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Abstract

Despite the widespread installation of accelerometers
in almost all mobile phones and wearable devices, ac-
tivity recognition using accelerometers is still imma-
ture due to the poor recognition accuracy of existing
recognition methods and the scarcity of labeled training
data. We consider the problem of human activity recog-
nition using triaxial accelerometers and deep learning
paradigms. This paper shows that deep activity recog-
nition models (a) provide better recognition accuracy
of human activities, (b) avoid the expensive design of
handcrafted features in existing systems, and (c) utilize
the massive unlabeled acceleration samples for unsuper-
vised feature extraction. Moreover, a hybrid approach of
deep learning and hidden Markov models (DL-HMM)
is presented for sequential activity recognition. This hy-
brid approach integrates the hierarchical representations
of deep activity recognition models with the stochastic
modeling of temporal sequences in the hidden Markov
models. We show substantial recognition improvement
on real world datasets over state-of-the-art methods of
human activity recognition using triaxial accelerome-
ters.

Introduction
Existing sensor-based activity recognition systems (Chen et
al. 2012) use shallow and conventional supervised machine
learning algorithms such as multilayer perceptrons (MLPs),
support vector machines, and decision trees. This reveals a
gap between the recent developments of deep learning al-
gorithms and existing sensor-based activity recognition sys-
tems. When deep learning is applied for sensor-based ac-
tivity recognition, it results in many advantages in terms
of system performance and flexibility. Firstly, deep learn-
ing provides an effective tool for extracting high-level fea-
ture hierarchies from high-dimensional data which is useful
in classification and regression tasks (Salakhutdinov 2015).
These automatically generated features eliminate the need
for handcrafted features of existing activity recognition sys-
tems. Secondly, deep generative models, such as deep belief
networks (Hinton, Osindero, and Teh 2006), can utilize un-
labeled activity samples for model fitting in an unsupervised
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pre-training phase which is exceptionally important due to
the scarcity of labeled activity datasets. In the contrary, un-
labeled activity datasets are abundant and cheap to collect.
Thirdly, deep generative models are more robust against the
overfitting problem as compared to discriminative models
(e.g., MLP) (Mohamed, Dahl, and Hinton 2012).

In this paper, we present a systematic approach towards
detecting human activities using deep learning and triaxial
accelerometers. This paper is also motivated by the success
of deep learning in acoustic modeling (Mohamed, Dahl, and
Hinton 2012; Dahl et al. 2012), as we believe that speech
and acceleration data have similar patterns of temporal fluc-
tuations. Our approach is grounded over the automated abil-
ity of deep activity recognition models in extracting intrinsic
features from acceleration data. Our extensive experiments
are based on three public and community-based datasets. In
summary, our main results on deep activity recognition mod-
els can be summarized as follows:
• Deep versus shallow models. Our experimentation

shows that using deep activity recognition models signif-
icantly enhances the recognition accuracy compared with
conventional shallow models. Equally important, deep ac-
tivity recognition models automatically learn meaningful
features and eliminate the need for the hand-engineering
of features, e.g., statistical features, in state-of-the-art
methods.

• Semi-supervised learning. The scarce availability of la-
beled activity data motivates the exploration of semi-
supervised learning techniques for a better fitting of ac-
tivity classifiers. Our experiments show the importance
of the generative (unsupervised) training of deep activity
recognition models in weight tuning and optimization.

• Spectrogram analysis. Accelerometers generate multi-
frequency, aperiodic, and fluctuating signals which com-
plicate the activity recognition using time series data. We
show that using spectrogram signals instead of the raw
acceleration data exceptionally helps the deep activity
recognition models to capture variations in the input data.

• Temporal Modeling. This paper presents a hybrid ap-
proach of deep learning and hidden Markov model (DL-
HMM) for better recognition accuracy of temporal se-
quence of activities, e.g., fitness movement and car main-
tenance checklist. This hybrid technique integrates the hi-



erarchical representations of deep learning with stochastic
modeling of temporal sequences in HMMs. Experiments
show that a DL-HMM outperforms HMM-based meth-
ods for temporal activity recognition. Specifically, the
learned representation of deep activity recognition models
is shown to be effective in estimating the posterior proba-
bilities of HMMs. Unlike Gaussian mixture models which
provide an alternative method, deep neural networks do
not impose restrict assumptions on the input data distri-
bution (Mohamed, Dahl, and Hinton 2012).

Related Work
In this section, we will focus on classification and feature en-
gineering methods for activity recognition using accelerom-
eters. For a more comprehensive review of the field, we
refer interested readers to recent survey papers (Lara and
Labrador 2013; Chen et al. 2012).

Limitations of Shallow Classifiers
Machine learning algorithms have been used for a wide
range of activity recognition applications (Parkka et al.
2006; Khan et al. 2010; Altun and Barshan 2010; Kwapisz,
Weiss, and Moore 2011), allowing the mapping between fea-
ture sets and various human activities. The classification of
accelerometer samples into static and dynamic activities us-
ing MLPs is presented in (Khan et al. 2010). Conventional
neural networks, including MLPs, often stuck in local op-
tima (Rumelhart, Hinton, and Williams 1986) which leads to
poor performance of activity recognition systems. Moreover,
training MLPs using backpropagation (Rumelhart, Hinton,
and Williams 1986) only hinders the addition of many hid-
den layers due to the vanishing gradient problem. The au-
thors in (Parkka et al. 2006) used decision trees and MLPs
to classify daily human activities. In (Berchtold et al. 2010),
a fuzzy inference system is designed to detect human ac-
tivities. (Kwapisz, Weiss, and Moore 2011) compared the
recognition accuracy of decision tree (C4.5), logistic regres-
sion, and MLPs, where MLPs are found to outperform the
other methods.

In this paper, we show significant recognition accu-
racy improvement on real world datasets over state-of-the-
art methods for human activity recognition using triaxial
accelerometers. Additionally, even though some previous
works have purportedly reported promising results of activ-
ity recognition accuracy, they still require a degree of hand-
crafted features as discussed below.

Limitations of Handcrafted Features
Handcrafted features are widely utilized in existing activity
recognition systems for generating distinctive features that
are fed to classifiers. The authors in (Altun and Barshan
2010; Berchtold et al. 2010; Kwapisz, Weiss, and Moore
2011; Xu et al. 2012; Catal et al. 2015) utilized statistical
features, e.g., mean, variance, kurtosis and entropy, as dis-
tinctive representation features. On the negative side, sta-
tistical features are problem-specific, and they poorly gen-
eralize to other problem domains. In (Zappi et al. 2008),
the signs of raw signal (positive, negative, or null) are used

as distinctive features. Despite its simple design, these sign
features are plain and cannot represent complex underly-
ing activities which increase the number of required ac-
celerometer nodes. The authors in (Bächlin et al. 2010) used
the energy and frequency bands in detecting the freezing
events of Parkinson’s disease patients. Generally speaking,
any handcrafted-based approach involves laborious human
intervention for selecting the most effective features and de-
cision thresholds from sensory data.

Quite the contrary, data-driven approaches, e.g., using
deep learning, can learn discriminative features from his-
torical data which is both systematic and automatic. There-
fore, deep learning can play a key role in developing self-
configurable framework for human activity recognition. The
author in (Plötz, Hammerla, and Olivier 2011) discussed the
utilization of a few feature learning methods, including deep
learning, in activity recognition systems. Nonetheless, this
prior work is elementary in its use of deep learning methods,
and it does not provide any analysis of the deep network con-
struction, e.g., setup of layers and neurons. Moreover, our
probabilistic framework supports temporal sequence model-
ing of activities by producing the activity membership prob-
abilities as the emission matrix of an HMM. This is a con-
siderable advantage for temporally modeling human actions
that consist of a sequence of ordered activities, e.g., fitness
movement and car maintenance checklist.

Problem Statement
This section gives a formal description of the activity recog-
nition problem using accelerometer sensors.

Data Acquisition
Consider an accelerometer sensor that is attached to a human
body and takes samples (at time index t ) of the form

rt = r∗t + wt, t = 1, 2, . . . (1)

where rt =
[
rxt ryt rzt

]T
is a 3D accelerometer

data point generated at time t and composed of rxt , ryt ,
and rzt which are the x-acceleration, y-acceleration, and z-
acceleration components, respectively. The proper acceler-
ation in each axis channel is a floating-point value that is
bounded to some known constantB > 0 such that |rxt | ≤ B,
|ryt | ≤ B, and |rzt | ≤ B. For example, an accelerometer
with B = 2g units indicates that it can record proper accel-
eration up to twice the gravitational acceleration (recall that
1g ' 9.8 meter

second2 ). Clearly, an accelerometer that is placed
on a flat surface record a vertical acceleration value of ±1g
upward. r∗t ∈ R3 is a vector that contains 3-axial noiseless
acceleration readings. wt ∈ R3 is a noise vector of indepen-
dent, zero-mean Gaussian random variables with variance
σ2
w such that wt v N (0, σ2

wI3). Examples of added noise
during signal acquisition include the effect of temperature
drifts and electromagnetic fields on electrical accelerome-
ters (Fender et al. 2008).

Three channel frames sxt , syt , and szt ∈ RN are then
formed to contain the x-acceleration, y-acceleration, and
z-acceleration components, respectively. Particularly, these



channel frames are created using a sliding window as fol-
lows:

sxt = [ rxt · · · rxt+N−1 ]T , (2)

sxt = [ r
y
t · · · ryt+N−1 ]T , (3)

szt = [ rzt · · · rzt+N−1 ]T . (4)

The sequence size N should be carefully selected such as to
ensure an adequate and efficient activity recognition. We as-
sume that the system supportsM different activities. Specif-
ically, let A = {a1, a2, . . . , aM} be a finite activity space.
Based the windowed excerpts sxt , sxt , and szt , the activ-
ity recognition method infers the occurrence of an activity
yt ∈ A.

Data Preprocessing
A spectrogram of an accelerometer signal is a three dimen-
sional representation of changes in the acceleration energy
content of a signal as a function of frequency and time. His-
torically, spectrograms of speech waveforms are widely used
as distinguishable features in acoustic modeling, e.g., the
mel-frequency cepstral (Zheng, Zhang, and Song 2001). In
this paper, we use the spectrogram representation as the in-
put of deep activity recognition models as it introduces the
following advantages:

1. Classification accuracy. The spectrogram representation
provides interpretable features in capturing the intensity
differences among nearest acceleration data points. This
enables the classification of activities based on the vari-
ations of spectral density which reduce the classification
complexity.

2. Computational complexity. After applying the spectro-
gram on sxt , sxt , and szt , the length of the spectral signal
is L = 3(N

2 + 1) while the time domain signal length is
3N . This significantly reduces the computational burdens
of any classification method due to the lower data dimen-
sionality.

Henceforth, the spectrogram signal of the triaxial ac-
celerometer is denoted as xt ∈ RL, where L = 3(N

2 + 1) is
the concatenated spectrogram signals from the triaxial input
data.

Deep Learning for Activity Recognition:
System and Model

Our deep model learns not only the classifier’s weights used
to recognize different activities, but also the informative fea-
tures for recognizing these activities from raw data. This
provides a competitive advantage over traditional systems
that are hand-engineered. The model fitting and training con-
sist of two main stages: (i) An unsupervised, generative,
and pre-training step, and (ii) a supervised, discriminative,
and fine-tuning step. The pre-training step generates intrin-
sic features based on a layer-by-layer training approach us-
ing unlabeled acceleration samples only. Firstly, we use deep
belief networks (Hinton, Osindero, and Teh 2006) to find
the activity membership probabilities. Then, we show how
to utilize the activity membership probabilities generated by
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Figure 1: Activity recognition using deep activity recog-
nition model. Our system automatically (1) takes triaxial
acceleration time series, (2) extracts the spectrogram of win-
dowed excerpts, (3) computes intrinsic features using a deep
generative model, and then (4) recognizes the underlying
human activities by finding the posterior probability distri-
bution {P (ai|xt)}Mi=1. This deep architecture outperforms
existing methods for human activity recognition using ac-
celerometers as shown by the experimental analysis on real
world datasets. Furthermore, an optional step involves using
the emission probabilities out of the deep model to train a
hidden Markov model (HMM) for modeling temporal pat-
terns in activities.

deep models to model the temporal correlation of sequential
activities.

Figure 1 shows the working flow of the proposed activ-
ity recognition system. We implement deep activity recogni-
tion models based on deep belief networks (BBNs). DBNs
are generative models composed of multiple layers of hid-
den units. In (Hinton, Osindero, and Teh 2006), the hid-
den units are formed from restricted Boltzmann machines
(RBMs) which are trained in a layer-by-layer fashion. No-
tably, an alternative approach is based on using stacked auto-
encoders (Bengio et al. 2007). An RBM is a bipartite graph
that is restricted in that no weight connections exist between
hidden units. This restriction facilitates the model fitting as
the hidden units become conditional independent for a given
input vector. After the unsupervised pre-training, the learned
weights are fine-tuned in an up-down manner using available
data labels. A practical tutorial on the training of RBMs is
presented in (Hinton 2012).

Deep Activity Recognition Models
DBNs (Hinton, Osindero, and Teh 2006) can be trained
on greedy layer-wise training of RBMs as shown in Fig-
ure 2. In our model, the acceleration spectrogram signals
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Figure 2: The greedy layer-wise training of DBNs. The
first level is trained on triaxial acceleration data. Then, more
RBMs are repeatedly stacked to form a deep activity recog-
nition model until forming a high-level representation.

x are continuous and are fed to a deep activity recognition
model. As a result, the first layer of the deep model is se-
lected as a Gaussian-binary RBM (GRBM) which can model
the energy content in the continuous accelerometer data.
Afterward, the subsequent layers are binary-binary RBMs
(BRBMs). RBMs are energy-based probabilistic models
which are trained using stochastic gradient descent on the
negative log-likelihood of the training data. For the GRBM
layer, the energy of an observed vector v = x and a hidden
code h is denoted as follows:

E (v = x,h) =
1

2
(v − b)

>
(v − b)−c>h−v>Wh (5)

where W is the weight matrix connecting the input and hid-
den layers, b and c are the visible and hidden unit biases,
respectively. For a BRBM, the energy function is defined as
follows:

E (v,h) = −b>v − c>h− v>Wh. (6)

An RBM can be trained using the contrastive divergence ap-
proximation (Hinton 2002) as follows:

4Wij = α
(
〈vihj〉data − 〈vihj〉1

)
(7)

where α is a learning rate. 〈vihj〉data is the expectation of
reconstruction over the data, and 〈vihj〉1is the expectation
of reconstruction over the model using one step of the Gibbs
sampler. Please refer to (Hinton, Osindero, and Teh 2006;
Hinton 2012) for further details on the training of DBNs.
For simplicity, we denote the weights and biases of a DBN
model as θ which can be used to find the posterior probabil-
ities P (ai|xt, θ) for each joint configuration (ai,xt).

To this end, the underlying activity yt can be predicted at
time t using the softmax regression as follows:

yt = arg max
1≤i≤M

{P (ai|xt, θ)} . (8)

Alternatively, the temporal patterns in a sequence of activ-
ities can be further analyzed using HMMs. The following
section establishes the probabilistic connection between the
input data xt and activity prediction yt over a sequence of
observations 1 ≤ t ≤ T .

Temporal Activity Recognition Models (DL-HMM)
In some activity recognition applications, there is a
temporal pattern in executed human activities, e.g.,
car checkpoint (Zappi et al. 2008). Hidden Markov

models (HMMs) (Rabiner and Juang 1986) are a
type of graphical models that can simulate the tem-
poral generation of a first-order Markov process. The
temporal activity recognition problem includes find-
ing the most probable sequence of (hidden) activities
y1, . . . , yT that produce an (observed) sequence of input
x1, . . . ,xT . An HMM model Φ is represented as a 3-tuple
Φ = (π, ψ,Υ) where π = (P (y1 = ai) : i = 1, . . . ,M)
is the prior probabilities of all activities in the first hidden
state, ψ = (P (yt = ai|yt−1 = aj) : i, j = 1, . . . ,M)
is the transition probabilities, and Υ =
(P (xt|yt = ai) : i = 1, . . . ,M and t = 1, . . . , T ) is
the emission matrix for observables xt from hidden sym-
bols ai. Given a sequence of observations, the emission
probabilities is found using a deep model. In particular,
the joint probabilities P (yt,xt) of each joint configuration
(yt,xt) in an HMM is found as follows:

P (yt,xt) = P (y1)P (x1|y1)

T∏
i=2

P (yi|yi−1)P (xi|yi) ,(9)

= P (yt−1,xt−1)P (yt|yt−1)P (xt|yt) , (10)

Herein, (10) shows that an HMM infers the posterior distri-
bution P (yt|xt) as a recursive process. This decoding prob-
lem is solved for the most probable path of sequential activ-
ities.

Computational Complexity
Our algorithm consists of three working phases: (a) data
gathering, (b) offline learning, and (c) online activity recog-
nition and inference. The computational burden of the of-
fline learning is relatively heavy to be run on a mobile de-
vice as it based on stochastic gradient descent optimiza-
tion. Therefore, it is recommended to run the offline train-
ing of a deep activity recognition model on a capable server.
Nonetheless, after the offline training is completed, the
model parameter θ is only disseminated to the wearable de-
vice where the online activity recognition is lightweight with
a linear time complexity (O (L×D)), where D is the num-
ber of layers in the deep activity recognition model. Here,
the time complexity of the online activity recognition sys-
tem represents the time needed to recognize the activity as
a function of the accelerometer input length. The time com-
plexity of finding the short-time Fourier transform (STFT)
is O (L log (L)). Finally, the time complexity of the HMM
decoding problem is O

(
M2 × T

)
.

Baselines and Result Summary
Datasets
For empirical comparison with existing approaches, we use
three public datasets that represent different application do-
mains to verify the efficiency of our proposed solution.
These three testbeds are described as follows:

• WISDM Actitracker dataset (Kwapisz, Weiss, and
Moore 2011): This dataset contains 1, 098, 213 samples
of one triaxial accelerometer that is programmed to sam-
ple at a rate of 20 Hz. The data samples belong to 29 users



and 6 distinctive human activities of walking, jogging, sit-
ting, standing, and climbing stairs. The acceleration sam-
ples are collected using mobile phones with Android op-
erating system.

• Daphnet freezing of gait dataset (Bächlin et al. 2010):
We used this dataset to demonstrate the healthcare appli-
cations of deep activity recognition models. The data sam-
ples are collected from patients with the Parkinson’s dis-
ease. Three triaxial accelerometers are fixed at patient’s
ankle, upper leg, and trunk with a sampling frequency of
64 Hz. The objective is to detect freezing events of pa-
tients. The dataset contains 1, 140, 835 experimentation
samples from 10 users. The samples are labeled with ei-
ther “freezing” or “no freezing” classes.

• Skoda checkpoint dataset (Zappi et al. 2008): The 10
distinctive activities of this dataset belong to a car mainte-
nance scenario in typical quality control checkpoints. The
sampling rate is 98 Hz. Even though the dataset contains
20 nodes of triaxial accelerometers, it would be inconve-
nient and costly to fix 20 nodes to employee hands which
can hinder the maintenance work. Therefore, we use one
accelerometer node (ID # 16) for the experimental valida-
tion of deep models.

Performance Measures
For binary classification (experimentation on the
Daphnet dataset), we use three performance metrics:
Sensitivity (TPR) = TP

TP+FN , specificity (TNR) = TN
TN+FP ,

and accuracy (ACC) = TP+TN
TP+TN+FP+FN where TP, TN, FP, and

FN mean true positive, true negative, false positive, and
false negative, respectively. For multiclass classification of
non-overlapping activities, which are based on the experi-
mentation of the WISDM Actitracker and Skoda checkpoint
datasets, the average recognition accuracy (ACC) is found
as ACC = 1

M

∑M
i=1

TPi+TNi

TPi+TNi+FPi+FNi
, where M is the

number of supported activities.

Baselines
Table 1 summarizes the main performance results of our
proposed method and some previous solutions on using the
three datasets. Deep activity recondition models introduce
significant accuracy improvement over conventional meth-
ods. For example, it improves accuracy by 6.53% over MLPs
and 3.93% over ensemble learning on the WISDM Acti-
tracker dataset. Similarly, significant improvements are also
reported for the Daphnet freezing of gait and Skoda check-
point datasets. This summarized result shows that the deep
models are both (a) effective in improving recognition ac-
curacy over state-of-the-art methods, and (b) practical for
avoiding the hand-engineering of features.

Experiments on Real Datasets
Spectrogram Analysis
Figure 3 shows triaxial time series and spectrogram signals
of 6 activities of the WISDM Actitracker dataset. Clearly,
the high frequency signals (a.k.a. AC components) belong
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Figure 3: Frequency spectrum as a parametric represen-
tation. Data samples of a triaxial accelerometer and their
corresponding spectrogram representation (WISDM Acti-
tracker dataset). These samples belong to five everyday hu-
man activities: jogging t ∈ [0, 20), walking t ∈ [20, 40),
upstairs t ∈ [40, 60), downstairs t ∈ [60, 80), sitting t ∈
[80, 100), and standing t ∈ [100, 120). The acceleration sig-
nal is usual subtle and only cover a small range of the fre-
quency domain.
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Figure 4: Optimizing deep activity recognition models.
Activity recognition using the WISDM Actitracker dataset
under different DBN setup. At each figure, the rates of ac-
tivity recognition accuracy are shown for both training and
testing data samples. The input length is 303 which corre-
sponds to 10-second frames.

to activities with active body motion, e.g., jogging and walk-
ing. On the other hand, the low frequency signals (a.k.a. DC
components) are collected during semi-static body motions,
e.g., sitting and standing. Thereby, these low frequency ac-
tivities are only distinguishable by the accelerometer mea-
surement of the gravitational acceleration.

Performance Analysis

In our experiments, the data is firstly centered to the mean
and scaled to a unit variance. The deep activity recogni-
tion models are trained using stochastic gradient decent with
mini-batch size of 75. For the first GBRM layer, the pre-
training learning rate is set to 0.001 with pre-training epochs
of 150. For next BRBM layers, the number of pre-training
epochs is fixed to 75 with pre-training learning rate of 0.01.
The fine-tuning learning rate is 0.1 and the number of fine-
tuning epochs is 1000. For interested technical readers, Hin-
ton (Hinton 2012) provides a tutorial on training RBMs with
many practical advices on parameter setting and tuning.



DATASET REFERENCE SOLUTION WINDOW SIZE ACCURACY (%)

WISDM

(Kwapisz, Weiss, and Moore 2011) C4.5

10 sec

85.1
(Kwapisz, Weiss, and Moore 2011) Logistic regression 78.1
(Kwapisz, Weiss, and Moore 2011) MLPs 91.7

(Catal et al. 2015) Ensemble learning 94.3
Our solution Deep learning models 98.23

Daphnet
(Bächlin et al. 2010) Energy threshold on power spectral

density (0.5sec)
4 sec TPR: 73.1 and

TNR: 81.6
(Hammerla et al. 2013) C4.5 and k-NNs with feature extraction

methods
- TPR and TNR ∼ 82

Our solution Deep learning models 4 sec TPR and TNR ∼ 91.5

Skoda (Zappi et al. 2008) HMMs - Node 16 (86),
nodes 20, 22 and 25 (84)

Our solution Deep learning models 4 sec Node 16 (89.38)

Table 1: Comparison of our proposed solution against existing methods in terms of recognition accuracy. C4.5 is a decision tree
generation method.

EXPRIEMENT # OF LAYERS ACCURACY (%)

Generative & discriminative
training

1 96.87
3 97.75
5 97.85

Discriminative training only
1 96.87
3 96.46
5 96.51

Table 2: Comparison of accuracy improvements due to the
pre-training stage. Each layer consists of 1000 neurons.

Deep Model Structure Figure 4 shows the recognition ac-
curacy on different DBN structures (joint configurations of
number of layers and number of neurons per layer). Two im-
portant results are summarized as follows:

1. Deep models outperforms shallow ones. Clearly, the
general trend in the recognition accuracy is that using
more layers will enhance the recognition accuracy. For
example, using 4 layers of 500 neurons at each layer is
better than 2 layers of 1000 neurons at each layer, which
is better than 1 layer of 2000 neurons.

2. Overcomplete representations are advantageous. An
overcompete representation is achieved when the number
of neurons at each layer is larger than the input length.
An overcompete representation is essential for learning
deep models with many hidden layers, e.g., deep model
of 2000 neurons per layer. On the other hand, it is noted
that a deep model will be hard to optimized when using
undercomplete representations, e.g., 5 layers of 200 neu-
rons at each layer. This harder optimization issue is distin-
guishable from the overfitting problem as the training data
accuracy is also degrading by adding more layers (i.e., an
overfitted model is diagnosed when the recognition accu-
racy on training data is enhancing by adding more layer
while getting poorer accuracy on testing data). Therefore,
we recommend 4x overcomplete deep activity recognition
models (i.e., the number of neurons at each layer is four
times the input size).

Pre-training Effects Table 2 shows the recognition accu-
racy with and without the pre-training phase. These results
confirm the importance of the generative pre-training phase
of deep activity recognition models. Specifically, a gener-
ative pre-training of a deep model guides the discrimina-
tive training to better generalization solutions (Erhan et al.
2010). Clearly, the generative pre-training is almost ineffec-
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Figure 5: Transition and prior probabilities of sequential
activities. (a) The transition matrix ψ ∈ RN×N that rep-
resents the probabilities of moving among activities A =
{a1, a2, . . . , a10}. (b) The prior belief π ∈ RN that stores
the initial probabilities of different activities. These param-
eters are extracted from the Skoda checkpoint dataset (node
ID 16).

tive for 1-layer networks. However, using the generative pre-
training becomes more essential for the recognition accuracy
of deeper activity recognition models, e.g., 5 layers.

Temporal Modeling
We used a deep activity recognition model with 3 layers of
1000 neurons each. The recognition accuracy is 89.38% for
the 10 activities on the Skoda checkpoint dataset (node ID
16), improving 3.38% over the HMM method presented by
(Zappi et al. 2008). Furthermore, the results can be signifi-
cantly enhanced by exploring the temporal correlation in the
dataset. Our hybrid DL-HMM achieves near perfect recog-
nition accuracy of 99.13%. In particular, Figure 5 shows the
parameters of a HMM model that is used to model the tem-
poral sequences of the Skoda checkpoint dataset. Here, the
checkpoint task must follow a specific activity sequence.

Conclusions and Future Work
We investigated the problem of activity recognition using tri-
axial accelerometers. The proposed approach is superior to
traditional methods of using shallow networks with hand-
crafted features by using deep activity recognition mod-
els. The deep activity recognition models produce signifi-
cant improvement to the recognition accuracy by extracting
hierarchical features from triaxial acceleration data. More-
over, the recognition probabilities of deep activity recogni-
tion models are utilized as an emission matrix of a hidden



Markov model to temporally model a sequence of human
activities.
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J. M.; Giladi, N.; and Tröster, G. 2010. Wearable assis-
tant for Parkinson’s disease patients with the freezing of gait
symptom. IEEE Transactions on Information Technology in
Biomedicine 14(2):436–446.
Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H.; et al.
2007. Greedy layer-wise training of deep networks. Ad-
vances in neural information processing systems 19:153.
Berchtold, M.; Budde, M.; Gordon, D.; Schmidtke, H. R.;
and Beigl, M. 2010. ActiServ: Activity recognition service
for mobile phones. In Proceedings of the International Sym-
posium on Wearable Computers, 1–8. IEEE.
Catal, C.; Tufekci, S.; Pirmit, E.; and Kocabag, G. 2015. On
the use of ensemble of classifiers for accelerometer-based
activity recognition. Applied Soft Computing.
Chen, L.; Hoey, J.; Nugent, C. D.; Cook, D. J.; and Yu, Z.
2012. Sensor-based activity recognition. IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and
Reviews 42(6):790–808.
Dahl, G. E.; Yu, D.; Deng, L.; and Acero, A. 2012.
Context-dependent pre-trained deep neural networks for
large-vocabulary speech recognition. IEEE Transactions on
Audio, Speech, and Language Processing 20(1):30–42.
Erhan, D.; Bengio, Y.; Courville, A.; Manzagol, P.-A.; Vin-
cent, P.; and Bengio, S. 2010. Why does unsupervised pre-
training help deep learning? The Journal of Machine Learn-
ing Research 11:625–660.
Fender, A.; MacPherson, W. N.; Maier, R.; Barton, J. S.;
George, D. S.; Howden, R. I.; Smith, G. W.; Jones, B.; Mc-
Culloch, S.; Chen, X.; et al. 2008. Two-axis temperature-
insensitive accelerometer based on multicore fiber Bragg
gratings. IEEE sensors journal 7(8):1292–1298.
Hammerla, N. Y.; Kirkham, R.; Andras, P.; and Ploetz, T.
2013. On preserving statistical characteristics of accelerom-
etry data using their empirical cumulative distribution. In
Proceedings of the International Symposium on Wearable
Computers, 65–68. ACM.
Hinton, G. E.; Osindero, S.; and Teh, Y.-W. 2006. A fast
learning algorithm for deep belief nets. Neural computation
18(7):1527–1554.
Hinton, G. E. 2002. Training products of experts by
minimizing contrastive divergence. Neural computation
14(8):1771–1800.
Hinton, G. E. 2012. A practical guide to training restricted
Boltzmann machines. In Neural Networks: Tricks of the
Trade. Springer. 599–619.
Khan, A. M.; Lee, Y.-K.; Lee, S. Y.; and Kim, T.-S. 2010.
A triaxial accelerometer-based physical-activity recognition

via augmented-signal features and a hierarchical recog-
nizer. IEEE Transactions on Information Technology in
Biomedicine 14(5):1166–1172.
Kwapisz, J. R.; Weiss, G. M.; and Moore, S. A. 2011. Ac-
tivity recognition using cell phone accelerometers. ACM
SigKDD Explorations Newsletter 12(2):74–82.
Lara, O. D., and Labrador, M. A. 2013. A survey on human
activity recognition using wearable sensors. IEEE Commu-
nications Surveys & Tutorials 15(3):1192–1209.
Mohamed, A.-R.; Dahl, G. E.; and Hinton, G. 2012. Acous-
tic modeling using deep belief networks. IEEE Transactions
on Audio, Speech, and Language Processing 20(1):14–22.
Parkka, J.; Ermes, M.; Korpipaa, P.; Mantyjarvi, J.; Peltola,
J.; and Korhonen, I. 2006. Activity classification using re-
alistic data from wearable sensors. IEEE Transactions on
Information Technology in Biomedicine 10(1):119–128.
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