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Abstract—This paper presents a data compression algorithm
with error bound guarantee for wireless sensor networks (WSNs)
using compressing neural networks. The proposed algorithm
minimizes data congestion and reduces energy consumption
by exploring spatio-temporal correlations among data samples.
The adaptive rate-distortion feature balances the compressed
data size (data rate) with the required error bound guaran-
tee (distortion level). This compression relieves the strain on
energy and bandwidth resources while collecting WSN data
within tolerable error margins, thereby increasing the scale of
WSNs. The algorithm is evaluated using real-world datasets
and compared with conventional methods for temporal and
spatial data compression. The experimental validation reveals
that the proposed algorithm outperforms several existing WSN
data compression methods in terms of compression efficiency and
signal reconstruction. Moreover, an energy analysis shows that
compressing the data can reduce the energy expenditure, and
hence expand the service lifespan by several folds.

Index Terms—Lossy data compression, error bound guarantee,
compressing neural networks, Internet of things.

I. INTRODUCTION

By 2020, 24 billion devices are expected to be intercon-
nected over the Internet of things (IoT) technology in which
wireless sensor networks (WSNs) form an intrinsic opera-
tional component [2]. In these large-scale sensing networks,
data compression is required for encoding the data collected
from sensors into fewer bits, and hence reducing energy and
bandwidth consumption. However, the computational burdens
of the intended compression algorithms must be considered.
Specifically, traditional data compression schemes from in-
formation and coding theory cannot be directly applied to a
resource limited framework like WSNs as they are designed
to optimize storage rather than energy consumption [3]. Data
compression enhances the functionality of WSNs in three
main ways. Firstly, compression at cluster heads, gateways, or
even within sensor nodes is one key ingredient in prolonging
network lifetime [3], [4]. Secondly, archiving the sensing
raw data over several years requires a tremendous amount of
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storage that ranges from terabytes to petabytes [5]. Thirdly,
data compression increases the networking security by sending
compressed data instead of the raw one. In particular, an
intruder must fully access the data decompression procedure
along with its parameters to reconstruct the raw data. The
security and data privacy problem is receiving more attention
especially in human-centric sensing and wireless body area
networks [6], [7].

Once a deep understanding of monitored phenomena is
achieved, the precise absolute readings of the sensors are
not required, and extending the network lifespan is favored
while collecting data within tolerable error margins [8]. Lossy
data compression methods in WSNs are preferable over the
lossless ones as they provide better compression ratio at
lower computational cost [3]. However, most traditional lossy
data compression algorithms in WSNs lack an error bound
guarantee mechanism due to the high computational demand
of data decompression and reconstruction [3]. Moreover, the
complexity of the decompression routine becomes critical
when the data destination is another resource-constrained node
in the network. Thus, the computational complexity of data
decompression is still an important concern.

The above discussion motivates the need for a solution
that collectively supports the aforementioned design essentials.
Briefly, our main contributions in this paper are as follows.

1) We propose a low-cost (both compression and decom-
pression) lossy data compression technique with error
bound guarantee. The routines for compression and de-
compression are implemented using only linear and sig-
moidal operations. The compressed data features can be
fed to machine learning algorithms [9] to automatically
predict human activities and environmental conditions.

2) Unlike many conventional methods, our unified method
is easily customized for both temporal and spatial com-
pression. This allows the design of a uniform sensing
framework that does not require many dedicated com-
pression solutions, i.e., one for each application.

3) The proposed compression algorithm introduces a free
level of security as an offline learned decompression dic-
tionary is needed to recover the data. Other conventional
data compression algorithms, such as [8], [10]-[12], lack
this benefit as they are based on static procedures and
do not use encoding dictionaries.

Experiments on real world datasets show that the algorithm
outperforms several well-known and traditional methods for
data compression in WSNs. Furthermore, we show that the



data compression using the proposed algorithm helps in re-
ducing the data consumption in WSNS.

The rest of the paper is organized as follows. We first
summarize related works in spatial and temporal compression
of sensor data in Section II. Section III presents the problem
formulation and describes some network topologies where
data compression is befitting. We then provide a mathematical
overview on neural network autoencoders, and propose a
compression algorithm that exploits data spatial and tempo-
ral correlations using autoencoders while providing an error
bound guarantee in Sections IV and V, respectively. Then,
we evaluate and discuss the performance of our algorithm in
experiments with actual sensor data in Section VI. Finally,
Section VII concludes the paper by outlining our key results
and potential future work.

II. RELATED WORK

We identify a wide variety of coding schemes in the
literature (e.g., [3], [13], [14]) and discuss some important
solutions for signal compression in WSNs in the following.

A. Limitations of Conventional WSN Compression Methods

The lightweight temporal compression (LTC) algorithm [10]
is a simple method to compress the environmental data. LTC
is a linear method that represents a time series readings
by using a set of connecting lines. A similar model-based
approach is the piecewise aggregate approximation (PAA)
algorithm [15] that reduces the dimensionality of source data
by generating series of discrete levels. On the negative side,
both LTC and PAA are less efficient when the data values
change significantly over time even if the data periodically
follows the same pattern and values. Moreover, they can only
be used for temporal data compression as their use for spatial
compression is usually inefficient.

Principal component analysis (PCA), also known as the
Karhunen-Loeve transform, has been widely used to extract
(linear) correlations among sensor nodes (e.g., [16]-[19]).
Furthermore, a major scheme in the development of lossy
data compression relies on the transformation of raw data
into other data domains. Examples of these methods in-
clude discrete Fourier transform (DFT), fast Fourier trans-
form (FFT) [14], and the different types of discrete cosine
transforms (DCT) [11]. Naturally, these transformation meth-
ods exploit the knowledge of the application to choose the
appropriate data domain that discards the least data content.
However, such algorithms suffer from low performance when
used to compress data spatially or when noises are present in
the collected readings.

B. Limitations of Compressive Sensing (CS)

On the condition that a sparse representation! of a given
signal is achievable, compressive sensing (CS) can efficiently
transform the signal into a compressed form, which will be

'A signal representation is considered sparse if it contains most or all
information of the original signal using relatively small number of nonzero
components.
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Fig. 1: System model for data'aggregation and funneling
application over a backhaul link. Data can be compressed at
the sensors, cluster heads, or gateway.

used later to recover an approximation of the original signal.
In [20]-[23], the adoption of compressive sensing in WSNss is
presented. Applying CS in WSNs has many limitations. Firstly,
the assumption of input signal sparsity is strong and requires
careful consideration in real-world deployments. Specifically,
WSN data may not be sparse in the conventional data repre-
sentations, such as the time, wavelet, and frequency domains.
Similarly, linear sparse coding methods, such as dictionary
learning [24], result in poor reconstruction fidelity due to
the typical nonlinear correlations in WSN data. Secondly,
introducing a few noisy readings may corrupt the sparse data
representation (e.g., this issue is shown in [21] for the DCT
method). Thirdly, CS requires the transmission of 3-4 times the
number of nonzero values in the original signal for effective
signal recovery [21]. This can result in low compression
performance in real-world WSN deployments. Finally, the
complexity of CS data decompression hinders the development
of error bound guarantee for CS-based compression methods
in WSNs.

To address these limitations of existing methods, we propose
a low-complexity lossy compression algorithm that exploits
the nonlinear spatial-temporal correlations in WSN data and
provides an error bound guarantee. Our algorithm automati-
cally discovers intrinsic features in WSN data for efficient data
representation, rather than relying on given features which may
not suit the data well.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Throughout the paper, we will use the following standard
notational conventions: A matrix is denoted by a bold upper-
case letter, a vector is represented by a bold lowercase letter,
and a scalar is denoted by a lowercase letter. Finally, functions
and constants are named by uppercase letters.

In this section, we give an overview of the problem con-
sidered in this paper including the data compression schemes
(i.e., spatial and temporal compression). As shown in Figure 1,
assume that each observed sample of sensor ¢ (1 =1,..., N)
at time instant ¢ (t = 1,..., M) is formed as

ailt] = @7 [t] + wilt], (1)



where ¢ is the spatial location identifier and ¢ is the discrete
time identifier. Consequently, all sensors are assumed to be
synchronized according to the discrete-time model. NV is the
number of spatial locations which is equal to the number of
sensor nodes (i.e., each location is covered by a single sensor).
xf[t] is the noiseless physical phenomenon value (e.g., a tem-

perature value), and the noise values {w;[t] ~ N(0, aﬁj)}il
are i.i.d random Gaussian variables with zero mean and
variance o2, that depends on the hardware accuracy. Moreover,
we assume that ¢1 < |z;[t]] < @2 which is defined as the
dynamic range of the sensors with ¢; and (2 as constants
that are usually given in hardware data sheets. Thereby, any
sample value that falls outside this sensing range is considered
as an outlier reading (e.g., generated by a defective sensor).
For example, the RM Young wind monitoring sensor (model
05103) [25] measures the wind speed in the range of 0 to 100
m/s. Therefore, any reading beyond this range is considered
as invalid data and should be eliminated.

Naturally, compression algorithms exploit the redundancy to
extract spatial and temporal correlations from data. The choice
of an optimal data compression scheme for a WSN is affected
by network topology, routing algorithm, and data patterns [26].
To simplify the notations, we will consider the data vector
denoted by x € RF, L € {N, M}, that is formed from a
single location’s measurements over time (a temporal data
vector from a single sensor) or by combining many locations’
measurements at a single time instant (a spatial data vector
from many locations). Assuming perfect (without any missing
or outlier values) data samples in x, the data compression
(either temporal or spatial) is intended to represent X in a
compressed form y € R, where K < L. The compressed
data is sent over a wireless channel to a base station (BS)
over a backhaul link or using multihop transmissions. The BS
must be able to compute a reconstruction of the original data X.
The reconstruction may be required to be within a guaranteed
threshold (i.e., a tolerable error margin). Next, we give an
overview of the data compression schemes considered in this
paper and the network topologies that fit each scheme.

A. Temporal (Intrasensor) Compression

This compression scheme exploits data redundancy of one
sensor over time. Each sensor independently compresses its
own data before transmission. Temporal compression is in-
dependent of the network topology as it does not require
inter-sensor communication [26]. The temporal compression
achieves maximum performance when the observed phe-
nomenon changes slightly over time, such as hourly tempera-
ture or humidity readings. At a specific location ¢, the temporal
data vector is formed as x = {z; [1?]}£1 € RM. M is designed
to fit the physical phenomenon cycle and the sampling rate.

B. Spatial (Inter-sensor) Compression

In a dense network, data collected by neighboring sensors
is highly correlated [27]. Spatial compression investigates the
disseminated data patterns among different sensors over the
area. Therefore, the performance of the spatial compression
algorithm will be affected by the network topology and sensor

Antenna /W/
Water depth T

gackhaul link
) de (buoy)
(in meters) ea level
sea monitoring
10m station
som Sensing
P ardware
L00m different
depths
150m
200m

Fig. 2: A wireless sensor node to monitor the water condition
(e.g., pH level) at different depths using sensing components
fixed by a cable to a buoy.

deployment. Unlike temporal compression that considers only
a single sensor, spatial compression considers a WSN with NV
nodes. At a specific time instant ¢, the samples of all sensors
are used to construct a single data vector as x = {mi[t}}fvzl €
RV,

Another fitting architecture for spatial compression is
demonstrated in Figure 2. A buoy sensor node is used for data
monitoring at different depths of the sea, where each node
comprises a collection of sensors and a single transmission
unit. The data is compressed at the buoy node by exploiting the
spatial correlation among sensor’s readings before transmitting
them to a sea monitoring station.

The next section gives an overview of a special type of
artificial neural networks called the autoencoder network.
The discussion describes the procedure that is followed to
generate a compressed data representation at a hidden layer
and reconstructed data values at an output layer. Our algorithm
will be later developed based on this formulation.

IV. NEURAL AUTOENCODERS (AES)

Artificial neural networks (ANNs) have been successfully
used in the development of novel solutions for WSNs as they
can capture nonlinear structures in data [9]. For example, an
ANN-based method for minimizing environmental influences
on sensor responses was proposed in [28]. It has been shown
in [29] that ANNs are a solid tool for maximizing sensing
coverage. This paper presents an appealing application of
ANNs for data compression in WSNs. The key technical
challenges of this application are (i) learning nonlinear spatio-
temporal correlations of WSN data, (ii) enabling low-cost data
compression and decompression, (iii) ensuring data recon-
struction within tolerable error margins, and (iv) minimizing
WSN energy consumption.

An autoencoder (or auto-associative neural network en-
coder) is a three-layer neural network that maps an input vector
d € R” to a hidden representation y € R¥ and finally to an
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Fig. 3: Using AE to project the data to a lower dimensional
representation (K < N).
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output vector d € R” that approximates the input d, as shown
in Figure 3. The vectors satisfy

Yy = F (Wencd + benc) (Za)

dg(d) = F (Waeey + baee) (2b)
1

FO) = ety 20)

where 6 := [Wene, bene, Waee, baec] are real-valued param-
eters that must be learned by a suitable training algorithm,
and F'(-) is the sigmoid function. Note that other nonlinear
function such as the hyperbolic tangent can also be used. The
parameters W, and b.,. are the encoding weight matrix
and bias, while W .. and by, are the decoding weight matrix
and bias, respectively. The entries of y and d are sometimes
called activations.

To learn optimal neural weights € using training data D,
we define the cost function of the basic autoencoder (AE) as

Tae (0,D) = |$|d§]:3; Hd — ae(d)H2~ 3)
E

This function penalizes the difference between each input vec-
tor d and its reconstruction &g(d). Consequently, the optimal
neural weights may be computed using standard optimization
algorithms such as the L-BFGS.

Different variants of the basic AE have been introduced in
the literature to discourage the neural network from overfitting
the training data [30]. Generally speaking, these regularization
methods penalize the neural weight characteristics or the
hidden layer sparsity characteristics.

Weight decaying autoencoder (WAE): In this variant, the
cost function is defined with an extra weight decay term:

(0%
Pwae (8. D) = Tag (. D)+ 5 (IWenel* + [Waeel) )

where |[W||® represents the sum of the squares of the entries
of a matrix W, and « is a hyperparameter? that controls the
contribution from the weight decay term.

Sparse autoencoder (SAE): This version extracts a sparse
data representation at the hidden layer. In particular, we want
most of the entries of y to be close to zero. Sparsity is

2A hyperparameter is a variable that is selected a priori. This differentiates
a hyperparameter from a model parameter (e.g., the encoding weight) which
is adjusted during the learning process.

encouraged by adding the Kullback-Leibler (KL) divergence
function [31]:
K
Isak (0, D) = I'war (0,D) + 3 Z KL(pl|pk)
k=1

. 1-—
KL(p||g) = plog, = + (1 — p)log, ( P ) (5b)
Pk 1—pk

where [ is a hyperparameter that controls the sparsity weight,
p is the sparsity parameter (target activation) that is chosen to
be close to zero, and py, is the average activation of the k-th
node in the hidden layer.

Next, the proposed algorithm is described in more details,
and a discussion is provided to signify the advantages of
our AE-based compression algorithm. Moreover, a method
is presented to ensure data compression within a tolerable
error margin (i.e., an error bound guarantee). Finally, simple
but important methods for data preparation and missing data
imputation are also presented.

(5a)

V. Lossy COMPRESSION WITH ERROR BOUND
GUARANTEE

We propose to apply the autoencoder to the data com-
pression and dimensionality reduction problem in WSNs to
represent the captured data using fewer bits as demonstrated
in Figure 4. The algorithm enables compressed data collec-
tion with tolerable error margins, and it contains three main
steps: historical data collection using the sensor nodes, offline
training and modeling at the BS, and online data temporal or
spatial compression. The proposed algorithm is motivated by
several reasons related to WSN characteristics, as well as the
ability of AEs to automatically extract features in the data.

1) AEs are used to extract a suitable, low-dimensional
code representation that retains most of the information
content of the original data. Besides data compression,
these intrinsic features are integral for data analytics
and visualization algorithms [32], e.g., classification
problems.

2) Sensor networks are deployed in a variety of distinct
scenarios with different network structures and data
patterns. The proposed algorithm has the flexibility of
supporting many scenarios using one unified technique.

3) Finally, after learning the AE’s parameters, the process
of data encoding and decoding are simple and can be
programmed with a few lines of code.

A. Missing Data Imputation

Missing WSN data can occur due to wide variety of
causes such as malfunctioning node, communication failure
and interference, and unsynchronized sampling of the sensors.
For missing data imputation, we use a simple naive method as
shown in Figure 5. Suppose that the entry x;; in the aligned
matrix is missing, where ¢ and j are the time and sensor
indices. Let S be the set of observed sensors at time ¢, and
let the mean of the observed readings of sensor j be j;. We
estimate x;; as

N ZkES Tik
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Fig. 4: AE adoption for data compression and dimen-
sionality reduction in WSNSs. Initially, the parameters
Wene, bene, Waee, and by are adjusted during the learning
stage (offline mode). Subsequently, the encoding part will be
executed in the transmitter side (Tx) to achieve a compressed
representation of the data. Then the receiver (Rx) will deploy
the decoding part to recover a proper approximation of the
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In many sensor applications such as temperature monitoring,
the naive method seems to work relatively well because of
pseudo-linear correlations in the data. We chose this naive
method because of the low computational resources available
at the sensor nodes.

B. Data Sphering

The entries of the output vector d of the AE are from the
sigmoid function, so they are all between 0 and 1. Because
the AE attempts to reconstruct the input vector x € RZ, we
need to normalize our input data so that the entries are also
between 0 and 1. Moreover, for the AE to work, the input data
vectors must be distributed somewhat uniformly near the unit
sphere in R”. This process is called data sphering [31]. One
simple method involves truncating readings that lie outside
three standard deviations from the vector mean, and rescaling
the remaining readings so that they are between 0.1 and 0.9.
In particular, the formula is

d = normalize(x, o)
0.4 , (7
=05+ 35 max (min (x — mean(x), 30) , —30)
o
where x is the source data vector and o is the standard
deviation of the entries of x—mean(x) over all x in the training

dataset. d is the data vector that is fed to the AE network.

‘ Collected readings H encoder H decoder ‘

Source signal Approximated signal

8 6 5 4 3 2 1
(e|@le[e[][@]¢c]]
Qo=

Fig. 6: The error bound mechanism performed by the trans-
mitting node.
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Furthermore, assuming the data is normally distributed, the
probability that a reading is located within three standard
deviations from the mean is 99.7% [33]. Conversely, given
the mean m, the original data vector x may be reconstructed
(up to truncated outliers) as

30 -
M(d —0.5)+m, (®)

where p is a reconstruction of the source data x by using the
AE output vector d.

p = denormalize(d, m, o) =

C. Error Bound Mechanism

The error bound € is defined to be the maximum ac-
ceptable difference between each collected reading by the
sensor and the recovered one by the receiver after receiving
the compressed representation. Basically, the error bound is
tuned by considering several factors such as the application
requirements and the used sensors’ precision. For example,
the RM Young wind monitoring sensor (model 05103) [25]
measures the wind speed and direction with accuracy of 0.3
m/s and 3°, respectively. Thus, setting the error bound to be
equal to the sensor accuracy may be an acceptable design
basis.

Let p be a reconstruction of x that is not guaranteed to be
within any tolerable error margin. The error bound mechanism
first computes the residual r = x — p as shown in Figure 6.
Any entry of the residual vector exceeding the bound e will
be transmitted, using the residual code

e = residualCode(r, €) = (]l'], (rj)jej) )

where J C {1,...,L} is the set of indices j where r; > €
and 1 is the indicator vector for the subset J (i.e. (15); =1
if je Jand (1;5); =0if j ¢ J). Conversely, given the code
€ that contains error residual values, it is easy to compute
an estimate of the original residual by constructing a vector
whose zeros are determined by 1; and whose nonzero entries
are given by (r;); ;. We denote this vector as residual(e).

D. Training, Compression and Decompression

After describing different components of our algorithms, we
are now ready to integrate them. We assume that all the data
mentioned in this section has been aligned and that all missing
values have been imputed as described in Section V-A. For the
training data D, we also ensure that outliers were removed



and that readings were normalized. Let o denote the standard
deviation used in the normalization of the data.

We first learn optimal weights @ for the autoencoder by
minimizing the cost function I'wag(@, D) using the L-BFGS
algorithm. This computationally-intensive process only occurs
once at the start of our network deployment, and the parame-
ters 0, o are distributed to the transmitters and receivers.

The algorithms for compressing and decompressing the sen-
sor readings are outlined in Algorithms 1 and 2, respectively.
For our experiments, we send the compressed signal (y, &, m)
using floating point representation for the real numbers and
binary string for the indicator vector 1; in . Note that all
the steps have low computational complexity. Here, we also
see why decoder complexity in algorithms (e.g., compressed
sensing) impedes the provision of error bound guarantee be-
cause it is computationally expensive to compute the residual
€. Clearly, an intruder who can receive the compressed data
cannot retrieve the raw data without knowing the decoding
weight matrix W, and bias vector bg... This adds a free
level of security to data aggregation in WSNs.

Algorithm 1: The online data compression

Input: readings x; parameters o, We,c, bene, Waees Bdec
QOutput: signal y, e, m

begin

m <— mean(x)

d < normalize(x, o)

y < F(Wencd + benc)

d«+ F(Wdecy + bdec)

p < denormalize(d, m, o)

€ < residualCode(x — p, ¢€)

Algorithm 2: The online data decompression

Input: signal y, e, m; parameters o, W gec, bgec
Output: reconstruction X
begin

d«+ F(Wdecy + bdec)

p « denormalize(d, m, o)

r < residual(¢)

X—p+r

E. Time Complexity

Our algorithm training is computationally expensive and
should be run on a server. However, the data compression
and decompression, as highlighted in Algorithms 1 and 2,
are lightweight. Both data compression and decompression
has a linear time complexity of O (L x K), where L is the
input data size, and K is the compressed data size. This
low computational complexity results in significant energy
conservation as shown in Section VI-D.

The next section presents simulation results to show the
compression performance and energy conservation of the
proposed algorithm.

VI. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed algorithm us-
ing data from actual sensor test beds. Our datasets are divided
into 10 random folds for training and testing (i.e., the cross-
validation method [34] with 10 folds). In each cross-validation
step, the system is trained using 9 folds and tested using
the last fold. Our implementation adopts the limited memory
Broyden—Fletcher—Goldfarb—Shanno (L-BFGS) algorithm [35]
to tune the AE’s weights during the learning stage.

A. Datasets and Performance Metrics

We evaluate our solution using the following meteorological

datasets:

e Grand-St-Bernard deployment [36]: We use data from 23
sensors that collect surface temperature readings between
Switzerland and Italy at an elevation of 2.3km. This
dataset contains readings ranging from —32°C to 48°C,
though observations suggest that the maximum and min-
imum values are most likely from malfunctioning sensor
nodes. After removing outliers, the dataset still contains
many interesting nontrivial features.

o LUCE deployment [36]: After data preparation, the used
dataset contains relative humidity measurements from 90
sensors, each with around 160k readings. This dataset is
an example of high resolution spatial-temporal data that
is collected by WSNs to monitor an area with widely
varying data characteristics.

To measure the extent that the data is being compressed,

we use the following metrics:

o Compression ratio (CR): This metric calculates the reduc-
tion in transmitted data size due to compression which is
defined as follows:

CR(x,%) = (gg;) x 100

where B(X) and B(x) are the numbers of bits used to
represent the transmitted and the original data, respec-
tively.

e Root mean squared error (RMSE): RMSE measures the
loss of data precision due to compression algorithms, i.e.,
compression error. An RMSE of 0 means that WSN data
can be fully reconstructed without error. RMSE is defined
as follows:

(10)

RMSE(x, %) = (11)

o Coefficient of determination (usually denoted by R? in
statistics): This defines the proportion of variance of the
original data that is reconstructed from the compressed
data. An R? of 0.4 means that 40% of x is reconstructed
in X. This metric is calculated as follows:

Zf:l(xi — &;)?

R%*(x,%) = 1.0 — , (12)

where T = % Zle z;. The data is fully reconstructed if
R? is equal to 1.0.



The CR value determines the compression efficiency, while
the RMSE and R? values define the reconstruction fidelity.

B. Test Example

Figure 7 provides an example of the quantities computed
in the proposed compression solution. The network is trained
using 28k records of historical dataset from the Grand-St-
Bernard dataset. Figure 7a gives an example of data com-
pression, transmission and recovery process using the AE’s
network. The input signal (I) is collected from the network’s
nodes, such that each node contributes one reading every
two minutes. This input signal excites the network and a
compressed signal (II) is generated and transmitted to the
receiver(s) using any general routing protocol. The output
signal (III) is recovered at the receiver that represents an
efficient approximation of the input signal. Figure 7b shows
a Hinton diagram of the learned encoding weight. The size
of the squares represents the filter’s magnitudes and the color
represent the sign (white for negative and black for positive
values). Each column shows the receptive field of each node in
the other nodes. The node’s receptive fields are automatically
extracted to represent the spatial correlation among neighbor
nodes. Figure 7c shows the RMSE over learning iterations
for the training and testing datasets. The training RMSE is
very high at the initial iterations but decreases with learning
iterations.

C. Baselines

In this section, a simulation study of the data compression
is given. This includes two main validation scenarios. Firstly,
the algorithm performance without error bound guarantee is
tested under spatial compression scenario using the Grand-
St-Bernard deployment. This scenario is designed to test the
compression ratio and reconstruction error of the proposed
method against a set of conventional methods that do not
provide any error bound guarantee. Secondly, a temporal com-
pression scenario is formulated with an error bound guarantee
using the LUCE deployment data. This temporal scenario tests
the proposed method against the well-known LTC method [10]
which provides an error bound guarantee.

1) AE Models: As shown in Figure 8, using the basic AE
provides the best performance over the other AE’s variants.
Even though WAE and SAE are useful for classification-
related tasks to avoid overfitting, we find that they degrade the
AE’s reconstruction performance (i.e., RMSE). This is justified
as for the compression problem, the hidden layer size is less
than the input size, and hence the model is less affected by
the overfitting problem. However, in feature extraction and
classification problems, the hidden layer could be larger than
the input size and the overfitting effects are more apparent. In
these cases, regulations using WAE and SAE become more im-
portant. To tune the AE’s hyper-parameters, the authors of [37]
describe the prohibitive task of running the cross-validation
procedure using several choice of parameters. To automate
this process, we employed the common strategy in machine
learning by using the grid search method for model selection.
Initially, this starts by specifying a list of reasonable values

of each hyperparameter. Then, the algorithm is evaluated over
the elements of the cross product set of the lists. In summary,
the parameters that achieve the best performance on the cross-
validation estimator will be chosen for real time deployment.
It is important to note that the grid search method becomes
ineffective for a large number of hyperparameters as the lists’
product increases dramatically [38]. However, we only have
two hyperparameters in the sparse AE case.

2) Spatial Compression: Without the error bound guaran-
tee, we use the Grand-St-Bernard dataset to test the spatial
compression capabilities of the proposed algorithm. The 23
sensors are assumed to be synchronized to transmit their data
samples to a gateway. The gateway will spatially compress
the data before sending it to the BS over a backhaul link. This
data compression is a challenging task due to the non-uniform
data distribution through different sensor nodes.

Figures 9a and 9b show that the proposed method out-
performs other conventional WSN data compression methods
such as PCA, DCT, FFT, and CS. These conventional methods
are the main basis for most existing methods for WSN data
compression [3], [14]. Our implementation of these conven-
tional methods is based on the scikit-learn library [39]. CS
samples data at a low rate than Shannon Nyquist sampling
rate. Specifically, an input signal x € RL, L € {N, M} is
represented as x = Ws, where s is the sparse representation
of the signal with « nonzero values (called a-sparse), and
¥ ¢ REXE js the basis dictionary. We have used online
dictionary learning [24] to find ¥. Other limitations of CS
as a WSN data compression method have been discussed in
Section II-B.

Based on Figure 10, we observe an important result. The
average RMSE value can be misleading as WSN data compres-
sion methods without error bound guarantee can produce poor
reconstruction fidelity at some time instants. Most traditional
lossy data compression algorithms in WSNs lack an error
bound guarantee mechanism due to the high computational
demand of data decompression and reconstruction [3]. Our
proposed method overcomes this limitation by using the error
bound mechanism proposed in Section V-C. The proposed
method with error bound of € = 1.0 gives a good compression
ratio of CR = 60.6%.

3) Temporal Compression: In the following, we compare
the proposed method with the LTC method in a temporal
compression scenario with error bound guarantee. We choose
the LTC algorithm for bench-marking which as (1) LTC is one
of the rare WSN data compression methods with error bound
guarantee, and (2) several comparative studies (e.g., [14])
discussed the efficiency of the LTC algorithm over other
methods in temporal compression.

Using the LUCE deployment, the temporal compression
scenario is formulated such that each sensor compresses its
data locally before sending it using multihop transmissions
to the BS. Each sensor is assumed to sample at a rate of 1
sample every 2 minutes. Therefore, 720 samples are collected
each day and sent as one compressed chunk.

Figure 11 provides the analysis of the data compression
with an error bound constraint. This shows that the proposed
algorithm outperforms the LTC in both RMSE (Figure 11a)
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and compression ratio (Figure 11b). Even though the high
resolution dataset of the LUCE deployment is very suitable
for the LTC method as the data changes slowly between sub-
sequent samples, the compression efficiency of the proposed
algorithm is still superior. We note that LTC performs as good
as AE for large error bounds, but is unable to keep the same
efficiency when the error bound is small.

D. Energy Conservation by Data Compression

In this section, we consider the energy conservation of the
proposed method. Traditional data compression schemes from
information and coding theory cannot be directly applied to a
resource limited framework like WSNs as they are designed to
optimize storage rather than energy consumption [3]. There-
fore, special attention should be provided to the computational
burdens of any compression algorithm designed for WSNs.
Otherwise, the energy consumed during CPU operations of
complex algorithms might exceed the energy consumed due
to sending less data over the RF module.

Again, suppose that the length of the original data vector
is L and the length of the compressed data representation
is K. We adapt the complexity analysis used in [14] while
considering the power consumption for receiving the data
which is extremely important in multihop data aggregation.

e We consider the mixed-signal MSP430 micro-
controller [40] that is powered with a 16-bit CPU
developed to support resource limited systems. The
supply voltage is Voo = 3.3V, the clock rate is
Forx = 3.3M Hz, and the current consumption of the
complete MSP430 system during the active mode is
Inrspaso = 1.85mA (see Section 5.3.4 of [40]). Hence,
the power consumption of the MSP430 micro-controller
per clock cycle is

Vee X Inrspazo

= 1.85n.J.
Fork

Ecrk =
The exponential function can be calculated using two hy-
perbolic functions as exp(v) = sinh(v)+cosh(v), which
requires (without hardware multiplier) 52000 CPU cycles
to achieve more than 6 digits of precision. This derivation
is based on the Taylor series expansion. Therefore, it is
important to select the number of Taylor iterations of the
exponential function calculation to satisfy the precision
requirements of the application [41]. The CPU cycle
specifications of the basic operations are given in Table I.
o For the transmission unit, we consider the 9XTend RF
module [42] that operates in the 902 — 928 M Hz fre-
quency band with an effective data rate of Rx7end =
9,600bps and a spread technology of frequency-hopping
spread spectrum (FHSS). This module’s transmission
range is of up to 0.9km in urban areas, and up to
22km for ideal outdoor line-of-sight transmissions. These
transmission ranges make XTend module suitable for
data transmission over a backhaul link. The current
consumption during the data transmission and reception
are I7x = 600mA and Ipx = 80mA, respectively’.
The current flow during the idle mode is near 1mA, and
hence it is ignored in our analysis. The supply voltage
is set at Voo = 3.3V. Then, the consumed energy for
transmitting and receiving one bit of data is

Vee X Irx + Voo X Irx

Shit =
Recco420

= 233.75uJ.

3Some studies ignore the power consumption of data reception. However,
this metric is important in multihop transmission which is performed by
regular sensor nodes with limited energy budget.
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[ Operation [ # of CPU Cycles (FLOAT) |
Addition 184
Subtraction 177
Multiplication 395
Division 405
Comparison 37
exp () 52000

TABLE I: CPU clock cycles for the mixed-signal MSP430

micro-controller [40].

Therefore, the energy consumed by the network to transmit
one bit and receive it at the next hop (one hop transmission)
over the transceiver unit is approximately equal to the energy

used by the micro-controller in 125,945 CPU clock cycles®.
Using these design components, we formulate the computa-
tional complexity (in number of clock cycles) for compressing
the input vector using the AE network Cag (L, K) as:

Cap (L, K) = (184 4+ 405 4 177 + 2 x 37)L +

Data normalization

(395L + 2 x 184L) K + (184 + 405 + 52000) K .

Wenex+bene

13)

The sigmoid function

Finally, using (13), we find that the energy consumed to
transmit the data with compression can be formulated as:

4Larger ratios of the transmission-CPU energy consumptions are even given
in other studies, see [12] as an example, which is based on the hardware set
and the CPU energy saving modes. These larger ratios result in more energy
savings when using data compression algorithms.



B e Lo .*3”{ .
‘0
P
35k oo [ [ [ e ]
: : : R
30k - S
: : ol :
.
W 2.5 - - m e r ey oo
] : : P : :
= gl
20k o P

1 2 3 4 5 6

(a)

(b)

Fig. 11: Analyzing a temporal compression scenario with error bound guarantee using the LUCE deployment dataset. The AE’s
input vector size is 720 and the hidden layer size is 20, so the achievable compression ratio is at most 97.22%. (a) Compression
error (RMSE) under different values of error bound (e), and (b) compression ratio (CR) under different values of error bound

(e).

Far (L,K) = Fcorx X Cag (L,K)+32b1ts x K x Spit .

CPU cost

Transmission cost
14)
The first term refers to the energy consumed to compress
the data (i.e. during the CPU computations), and the second
term considers the energy consumed at the transmission unit
to send the compressed bits. Note that we consider a 32
bit float representation of the sensor readings. Clearly, to
achieve energy savings, the energy consumption using data
compression scheme must be significantly less than that of
the transmission of the raw data, more formally:

Eup (L, K) < 32bits x L x Sy (15)

These results are illustrated in Figure 12 under different
compression ratios and multihop transmissions. Specifically,
Figure 12a shows the energy conservation by data compression
at different compression ratios. Figure 12b shows the increased
energy conservation by data compression for multihop data
transmission where the forwarding nodes are typical sensor
nodes with energy-limited budgets. For example, a CR of
35.56% in 5-multihop transmissions reduces the energy con-
sumption by 2.8 folds as compared to raw data transmission.
A similar result can be drawn for reliable networks in which
several copies of the same packet is transmitted to ensure a
packet delivery ratio.

VII. CONCLUSION

Instead of using computationally expensive transformations
on raw data or introducing strong assumptions on data statis-
tical models, we have proposed an adaptive data compression
with feature extraction technique using AEs. Our solution
exploits spatio-temporal correlations in the training data to
generate a low dimensional representation of the raw data,
thus significantly prolonging the lifespan of data aggregation
and funneling systems. Moreover, the algorithm can optionally
be adjusted to support error bound guarantee.

Recent sensor networks often monitor a variety of modali-
ties such as temperature, humidity and illuminance. However,
designing a compression algorithm for multimodal data is
much more challenging than the single modal situation [13].
To study fundamental issues and design tradeoffs, we ignore
the case of multimodal data in this paper and keep it for
a future work. We will also study the use of sparse over-
complete representations for data compression in WSNs (i.e.
when the hidden layer size is larger than the input size). Last
but not least, we will explore how to integrate the presence of
missing values into our autoencoder, rather than using a naive
method for missing data imputation.
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