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Abstract

A fast exploratory framework for extracting cardiac noise signals contained in
rest-case fMRI images is presented. Highly autocorrelated, independent compo-
nents of the input time series are extracted by applying Canonical Correlation
Analysis in the time domain. A close correspondence between some of these com-
ponents and cardiac noise contributions is established. Our analysis is carried out
without using any external monitoring of the subject or any modification applied
to the standard image acquisition protocol. Using the results as a priori infor-
mation about the presence of corrupting cardiac noise, several approaches are
suggested that could improve the performance of activation detection algorithms
on non-rest-case datasets.

1 Introduction

1.1 Functional MRI and Noise

The analysis of functional Magnetic Resonance Images (fMRI) has been en-
gaging an increasing number of researchers in both neuro and computational
sciences. This new type of image modality may provide a way of understanding
and demonstrating the fascinating and fundamental problem of structural and
functional relationships in the human brain.

Analyzing fMRI time series signals is, however, a challenging task; the scale
of signal variation to be recovered is only slightly different from the standard
variation of the time series. Moreover, there are several noise sources that corrupt
the signals. These corrupting signals could originate, for example, from physical
patient movement, the imaging device, and physiological (e.g.: cardiac and res-
piratory) noise. In the present paper, we are interested in the characterization of
the cardiac contributions to physiological noise in the signal. Knowing that this
type of noise is always present in the acquisitions, its identification, labeling or
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potential elimination could lead to a significant performance increase in further
data processing.

1.2 Noise Characterization

Low-frequency noise, which corrupts fMRI acquisitions, is often referred to as
1/f (or flicker) noise. That nomenclature refers to the shape and position of a
low-frequency component in the frequency domain which is always detectable in
the images. Although its presence is widely accepted, its exact composition still
poses numerous questions. Slowly varying signals, aliasing artifacts, slow changes
in patient movement or position, and machine noise have all been attributed to
it. Eliminating this frequency range from fMRI images is generally not feasible
given the fact that it overlaps the standard protocol frequency range.

Cardiac contributions to fMRI signals are physiological noise effects that
could significantly increase uncertainties in activation detection results. A ma-
jor problem in examining their influence stems from the fact that the standard
sampling frequency (acquiring image volumes at every 2.5 sec, for example) is
insufficient to represent them with high fidelity. In addition to the aliasing prob-
lem, these signals have a great variance even within a single 4D acquisition of
the same subject, leading to high contamination of a wide range of frequency
bands. Thus constructing a general noise model predicting their frequency do-
main occurrence would be extremely difficult.

1.3 Background

Many existing methods that treat confounders in fMRI carry out their analysis
in k-space, where the physiological contributions are found to be quite uncontam-
inated. In that domain, the physiological cycles can be recovered by re-ordering
the image slices according to time of acquisition [4, 5] or by combining phase and
projection information of the navigator echo [11].

Retrospective image analysis methods often use external monitoring in order
to obtain a model for the physiological noise contributions. They then reduce
or completely eliminate the contents of the corrupted frequency bands from the
acquisitions [1, 7]. Many algorithms favor examining phase data contained in the
time series, providing a robust descriptor of the signals of interest [7, 11, 4, 5, 2,
12], while some also require fast imaging protocols, in order to avoid the critical
sampling (aliasing) problem [2].

Another technique used to eliminate cardiac noise from the fMRI datasets
is cardiac gating [8]. This refers to a special imaging procedure that eliminates
cardiac confounders by incorporating EKG data into the image acquisition stage.

Research has also been conducted with respect to spatially localizing this
type of noise source in the brain. It has been established that cardiac-induced
signals are more localized compared to respiratory contributions and can be
spatially restricted to the neighborhood of major blood vessels, CSF pools and
the medial and temporal lobes [3].



The major drawback of the majority of these methods is that they either
require specialized image acquisition parameters (e.g., short Time of Repetition
(TR)), they heavily exploit external monitoring measurements or they need to
convert the data back into k-space for analysis purposes.

We adopted an exploratory framework for analyzing fMRI images. By exam-
ining rest-case datasets, we aim to determine how much additional information
we can gain about the presence of corrupting cardiac signals and how such in-
formation could be integrated into vessel segmentation or activation detection
methods applied to subsequent, stimuli-activated images. The task of identify-
ing noise components in rest-case acquisitions should be less complex than in
the activation cases. That is because there are no response functions that would
have to be explicitly separated from the noise signals. For the analysis, we do
not require any special imaging parameters or the use of external monitoring.
Our method is a quick technique that can extract cardiac contributions from the
signals when the aliasing properties are favorable. It is also used to support our
argument against using band-pass filtering for physiological noise removal.

2 Motivation

During one imaging session, a collection of experiments are run, and this series
is preceded and followed by a set of rest-case scans. For these rest-case acqui-
sitions, there are no stimuli presented to the subject and there are no tasks to
be executed. While response signals are missing, physiological contributions still
manifest in these images. If these are detectable, our goal is to gain information
about their nature and spatial origin. That information could be very valuable
in subsequent non-rest-case data analysis.

Ad hoc experiments suggest the presence of two principal components con-
tributing to the rest-case fMRI signals. Displayed in the frequency domain, a
higher (appearing in the .08-.2 Hz frequency range) and a lower, 1/f -type fre-
quency component can be often distinguished. We conjecture that the higher
frequency components can be associated with aliased cardiac signals. Whenever
they are absent, it means that the aliased cardiac contributions occupy the same
lower frequency range as the flicker noise. We verify this hypothesis by using ex-
ternal cardiac measurements and by characterizing the noise sources with respect
to the corresponding anatomical dataset.

2.1 Approach

For our data-analysis, we propose the use of a multivariate approach. As we
make the assumption that a collection of independent signal sources make up
the dataset, we aim to find linear transformations to recover mutually uncor-
related components. Because in rest-case datasets the interesting (the cardiac)
signals are highly autocorrelated, we impose an additional requirement on the
components: they have to be maximally autocorrelated. To achieve this task, we



adapted the idea of using Canonical Correlation Analysis (CCA) [9, 10], and the
maximization task to be solved is displayed in Eq. (1):

max
wx,wy

ρ(wx, wy) =
wT

x Cxywy√
(wT

x Cxxwx)
(
wT

y Cyywy

) , (1)

where x and y are sets of voxel time series, ρ is the correlation coefficient, Cxx,
Cyy and Cxy are covariance matrices on x, y and (x, y), and wx and wy are the
weight vectors that would maximize the correlation coefficient between wxx and
wyy. (According to our formulation, y is merely a delayed version of x, as we
are interested in obtaining highly-autocorrelated components.)

We used external heart-beat measurements to verify a close correspondence
between the CCA and cardiac signals. Also, in order to demonstrate that the
noise contributions mostly originate from regions where anatomy would explain
their presence, we constructed correlation maps between the CCA components
and the original input time series. We then registered these maps to an anatom-
ical scan of the patient.

A data-driven exploratory algorithm using CCA as a tool for running acti-
vation detection on non-rest-case fMRI data has recently been introduced [6].
There, some of the extracted components were attributed to stimulus response,
but the residuals were not identified. In our experiments, we target the decom-
position of rest-case input images according to this framework and hope to use
the results as a priori information in later activation detection studies. For the
interpretation of stimulus-activated acquisitions, we would argue for using more
sophisticated techniques (for example, ones that explicitly incorporate knowl-
edge about the experimental protocol).

2.2 Algorithm Outline

We execute all of our analysis in the temporal domain. Nevertheless we often
present and characterize our results in the frequency domain.

Our preprocessing step first forms a mask to select the volume elements with
the highest variation in their time series. This preprocessing step is necessary
because of a limited sample size in the temporal domain.

After we apply this mask and detrending to the set of voxel time series, we ex-
ecute a standard Principle Component Analysis (PCA) on the preprocessed data
set. This pre-whitening step is required for the CCA computations. The number
of retained components after the PCA decomposition is algorithm-dependent.
We currently fix it to be a constant, four. Based upon experimental analysis of
the data, we found this number sufficient to consider signals representing 98% of
the total variation in the dataset. That many components were in general also
enough to contain the higher frequency components, if they were present.

The CCA algorithm is executed next on the output components of the PCA
analysis. The input signals are compared to a time-shifted version of them-
selves (in order to test for autocorrelation properties). A de-mixing matrix is



computed that produces the most highly autocorrelated components. While the
PCA components are ordered by the magnitude of the component variance, the
components obtained by CCA are ordered by the amount of autocorrelation that
they have (at time lag = 1). Two of the components that have been extracted
from a single rest-case session are shown in Fig. 1 (a) and (b). Fig. 1 (a) repre-
sents a lower frequency contribution, while Fig. 1 (b) shows a higher frequency
component (peaking at .19-.2 Hz).
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Fig. 1. CCA components displayed in the Fourier domain. In all images, the x-axis
represents the frequency interval of [0, 200] mHz and along the y-axis magnitude val-
ues are displayed. (a)-(b): a low- and high-frequency component of a single rest-case
acquisition (c): the high-frequency component from (b) with the corresponding cardiac
signal overlaid (d): a non-rest-case high-frequency component with the corresponding
cardiac signal overlaid .

We construct correlation maps and register the results onto the anatomical
scan in order to determine from where these components originate with respect
to the underlying anatomy. These correlation maps are created by examining all
of the extracted components. The correlation component is calculated between
the original time series and the CCA signals in the temporal domain. We use
a normalized version of these maps in order to compare the structuredness and
relative contributions of the different components to particular anatomical loca-
tions of the brain. Four slices of two correlation maps created with respect to
high frequency components are shown in Fig. 2. (In these examples, the compo-
nents highly match the cardiac signal measured throughout the image acquisition
procedure.)

2.3 Data Description

We carried out analysis on 12 rest-case acquisitions of the same subject. The
fMRI images were taken in 12 different sessions, the rest-case images being
scheduled for the very beginning and either for the middle or the end of the
fMRI imaging series. (Thus the elapsed time between the rest-case scans was
either 17 or 34 minutes.) During these acquisitions no stimuli were presented to
the subject. The (64x64x24) axial acquisitions were taken by a TR of 2.5 sec.
The images were motion corrected before analysis.



Slice 51: high−freq corr. map overlayed on SPGR −− S4R1 Slice 52: high−freq corr. map overlayed on SPGR −− S4R1 Slice 50: high−freq corr. map overlayed on SPGR −− S2M1 Slice 51: high−freq corr. map overlayed on SPGR −− S2M1
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Fig. 2. Four sample slices of registered correlation maps. (a) and (b): maps calculated
between a rest-case dataset and a high-frequency component; (c) and (d) maps cal-
culated between a non-rest-case dataset and a high-frequency component. The set of
higher correlation values (in white) outline potential cardiac signal sources in the brain.

The SPGR image that is used as the anatomical reference is of higher reso-
lution. It is a sagittal acquisition of 110 slices and 256 x 256 image size.

Our external monitoring for each of the input datasets resulted from manually
recording the cardiac rate of the subject every minute.

3 Results

In this section, we give some numerical indicators and qualitative analysis that
demonstrates the usefulness and validity of our algorithm. The results are very
promising as they demonstrate that whenever the cardiac signals are aliased
to a distinguishable frequency interval, we could correctly identify them. We
found that we could obtain distinct, peaked high frequency components (see,
for example, in Fig. 1 (a)) in 7 out of 12 of the datasets. What is more, in all
these cases, the high-frequency CCA component could be closely matched with
the externally-measured cardiac signal (Fig. 1 (c)). In an additional input series
a higher frequency component was also present, but it was spread out over a
very wide frequency range. We established a direct correspondence between this
non-spikyness and a high variation in the recorded cardiac rate during the image
acquisition.

We were unable to distinguish high-frequency elements in the remaining four
of the rest-case datasets. The absence of these components was not a mistake
of the algorithm. We were able to show that, in all those cases, the cardiac
contributions were aliased back to the lower frequency range.

In 2/3 of the examined images, we recorded extensive cardiac rate changes
within single rest-case acquisitions. This meant that the aliased variation in the
subject’s cardiac rate exceeded a quarter of the sampling frequency range (> 50
mHz). During a whole series of successive acquisitions or between different imag-
ing sessions the chances for a comparable variation are even higher. Due to this
phenomenon, we advise against band-pass filtering or complete frequency range
elimination. The band to be removed can get quite large and such a modifi-



cation in the dataset could result in a significant information loss about other
components.

Such a great variance in the heart beat rate even within one imaging session
prompted us to explore information that the correlation maps could provide.
Even if the cardiac contribution occupies a wide range of frequency domain
and it is difficult to predict its exact occurrence beforehand, the location where
these signals originate with respect to anatomy should be more stable. That is
the reason why we created the correlation maps between the input times series
and the CCA components. The results that we present with respect to them
are promising but not yet rigorously tested. We first provide some qualitative
results and then describe validation experiments by which we intend to make
them more robust.

We mapped the correlation values created with respect to the high frequency
components onto the anatomical MR image of the subject. By visual analysis,
the anatomical regions with the highest scores agreed with our expectation based
upon the literature. The indicators corresponded to higher scores mostly along
major blood vessels, the temporal lobe and some CSF pools (see Fig. 2 (a) and
(b)). This agreement was consistent in the case of all the analyzed datasets.

A validation procedure that would better prove the agreement between all
the correlation maps obtained for a single subject is still in progress. We are to
obtain a detailed segmentation of the corresponding SPGR dataset and register
the highly correlated areas to some of its specific anatomical classes. In addition,
we could test how well some of the major vessels can be located by a similar
analysis if we aligned the correlation maps of our high frequency components to
Magnetic Resonance Angiography (MRA) images. (A close agreement between
those could even facilitate an understanding of how information from MRA’s
could be fused into the fMRI domain.)

For verification purposes, we also ran our algorithm on a set of 12 non-
rest-case datasets. Although the high- and low-frequency components did not
separate as clearly as in the rest-case inputs (mixed components, containing both
low- and high-frequency components occurred more often), the high-frequency
elements matched the externally-measured cardiac signals just as closely as in
the rest-case analysis (Fig. 1 (d)). And creating the correlation maps with respect
to these interesting components also proved to be very similar to the maps in
the non-rest case. (Notice the similarity between Fig. 2 (a)-(b) and (c)-(d).)

4 Conclusion

We adapted a fast exploratory fMRI signal analysis framework to identify cardiac
noise sources in rest-case datasets. We decomposed the input rest-case time series
into highly autocorrelated independent components and established a high-level
correspondence between some of these and cardiac contribution. We verified our
hypothesis by utilizing external monitoring recordings and a set of anatomical
references.



We suggested several potential applications of our analysis in activation de-
tection studies. We primarily stated that using the correlation measures as con-
founder space indicators, we could use them as a priori information for hypothesis
testing in non-rest-case data. That would be preferred over band path filtering
or signal elimination solutions to noise reduction. That is mostly because we
showed that the cardiac contribution often appears over a wide frequency range.

In the future, we would like to automate the procedure of extracting the
high-frequency components and also to determine whether we could increase the
accuracy of our normalized correlation maps by processing our input sequences
slice-by-slice instead of as a whole volume. In this case our initial masking step
would not have to be as restrictive as it is now.
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