and weaknesses. Additionally, we discuss a generative
statistical model from which we derive a novel analysis tool, the auto-information
function, as a means of assessing and exploiting the common spatial dependencies
inherent in multi-modal imagery. We analytically derive useful properties of the
auto-information as well as verify them empirically on multi-modal imagery.
Among the useful aspects of the auto-information function is that it can be
computed from imaging modalities independently and it allows one to decompose
the search space of registration problems.

1 Introduction

Registration of multiple data sets is the problem of identifying a geometric trans-
formation (or a set of transformations) which maps the coordinate system of one
data set to that of another (or others). There exist a variety of registration meth-
ods whose objective functions are based on sound statistical principles. These
include maximum likelihood [4], maximum mutual information [6, 9], minimum
KL divergence [1] and minimum joint entropy [8] methods. However, the relation-
ship of these approaches to each other from the standpoint of explicit/implicit
assumptions, use of prior information, performance in a given context, and failure
modes has not received a great deal of attention. Additionally, while the various
objective criteria may be well understood, their relationship to an underlying
generative statistical model is often left unspecified.

Our motivation here is three-fold. First, we formulate and interpret several
registration algorithms in the context of a unified statistical and information
theoretic framework which illuminates the similarities and differences between



the various methods. Second, a unified statistical interpretation clarifies the im-
plicit assumptions of each method yielding a better understanding of their rela-
tive strengths and weaknesses. Third, we discuss a generative statistical model
from which we derive a novel analysis tool, the auto-information function, as
a means of assessing and exploiting the common spatial dependencies inherent
in multi-modal imagery. Currently, few if any of the commonly used registra-
tion algorithms exploit spatial dependencies except perhaps in an indirect way.
Consequently, we devote significant discussion to the auto-information function,
providing both theoretical and empirical analysis.

2 Unified View of Maximum-Likelihood, Mutual
Information, and Kullback-Leibler Divergence

For simplicity we consider the case of two registered data sets, u(x) and v(x)
sampled on x ∈ <N . These data sets represent, for example, two imaging modal-
ities of the same underlying anatomy. In practice, we observe u(x) and vo(x) in
which the latter is related to v(x) by

vo(x) = v(T ∗(x)) (1)

v(x) = vo

(
(T ∗)−1 (x)

)
, (2)

where T ∗ : <N → <N is a bijective mapping. The goal of registration is to find
T̂ ≈ T ∗ (or equivalently its inverse) which maximizes some objective criterion
of the observed data sets.3

We now discuss four objective criteria within a common statistical frame-
work. Spatial samples xi are modeled as random draws of an independent and
identically distributed (i.i.d.) random variable X . Consequently, observed pixel
/ voxel intensities vo(xi) and u(xi) are modeled as i.i.d. random variables as
well.

2.1 Maximum Likelihood

We begin with the classical maximum likelihood (ML) method of parameter
estimation. In order to apply the method to image registration we must pre-
sume that we can model the joint densities of pixel intensities as a function of
transformation parameters. That is

u(xi), vo(xi) ∼ p (U, V ; T ∗) , (3)

and the ML estimate of the transformation on v(x) is

TML = arg max
T

N∑
i=1

log p(u(xi), v(T ∗(xi)); T ), (4)

3 Technically speaking, u(x) may have undergone some transformation as well, but
without loss of generality we assume it has not. If there were some canonical coor-
dinate frame (e.g. an anatomical atlas) by which to register the data sets one might
consider transformations on u(x) as well.



where N is the number of samples. It is important to note, in contrast to subse-
quent methods, that the joint observations remain static while the joint density
under which we evaluate the observations is varied as a function of T .

There is a fundamental link between ML estimation and information theoretic
quantities. Specifically, under the i.i.d. assumption for fixed T and T ∗,

lim
N→∞

1
N

N∑
i=1

log p(u(xi), vo(xi); T ) =

− (H (p (u, v; T ∗)) + D (p (u, v; T ∗) ‖p (u, v; T ))) , (5)

where H(p) is the entropy of the distribution p and D(p‖q) is the Kullback-
Leibler (KL) divergence [3] between the distributions p and q. KL divergence is a
nonnegative quantity defined as D(p||q) = Ep {log (p/q)} =

∫
p(x) log (p(x)/q(x)) dx.

Eq.(5) follows from Eq.(3) (the observations are i.i.d. draws), subsequently the
(normalized) summation of Eq.(4) is equivalent to an expectation by the weak
law of large numbers. Consequently, the ML estimate (when it is unique) is
the one which minimizes the KL divergence between the true and hypothesized
distributions.

As a practical matter, one generally cannot model the joint density of ob-
servations as a function of all relative transformations T . Furthermore, even if
such a model were available, as the relative transformation becomes “large”
it is reasonable to assume that joint observations become independent (i.e.
p(u, v) = p(u)p(v) - which is an essential assumption exploited by mutual in-
formation approaches). The utility of classical ML decreases greatly for such
situations as a large set of transformations become equally likely.

2.2 Approximate Maximum Likelihood

While obtaining a joint density model over all relative transformations is per-
haps impractical, suppose we have a model of the joint density of our data sets
when they are registered which we will denote p◦ (u, v) = p(u, v; TI) where TI in-
dicates the identity transformation. Such a density is utilized in the approximate
maximum likelihood method (MLa) [4] which estimates T as

TMLa = arg max
T

N∑
i=1

log p◦ (u(xi), vo(T (xi))) = argmax
T

N∑
i=1

log p◦ (u(xi), v(T ∗ ◦ T (xi))) .

For practical reasons (e.g. one might be able to obtain reasonable density models
of joint pixel intensities from previously registered data) and in contrast to the
classical ML method, the joint observations are varied as a function of T while
the density under which they are evaluated is held static.

Similar to previous statements, one can show that

lim
N→∞

1
N

N∑
i=1

log p◦(u(xi), v(T ∗ ◦ T (xi))) =

− (H (p (u, v; T ∗ ◦ T )) + D (p (u, v; T ∗ ◦ T ) ‖p (u, v; TI))) . (6)



As compared to Eq.(5) we see that both terms vary as a function of T . In general,
one cannot guarantee that the combination of terms will be minimized when
T ∗ ◦ T = TI . This is related to the information theoretic notion of typicality
[2]. Informally, typicality states that, with probability approaching unity, N
independent draws from a density p with a corresponding entropy H(p) have
a likelihood very close to −NH(p). Furthermore, N independent draws from a
density q with corresponding entropy H(q) evaluated under p have a likelihood
very close to −N(H(q) + D(q‖p)) of which Eq. (6) is an application. Perhaps
counter-intuitively, one can construct a density q such that typical draws from q
are more likely under p than typical draws from p. The implicit assumption of the
approximate maximum likelihood method is therefore that as T ∗ ◦T approaches
TI Eq.(6) is nondecreasing. In [1] it was shown empirically that this assumption
does not always hold which, in part, motivates the registration method suggested
in that work.

2.3 Kullback-Leibler Divergence

While one cannot guarantee that Eq.(6) is nondecreasing as T ∗◦T approaches TI ,
the second term of Eq.(6) is nondecreasing as T ∗◦T approaches TI . Consequently,
Chung et al [1] suggest that one estimate T as

TKL = argmin
T

∑
u,v

p̂ (u, v; T ∗ ◦ T ) log
p̂ (u, v; T ∗ ◦ T )

po (u, v)
(7)

≈ argmin
T

D (p̂ (u, v; T ∗ ◦ T ) ‖p (u, v; TI)) , (8)

where p (u, v; TI) is estimated as in [4] from registered data sets and p̂ (u, v; T ∗ ◦ T )
is estimated from transformed sets of observed joint pixel intensities {u(xi), vo(T (xi))}.
In relation to the previous methods, both the samples and the evaluation densi-
ties are being varied as a function of the transformation T . In [1] it was demon-
strated empirically that this objective criterion, as expected, did not exhibit some
of the incorrect/undesirable local extrema encountered in the MLa method.

2.4 Maximum Mutual Information and Joint Entropy

As has been amply documented in the literature [6, 7, 9], mutual information
(MI) is a popular information theoretic objective criterion which estimates the
transformation parameter T as

TMI = arg max
T

I (u; vo(T )) = argmax
T

I (u; v(T ∗ ◦ T )) , (9)

where MI is a function of marginal and joint entropy terms as

I(u; vo (T )) = H(p(u)) + H(p(vo (T )))−H(p(u, vo (T ))). (10)



Again by typicality (or by the Weak Law of Large Numbers), this expression
can be approximated as

I(u; vo (T )) ≈ − 1
N

N∑
i=1

log p̂ (u(xi))− 1
N

N∑
i=1

log p̂ (vo(T (xi)))

+
1
N

N∑
i=1

log p̂ (u(xi), vo(T (xi)))) , (11)

where xi are i.i.d. draws of the spatial variable X and p̂(.) are density estimates.
There exist variants in the literature which approximate mutual information by
other means, but for our purposes we will consider them all to be equivalent.

If T is restricted to the class of symplectic transformations (i.e. volume pre-
serving) then H(u) and H(vo(T )) are invariant to T . In that case, maximization
of MI is equivalent to minimization of the joint entropy term, H(u, vo(T )), the
presumption being that the joint entropy is minimized when TMI = (T ∗)−1. As
in the KL divergence approach, both the samples and the evaluation densities
are being simultaneously varied as a function of the transformation T .

MI can also be expressed as a KL divergence measure [3]

I (u, vo(T )) = D (p(u, v; T ∗ ◦ T )‖p(u)p(v; T ∗ ◦ T )) , (12)

that is, mutual information is the KL divergence between the observed joint den-
sity and the product of its marginals. The implicit assumption of MI methods
is that as T ∗◦T diverges from TI , joint intensities look increasingly independent.

Considering the collection of approaches discussed we see that the MLa and
KL divergence methods exploit prior information in the form of joint density
estimates over previously registered data. Subsequently, both make similar im-
plicit assumptions regarding the behavior of joint intensity statistics as T ∗ ◦ T
approaches TI . In contrast, the MI approach makes no use of prior joint statis-
tics – estimating these instead during the search process. On the other hand,
MI approaches, implicitly assume that as T ∗ ◦ T approaches TI , the joint in-
tensity statistics become increasingly dependent, again, as measured by a KL
divergence term. In light of this, we now define the auto-information function as
an empirical analysis tool for exploring aspects of these assumptions.

3 Auto-, Cross-Information Functions

We define the auto- and cross-information functions. The functions measure
statistical dependence, indexed over transformation parameters, much as the
well-known auto-correlation function measures the degree of second-order cor-
relation as a function of displacement. Given two different image modalities, u
and v, we simply define the auto- and cross-information functions as:

RI
u(T ) = I(u(x); u(T (x))) and RI

u,v(T ) = I(u(x); v(T (x))),



where I(u; v) is the mutual information measure already defined in Eq.(10).
Analysis of such functions, in particular the auto-information function which
can be computed prior to registration, may provide guidance for commonly used
coarse-to-fine search strategies. Additionally, further spatial properties might
also be inferred from the auto-information function which lead to better and
faster converging registration algorithms.

This new approach can be described in the context of the following latent
variable model

p (u, v, l) = pl (l1, · · · , lN )
∏

i

pu|l (ui|li) pv|l (vi|li) , (13)

where the sets {u1, · · · , uN} and {v1, · · · , vN} represent observations of two dif-
ferent image modalities and {l1, · · · , lN} a set of latent variables which describe
tissue properties (e.g. label types). The joint properties of {l1, · · · , lN} may be
only partially specified. Each of the algorithms cited in the previous sections
corresponds to a hypothesis over this statistical model differing only in which
aspects of the graph are specified or assumed a priori. The model simply asserts
the independence of the observations conditioned on the latent variables. An
example is shown in the graphical model 4 of Fig. 1.

The proposed formulation has two notable consequences. First, spatial de-
pendencies in the observations arise directly from known or assumed spatial
dependencies in the latent variables. Second, bounds on the spatial dependen-
cies (modulo the unknown transformation) can be estimated from the individual
imaging modalities. In particular, it is easily derived that:

I(uj ; uk), I(vj ; vk) ≤ I(lj ; lk) and I(uj ; vj) ≥ I(uj ; vk). ∀ j, k = 1, ..., N(14)

Consequently, the auto-information functions of induced images lower bound
that of the underlying latent anatomy and we guarantee local extrema for the
MI objective function given that the auto-information values for the pairs of
corresponding image elements is always greater than or equal to that of non-
corresponding ones. (For proofs, see the Appendix.) More importantly, Eq. 14
shows that under the latent variable model, MI as an objective criterion is guar-
anteed to have a local maximum about the point of correct registration. To
our knowledge, while this property has been empirically observed, no sets of
conditions have been established such that it could be rigorously proven.

3.1 Auto-Information Identity

We can define the following identity between the auto-information functions of
two datasets (v, vo) that are related via transformation T ∗ as vo(x) = v(T ∗(x)):

RI
v0

(T ) = I(v0(x); v0(T (x))) = I(v(T ∗(x)); v(T ∗ ◦ T (x)))

= I(v(y); v(T ∗ ◦ T ◦ (T ∗)−1 (y))) = RI
v(T

∗ ◦ T ◦ (T ∗)−1) = RI
v(T

′),(15)
4 A similar representation incorporating voxel positions has been recently introduced

for elastic image registration via conditional probability computations [5].
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Fig. 1. Example of a latent anatomy model

where T ′ is a similarity transform of T by T ∗. In other words, the auto-information
function of a transformed image (vo) can be computed from the auto-information
function of the initial input image. This property is potentially very useful when
examining how the auto-information function changes with respect to an initial
transformation.

3.2 Experiments

In this section, we describe several experiments that were constructed to demon-
strate certain key properties of the auto-information function and to give some
insight for which applications it might be useful.

We carried out experiments using both simulated and medical image datasets.
To date, the experiments have been carried out in 2D and the nature of the trans-
formations was restricted to rigid-body movements (displacement and rotation).
We defined the rotation to be carried out around the center point of the input
image. Note also, that prior to running our experiments, we introduced a pre-
processing step. We increased and padded with zero the background region of
the images in order to ensure that no cropping takes place as a result of trans-
formations. (This property is required to fully satisfy our assumptions defining,
for example, the identity relationship).

We used two pairs of medical images for our experiments. One pair con-
sisted of a Proton Density and a T2-weighted acquisition and the other of a
corresponding MRI and CT image of the head. (See these images on Fig. 2.)

Identity In order to experimentally verify the relationship established in Eq.
(15), we compared the auto-information maps of initially transformed datasets
to the same maps that were estimated by the identity. Up to numerical precision,
the identity holds, the summed squared difference values are zero.

Smoothing With another set of experiments we aimed to demonstrate how
the smoothing operation affects the auto-information function maps. We com-
puted the 3D auto-information map for both the image and a smoothed version
of it (created by a Gaussian filter with window size 5). As expected, the auto-
information map became significantly flatter and less peaky after the smoothing
operator was applied to the data. While the initial map has a sharp peak at the



PD Image T2−weighted Image CT Image MR Image

Fig. 2. Medical input images used for our experiments. Left-to-right: Corresponding
Proton Density and T2-weighted images; Corresponding CT and MRI acquisitions.

zero offset pose and quickly decreasing lobes, in the case of the smoothed image
that transition is much more gradual. An example showing the auto-information
map slices, in the case of the original and the smoothed PD images is shown on
Fig. (3).

Changes due to an Initial Pose Difference Examining the auto-information
map of the input images does not reveal much in the way of underlying structure
embedded in the images. (See Fig. 3 (a), (b)). Therefore, we also examined the
changes in the auto-information function maps due to an initial transformation
applied to the input image. We created a map of the input image and a map of
its transformed version. (The transformation that we applied is further referred
to as T ∗

3 and it is comprised of both a displacement and a rotational component.)
Comparing Fig. 3 (c),(d),(e) and (f), we note that there is a distinctive pattern
of difference in the maps due to the initial transformation applied to the input
(the effect of the rotation, for example, is well visible on the slices). However it is
difficult to interpret these at the first sight. Therefore, we displayed the difference
images of the maps of the input with no initial transformation and that of the
transformed image. The results, (Fig. 3 (g) and (h)), computed on both the CT
and MRI images, convey more information about the effects resulting from the
transformation. We observe that the two difference maps are almost identical,
which allows us to conclude that a fixed transformation applied to multi-modal
images of the same underlying object results in the same type of changes in the
auto-information surfaces. This empirical observation is encouraging in that it
gives indication of the utility of the auto-information function in the context of
registration.

Decoupling the transformation components In this section, we demon-
strate a way to decouple the transformation components when searching for
alignment (or the initial pose) in a registration scenario. It turns out that one
can use the autoinformation function to decouple the components of transfor-
mation T and search for them separately. (Compare auto-information map slices
in Fig. 3 (c) and (e), for example.)

The decoupling observation is explained as follows. If T ∗ is a composition of
a displacement and a rotational component, then it can be written as a rotation
operation followed by displacement: T ∗(r∗, d∗) = D(d∗) ◦ R(r∗). Then consider
the identity in Eq. (15); if we rewrite the transformation composition of Tcomp =
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Fig. 3. Auto-Information map slices of the (a) PD, (b) smoothed PD, (c) CT, (d)
MR, (e) the transformed CT and (f) the transformed MR images. Squared difference
maps between the auto-information map of the (g) CT and the T ∗

3 -transformed CT
images and of the (h) MRI and the T ∗

3 -transformed MRI images. Note the similarities
between the image slices of (g) and (h). The slices, each a map of translation, in all
cases correspond to various rotational offsets in the auto-information map volume.
(Top-to-bottom, left-to-right: the rotational offset is 0,2,...,30 degrees)



T ∗◦T ◦(T ∗)−1 with the above expression for T ∗, we get: Tcomp = D(d∗)◦R(r∗)◦
T ◦R

(
(r∗)−1

) ◦D
(
(d∗)−1

)
. Also after replacing T with T (r, d) = D(d) ◦R(r):

Tcomp = D(d∗) ◦R(r∗) ◦D(d) ◦R(r) ◦R
(
(r∗)−1

) ◦D
(
(d∗)−1

)
.

Now, if we only examine the auto-information map in the displacement dimen-
sions of T , i.e.: T (r, d) = D(d), we would compute the transformation

Tcomp = D(d∗) ◦R(r∗) ◦D(d) ◦R
(
(r∗)−1

) ◦D
(
(d∗)−1

)
. (16)

As the composition of a rotation, displacement and the inverse of the rotation
operation is just another displacement, D(d′), and displacement operations com-
mute, the D(d∗) terms cancel out:

Tcomp = D(d∗) ◦D(d′) ◦D
(
(d∗)−1

)
= D(d′) = R(r∗) ◦D(d) ◦R

(
(r∗)−1

)
.

Thus the zero-rotation subspace of the autoinformation function is invariant to
displacement. Accordingly, we can search for the unknown rotational component,
by comparing subspace maps, without considering any potential displacement
component of the aligning transformation. Such a reduction in search space fa-
cilitates a reduced computational cost in optimization.

In a set of preliminary experiments, we looked at the zero rotation subspace
of the auto-information map and searched for the rotational component of T ∗

in both a uni- and a multi-modal scenario. In Fig. 4, we show the results for
these cases. In the former, we aligned a PD image to a transformed version of
itself, while in the latter the MRI slice to the CT image. We optimized the sum
of squared differences and the cross-correlation coefficient, respectively of the
auto-information subspace maps, in order to estimate the best transformation
component. We decided to apply these simple similarity measures as the surfaces
to be compared were composed of the same type of measures, the autoinforma-
tion values (as opposed to intensities of different modalities, for example). Both
of the registration results closely matched the ground truth rotation angle.

4 Conclusion

We provided a unified statistical and information theoretic framework for com-
paring several well known multi-modal image registration methods. The conse-
quence of which was to illustrate the underlying assumptions which distinguish
them. Specifically this served to clarify the assumed behavior of joint intensity
statistics as a function of transformation parameters. This motivated the intro-
duction of a latent variable generative model from which we were able to derive
several interesting properties of the statistical dependencies across modalities.
Significantly, we provided the first rigorous proof, to our knowledge, of the exis-
tence of a local maxima for the mutual information criterion about the point of
correct registration in the context of the latent variable model.
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Fig. 4. Decoupled rotation angle search: (a) Unimodal search using the PD image –
minimizing sum of squared errors (b) Multi-modal search using the MRI and CT images
– maximizing cross-correlation coefficient. The ground truth solution in both images is
indicated with the vertical line.

We also introduced the auto- and cross- information functions which char-
acterize the joint intensity statistics as a function of the relative transforma-
tions between images within and across modalities. Several properties of the
auto-information function, which can be computed from each modality inde-
pendently, were derived analytically and verified empirically. One aspect of the
auto-information function is that it facilitates decoupling of rotation and dis-
placement parameters in the search space. Furthermore, our empirical results on
anatomical data showed that the auto-information functions across modalities
exhibit striking similarities which we conjecture can be exploited in multi-modal
registration methods currently in development. Further theoretical and empir-
ical analysis of the properties of the auto- and cross-information functions are
the subject of future research.
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Appendix

Both of the relationships in Eq. (14) result from extending the Data Processing
Inequality theorem [2]. Accordingly, if X , Y and Z are random variables forming
a Markov chain (X → Y → Z), then I(X ; Y ) ≥ I(X ; Z), i.e. no processing of Y
can increase the information that Y contains about X.

Proof I The relationship between the random variables in the first inequality of
Eq. (14), vj ← lj − lk → vk, can be rewritten in two different forms using Bayes
rule: vj ← lj ← lk ← vk and vj → lj → lk → vk. Given these and applying the
Data Processing Inequality theorem, we arrive at the following:

I(vk; lk) ≥ I(vk; lj) ≥ I(vk; vj) and I(lk; lj) ≥ I(lk; vj) (17)
I(vj ; lj) ≥ I(vj ; lk) ≥ I(vj ; vk) and I(lj ; lk) ≥ I(lj ; vk) (18)

Given I(X ; Y ) = I(Y ; X), we can establish I(lj ; lk) ≥ I(vj ; vk) ∀ j, k.

Proof II In a similar manner as above, we can obtain the following inequalities
for uj , vj , lj, lk, vk:

I(vj ; lj) ≥ I(uj ; vj) and I(vk; lk) ≥ I(vk; lj) ≥ I(vk; uj). (19)

Again, using Bayes rule, we can establish the following relationships: vj ← lj ←
lk ← uk and vj ← lj ← uj. As we assume that I(vk; lk) = I(vj ; lj), we need
to consider two scenarios: (a) if lk → lj indicates a lossless relationship, then
I(uj ; vk) = I(uj ; vj), (b) if lk → lj indicates a lossy connection, then I(uj ; vk) <
I(uj ; vj). Therefore, we can conclude that I(uj ; vj) ≥ I(uj ; vk).


