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Abstract—With the emerging sensing technologies such as
mobile crowdsensing and Internet of Things (IoT), people-
centric data can be efficiently collected and used for analytics
and optimization purposes. This data is typically required to
develop and render people-centric services. In this paper, we
address the privacy implication, optimal pricing, and bundling
of people-centric services. We first define the inverse correlation
between the service quality and privacy level from data analytics
perspectives. We then present the profit maximization models
of selling standalone, complementary, and substitute services.
Specifically, the closed-form solutions of the optimal privacy level
and subscription fee are derived to maximize the gross profit
of service providers. For interrelated people-centric services, we
show that cooperation by service bundling of complementary ser-
vices is profitable compared to the separate sales but detrimental
for substitutes. We also show that the market value of a service
bundle is correlated with the degree of contingency between the
interrelated services. Finally, we incorporate the profit sharing
models from game theory for dividing the bundling profit among
the cooperative service providers.

Index Terms—Data privacy, service pricing, people-centric
sensing, mobile crowdsensing, participatory sensing.

I. INTRODUCTION

People-centric sensing incorporates mobile crowdsensing
and the Internet of Things (IoT) to provide a platform for
people to share ideas, surrounding events, and other sensing
data. The collected data is required in creating and updating
people-centric services1 offered to customers over the Internet.
However, people-centric data comes with privacy threats which
impede crowdsensing participants from providing their true
data. A recent survey [1] revealed that 90% of people are
concerned about their data privacy and 33% are “unsure”
whether to login with their actual identities in IoT devices.
Therefore, privacy-awareness and pricing models are required
in people-centric services to attain the maximum profit for
service providers by jointly optimizing the privacy level and
subscription fee.

People-centric services can be sold separately or together
as a service bundle. Specifically, people-centric services can
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be interrelated with a degree of contingency. There is a
joint demand for complementary services as both services are
jointly required by the customers, e.g., sentiment analysis and
activity tracking. On the other hand, substitute services are
comparable in their functionality, e.g., sentiment analysis using
two data analytics algorithms. To attract customers to buy the
service bundle, the bundle is offered at a lower subscription fee
compared to the sum of subscription fees of the separately sold
services. In this paper, we examine three important questions
that arise regarding pricing and bundling of people-centric ser-
vices. Firstly, what are the optimal subscription fee and privacy
level required for profit maximization? Secondly, is service
bundling effective for profit maximization in people-centric
services and does it produce more gross profit compared to
the separate sales? Thirdly, how is the bundling profit divided
among the interrelated services?

This paper provides a framework for optimal pricing and
privacy management in people-centric services. We assume
that service providers are rational, refuse to offer their ser-
vices unless they can recover the total data cost, and seek
to maximize their own gross profits from selling people-
centric services. The key contributions of this paper can be
summarized as follows:

• We first present a model to define the utility of data
in people-centric sensing. Using real-world datasets, we
show that this utility model captures the inverse correla-
tion between the privacy level and service quality where
data analytics is extensively utilized.

• We formulate a pricing scheme and profit maximiza-
tion model for separately selling privacy-aware people-
centric services. The data is collected from crowdsensing
participants and used in training and updating people-
centric services which are offered to customers for a
subscription fee. The optimal subscription fee and privacy
level are optimized to maximize the gross profit of service
providers.

• We then propose a bundling scheme for virtually pack-
aging privacy-aware people-centric services as comple-
ments or substitutes. The subscription fee of the service
bundle and the privacy levels of the two services are
optimized by a profit maximization model. We introduce
a profit allocation model for sharing the profit resulting
from the service bundle among the individual bundled
services. The efficient and fair profit allocations encour-
age collaboration among service providers in providing
service bundles of complementary services. Nonetheless,
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bundling of substitute services is detrimental and yields
low profit allocations.

The rest of this paper is structured as follows. Section II
reviews the related work. Then, the system model and a brief
overview of people-centric sensing are presented in Section III.
Section IV introduces the optimization model of separately
selling privacy-aware people-centric services. Next, the profit
maximization models of selling bundled complementary and
substitute services with privacy awareness are presented in
Section V. Section VI presents and analyzes the experimental
results. The paper is finally concluded in Section VII.

II. RELATED WORK

People are the primary focus in people-centric sensing,
which has applications in transportation systems [2], assistive
healthcare [3], and urban monitoring [4], just to name a few.
In this section, we first review related work on pricing models
in sensing and communication systems. Then, we discuss the
crucial issue of privacy awareness in people-centric sensing.
Finally, we review related work on pricing and incentive
mechanisms for mobile crowdsensing.

A. Pricing in Sensing and Communication Systems

Pricing models ensure financial stability and resiliency
in sensing and communication systems. The authors in [5]
presented a cooperative pricing model for Internet providers
offering the Internet service under one coalition. The co-
operative pricing increases the profit and encourages the
Internet providers to upgrade their network connections. A
pricing scheme based on the customer data usage of Internet
services was introduced in [6]. Unlike flat-rate pricing, the
usage-based pricing enables a fair allocation of the Internet
resource among the customers. The authors in [7] presented a
pricing model of accessing femtocell and macrocell by mobile
devices which enables high service quality and maximizes the
profit of network operators. The authors in [8] proposed a
pricing and transmission scheduling models to maximize the
profit of accessing a wireless network by mobile customers.
The customer demand is modeled as a Markov chain where
applying only two price options is found sufficient for each
demand state.

The pricing models of people-centric services is more chal-
lenging compared to other communication systems. Specifi-
cally, the resources and utility of people-centric services are
not easily measured as other systems, e.g., the bandwidth and
connection speed are easily defined for an Internet service.

B. Privacy-Awareness in People-Centric Sensing

People-centric sensing incorporates the IoT and mobile
crowdsensing and considers the privacy of people. In [3], the
authors pointed out that the data privacy is a key challenge for
people-centric sensing in assistive healthcare. The data traces
in healthcare systems typically include personal habits and
traits of users and introduce the risk of privacy disclosure.
The authors in [4] discussed people-centric sensing as a
data collection method in urban areas. The crowdsensing

participants apply additive and non-additive aggregation mod-
els, such as averaging, to ensure that their true data cannot
be disclosed. In [9], anonymous data collection in people-
centric sensing was presented as a privacy preserving model.
The privacy model is applied with low resource demand of
CPU and network bandwidth as mobile devices are resource-
constrained. Additionally, there are other works related to
location privacy in people-centric sensing, e.g., [10]–[12],
which prevent localization attacks and protect the privacy of
participants in spatial tasks. Spatial cloaking, adding noise,
and rounding are commonly used in the literature for location
obfuscation.

There are a few models to define the data privacy in-
cluding k-anonymity [13], l-diversity [14], and differential
privacy [15]. The k-anonymity model requires that a person
cannot be identified from at least a group of k−1 other people.
However, k-anonymity does not guarantee privacy against
background knowledge attacks, e.g., merging quasi-sensitive
attributes with other datasets. The l-diversity model [14]
addresses background knowledge attacks and ensures that any
quasi-sensitive group has at least l “well-represented” values.
Differential privacy [15] does not include assumptions on
the adversary’s background knowledge. Instead, differential
privacy requires that the probability distribution of shared data
from a privacy preserving method does not change by adding
one person’s data. This ensures that the adversary cannot
recognize a particular person from differentially-private data.
Random noise is generally added to the raw data to meet the
definition of differential privacy [16]–[18].

C. Pricing and Incentive Mechanisms for Mobile Crowdsens-
ing

Pricing and incentive mechanisms are required to encourage
participation in data collection. A reward-based incentive
mechanism for mobile crowdsensing was presented in [19].
The reservation wages of the participants are utilized to
reduce the total data cost by selecting the sufficient set of
participants with the lowest rates. In [20], the participants are
paid according to their reliability. The reliability is defined as
a probabilistic process and measured based on the historical
records of the participants in completing crowdsensing tasks.
The authors in [21] considered the heterogeneity of crowd-
sensing participants and proposed asymmetric payment model
which encourages competition among the participants. In [22],
the authors introduced a profit maximization and pricing model
to optimize the amount of data that should be bought from the
sensing participants.

None of the existing papers on people-centric sensing in
the literature consider the problem of jointly optimizing the
pricing and privacy level in people-centric services where
data analytics is heavily applied. Moreover, existing works do
not consider bundling interrelated people-centric services as
complements or substitutes. Therefore, there is a practical de-
mand for privacy-aware pricing, bundling, and profit allocation
models which are the major contributions of this paper.
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III. PEOPLE-CENTRIC BIG DATA: SYSTEM MODEL

In this section, we first discuss the system model of people-
centric sensing and services considered in this paper. We then
briefly present the market strategy of bundling people-centric
services. Finally, we introduce the tradeoff between the privacy
level and service quality in data analytics perspectives.

A. People-Centric Services

Figure 1 shows the system model of people-centric sensing
and services. People share their crowdsensing data through
a massive system of mobile devices and IoT gadgets. In
particular, the proliferation of sensors, e.g., cameras, micro-
phones, and accelerometers, in mobile devices enables people
to participate in cooperative sensing of events and phenomena.
Besides, people intelligence can be incorporated in the sensing
process which helps in collecting complex and rich data.
Other data regarding people can also come from conventional
sensor networks. The network connections in people-centric
sensing include various technologies such as cellular and Wi-
Fi networks. In the following we describe the major entities
in people-centric services under consideration:
• Crowdsensing participants are the source of the data. We

consider a people-centric service with N crowdsensing
participants where each participant i produces privacy
preserving data denoted as follows:

yi = xi + zi, i = 1, . . . , N (1)

where yi is the noisy data, xi is the true data, and zi
is the added noise component. We assume that the noise
components {zi}Ni=1 are independent Gaussian random
components with zero mean and a variance of σ2

z . We
also denote this data in the vector form as y ∈ RN ,
x ∈ RN , and z ∈ RN such that z ∼ N

(
0, σ2

zIN
)

where IN is the identity matrix of size N . To attain high
service quality, the participant stochastically sends its true
data x to the people-centric service with a probability
of P (true data). For the remainder of this paper, we
define the privacy level r to be equal to the probability
of sending the noisy data y instead of the true data x
such that P (true data) = 1 − r. Our system model is
general and can incorporate any privacy definition such
as k-anonymity [13], l-diversity [14], and differential
privacy [15]. Each participant, whether it is a member
of the public or data warehouses, has a reservation wage
c which is the lowest payment required to work as a data
collector.

• A service provider buys people-centric data from the
crowdsensing participants and applies data analytics to
build the people-centric service. This service is hosted at
one of the cloud computing platforms such as Microsoft
Azure and Amazon Web Services (AWS). To cover the
operation cost, the service provider charges a “subscrip-
tion fee” ps to customers who access the people-centric
service. Moreover, the service provider decides the “pri-
vacy level” r at which the data should be collected by the
crowdsensing participants. For gross profit maximization,

the service provider jointly optimizes the subscription fee
and privacy level of its service.

• Customers are the users of the people-centric service.
Each customer has a reservation price θ which is the
maximum price at which that particular customer will
buy the people-centric service. A customer considers both
the reservation price θ, service quality u, and subscription
fee ps when making its buying decision. In particular, a
customer buys the service if the inequality θ ≥ ps

u holds.
As summarized in Table I, this people-centric sensing model
overcomes the limitations of conventional sensing systems
based on sensor networks only. However, people-centric sens-
ing comes with the privacy challenge which should be con-
sidered in optimal pricing and profit maximization.

B. Bundling Interrelated Services

People-centric services can be interrelated and sold as one
service bundle2. Figure 2 illustrates the interrelation among
people-centric services from the perspectives of customers.
Complementary services are associated and concurrently re-
quired to achieve the objectives of customers. For example,
both sentiment analysis [23] and activity tracking [24] are
typically required to provide in-depth understanding of human-
intense mobile systems. On the other hand, substitute services
have similar or comparable functionalities which decrease the
customer’s willingness in buying both services. If a customer
buys one of the substitute services, that customer will probably
not buy its paired service. For example, sentiment analysis
using the data analytics models of deep learning [25] and
random forests [26] are substitute. In some scenarios, the
customers buy both substitute services to improve the perfor-
mance of service quality, e.g., a mixture of models in ensemble
learning [27].

C. The Quality-Privacy Tradeoff

There are several reasons for examining the privacy and
optimal pricing of people-centric services. Firstly, privacy is
a common concern of people. Secondly, reservation wages of
crowdsensing participants are correlated with the utility of data
and service quality. The quality of data analytics is inversely
proportional to privacy level [28]. Thirdly, the customers infer
both the service quality and subscription fee when deciding
whether to buy a people-centric service. The utility function of
data u(·) in people-centric services should meet the following
empirical assumptions:
• u(·) is nonnegative. This is rational as the service quality

cannot be negative.
• u(·) is inversely proportional to the privacy level r ∈

[0, 1] such that ∂u(·)
∂r < 0. This empirical assumption

is required as increasing the privacy level decreases the
quality of data analytics [28].

• u(·) is convex and decreases at an increasing rate over
the privacy level such that ∂2u(·)

∂r2 < 0. This assumption

2Product bundling is an effective marketing strategy of selling products
in one package, e.g., Microsoft Office includes Microsoft Word, Excel, and
PowerPoint.



4

Internet backbone

GGSN: Gateway general packet radio service (GPRS) support node
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Fig. 1: System model of people-centric data collection and service development.

TABLE I: Comparison of people-centric sensing and conventional sensing.

ASPECT PEOPLE-CENTRIC SENSING CONVENTIONAL SENSING

Deployment Mobile devices owned by participants Sensor nodes typically owned by
service providers

People engagement Human in the loop Machines only
Mobility Move with people Static or limited mobility
Key challenge Data privacy Energy conservation

Service 1 Service 3

Service 1

Service 2

Results

Results

 (a) Complementary services (complements)

(b) Substitute services (substitutes)

Ensemble 
methods, e.g., voting

Fig. 2: Interrelated services as complements and substitutes.

reflects the empirical change of service quality at varying
privacy levels.

Based on these empirical assumptions and to facilitate our op-
timization modeling, we propose the following utility function:

u(r;α) = α1 − α2 exp (α3r) , (2)

where r is the privacy level. α1, α2, and α3 are the curve
fitting parameters of the utility function to real-world experi-
ments, i.e., the ground truth. Big data platforms, e.g., Apache
Mahout [29] and MLlib [30], can be used for running the real-
world experiments at scale. In particular, a set of B real-world

experiments
{(
r(i), τ (i)

)}B
i=1

are executed at varying privacy
level r(i) resulting in the real-world service quality of τ (i),
where r(i+1) > r(i) ≥ 0. α1, α2, and α3 are obtained by
minimizing the residuals of a nonlinear least squares fitting as
follows:

minimize
α

B∑
i=1

∥∥∥u(r(i);α)− τ (i)
∥∥∥2 . (3)

(3) can be solved iteratively to find the best fitting parameters
α [31]. We denote u(r;α) as u whenever it does not cause
confusion. In Section VI-B, we show the validity of (2)
in capturing the quality-privacy tradeoff of people-centric
services trained on real-world datasets.

Figure 3 shows the key components of the optimal pricing
and privacy management framework proposed in this paper.
These components are executed iteratively. The framework is
initiated by defining the data utility using the form expressed
in (2). Then, the profit maximization models are executed to
obtain the optimal subscription fee and privacy level. These
profit maximization models are presented in Sections IV and
V for separate and bundling sales, respectively. For bundling,
the profit allocation models presented in Section V-D are
performed. Then, the service provider decides whether the
service bundling is effective to attain the maximum profit. The
key notations and definitions used throughout the paper are
defined in Table II.
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Profit maximization

Standalone

Optimal subscription fee 
& privacy level

Profit allocation

The core solution

The Shapley solution

Data analytics

 Quality-privacy tradeoff

Data utility

Bundling

Profit and contributions

Fig. 3: Components of the optimal pricing and privacy man-
agement framework for people-centric sensing.

TABLE II: List of key symbols and notations.

NOTATION DEFINITION

ps Subscription fee required to access a
people-centric service under separate selling

r Privacy level at which the data is collected from
crowdsensing participants

F (r, ps) Gross profit resulting from the separate sales of
a people-centric service under ps and r

u(r;α) Service quality with curve fitting parameters α
and privacy level r. uk is the service quality of
the k-th service in a service bundle

M Number of customers willing to buy a
people-centric service

N Number of crowdsensing participants
c Reservation wage of one crowdsensing

participant
θ Reservation price defining the maximum price at

which a customer is willing to buy a
people-centric service. θ has a cumulative
distribution function of Φθ

L(·) Lagrangian of the profit function F (·)
Dk k-th leading principal minor of the profit

function’s Hessian matrix
γ Degree of contingency of two interrelated

services
Sb Service bundle
pb Subscription fee of a service bundle Sb

containing two complementary or substitute
services

Gc(r1, r2, pb) Gross bundling profit of complementary services
with privacy levels r1 and r2 offered at a
subscription fee of pb

Gs(r1, r2, pb) Gross bundling profit of substitute services with
privacy levels r1 and r2 offered at a subscription
fee of pb

ϕk Payoff allocation assigned using the core
solution to the k-th service in Sb

ηk Payoff allocation assigned using the Shapley
value concept to the k-th service in Sb

IV. OPTIMAL PRICING IN PEOPLE-CENTRIC SERVICES

In this section, we first present the market model of sell-
ing people-centric service separately. Then, we introduce the
profit maximization model with privacy awareness. Finally, the
closed-form solutions of the subscription fee and privacy level
are derived and proved to be globally optimal.

A. Gross Profit Maximization

The system model under consideration in this section is
shown in Figure 1. The service provider collects data from
crowdsensing participants at a privacy level r. The data is
essential to train and update a people-centric service offered
to customers paying a subscription fee ps. The gross profit
F (·) of selling the people-centric service can be defined
mathematically as follows:

F (r, ps) = MpsP
(
θ ≥ ps

u

)
︸ ︷︷ ︸

Subscription revenue

−NcP (true data)︸ ︷︷ ︸
Total data cost

, (4)

where M is the number of potential customers, ps is the ser-
vice subscription fee, r is the privacy level, c is the reservation
wage of crowdsensing participants, and N is the number of
potential crowdsensing participants. The gross profit F (·) is
the difference between the subscription revenue and total data
cost. The operational cost of the service, such as the computing
cost, is neglected. The first term of (4) defines the subscription
revenue resulting from offering the service at a subscription
fee of ps and service quality u. P

(
θ ≥ ps

u

)
= 1 − Φθ

(
ps
u

)
is the probability for a customer to buy the service after
inferring both ps and u which can be calculated from the
complementary cumulative distribution function. The total data
cost is defined in the second term of (4) to be proportional to
the probability of sending the true data P (true data). This is
rational as the service quality and gross profit are negatively
affected by increasing the privacy level, and thus the service
provider should also pay less for the noisy data. Assuming
that θ follows a uniform distribution over the interval [0, 1],
(4) can be written as follows:

F (r, ps) = Mps

(
1− ps

α1 − α2 exp (α3r)

)
−Nc (1− r) .

(5)
The profit maximization problem can be formulated as

follows:
maximize

r,ps
F (r, ps)

subject to C1 : ps ≥ 0,

C2 : r ≥ 0.

(6)

The objective of (6) is to maximize the gross profit by jointly
optimizing ps and r. The constraints C1 and C2 are required
to ensure nonnegative solutions of ps and r, respectively. We
next provide the closed-form solution (p∗s, r

∗) of this profit
maximization problem and prove their global optimality.

B. Optimal Subscription Fee and Privacy Level

We apply the Karush-Kuhn-Tucker (KKT) conditions which
are sufficient for primal-dual optimality of concave func-
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tions [32]. Based on (6), we formulate the Lagrangian dual
function as follows:

L (r, ps, λ1, λ2) = F (r, ps) + λ1ps + λ2r, (7)

where λ1 ≥ 0 and λ2 ≥ 0 are the Lagrange multipliers
(dual variables) associated with the constraints C1 and C2,
respectively.

Proposition 1. The closed-form solutions p∗s and r∗ of (6) can
be derived as follows:

p∗s =
Mα1α3 − 4Nc

2Mα3
, (8)

r∗ =
1

α3
log

(
4Nc

Mα2α3

)
, (9)

where λ1 = λ2 = 0.

Proof: To achieve this result, the first derivatives of (7)
with respect to ps and r are found as follows:

∂L (·)
∂ps

= M + λ1 −
2Mps

α1 − α2 exp (α3r)
, (10)

∂L (·)
∂r

= Nc+ λ2 −
Mα2α3p

2
s exp (α3r)

(α1 − α2 exp (α3r))
2 . (11)

The closed-form solutions in (8) and (9) with inactive inequal-
ity constraints (λ1 = λ2 = 0) can then be deduced by setting
both derivatives to zero and solving the resulting system of
equations.

Proposition 2. F (r, ps) is concave. The closed-form solutions
p∗s and r∗ given in (8) and (9), respectively, are globally
optimal.

Proof: We use Sylvester’s criterion as a sufficient condi-
tion to show that the Hessian matrix of F (r, ps) is negative
semidefinite, and hence the concavity of F (r, ps) can be
deduced [32]. In particular, the Hessian matrix HF of F (r, ps)
is found as in (12), shown at the top of the next page. Let Dk

be the k-th leading principal minor of HF , where k = 1, 2.
HF is negative semidefinite if (−1)kDk ≥ 0 [32]. The leading
principal minors of HF are

D1 = − 2M

α1 − α2 exp (α3r)
≤ 0, (13)

D2 =
2M2α2α

2
3p

2
s exp (α3r)

(α1 − α2 exp (α3r))
3 ≥ 0, (14)

which alternate in sign with D1 being nonpositive. Therefore,
HF is negative semidefinite and F (r, ps) is concave. By
concavity, the closed-form solutions expressed in (8) and (9)
are globally optimal.

C. Special Case: Fixed Privacy Level

We next discuss the special case when the service provider
cannot control the privacy level, e.g., r is fixed by a legislative
court3. In such a case, the profit of the service provider can

3The European Commission (http://ec.europa.eu), for example, regularly
revises a set of regulations to protect the data privacy of citizens in the
European Union.

be defined as in (5) with r being fixed. For profit maximiza-
tion, the service provider responds by selecting the optimal
subscription fee as deduced in the following proposition.

Proposition 3. When the privacy level r is fixed by an external
entity, the optimal subscription fee is found as follows:

p∗s =
α1 − α2 exp (α3r)

2
, (15)

which is globally optimal.

Proof: The second derivatives of F (r, ps) given in (5)
with respect to ps is defined as follows:

∂2F (·)
∂p2s

= − 2M

α1 − α2 exp (α3r)
≤ 0, (16)

which is always nonpositive. Thus, F (r, ps) is concave and
the solution in (15) of the fixed privacy problem is globally
optimal.

V. INTERRELATED PEOPLE-CENTRIC SERVICES

People-centric services can be interrelated as complements
and substitutes as shown in Figure 2. The joint optimization of
the subscription fee and privacy levels in a service bundle is
introduced in this section. Firstly, we present the system model
and define the degree of contingency in service bundling.
Secondly, we present the profit maximization models and the
closed-form solutions of selling service bundles as comple-
ments and substitutes, respectively. The closed-form solutions
are also shown to be globally optimal. Finally, we define the
profit shares that should be allocated to each service within
the bundle.

A. Market Model and Degree of Contingency

We consider the marketing strategy of virtually bundling
two services denoted as service S1 and service S2 into a bundle
denoted as service bundle Sb as shown in Figure 4. We identify
the degree of contingency between the two services as γ. γ
indicates the customer interest in obtaining the two services S1

and S2 as a service bundle Sb. We incorporate the definition
of γ from microeconomics as follows [33]:

γ =
θb − (θ1 + θ2)

θ1 + θ2
, (17)

where θb, θ1, and θ2 are the reservation prices of the service
bundle Sb, the standalone service S1, and the standalone ser-
vice S2, respectively. The service bundle Sb can be classified
into two types as follows:
• θb ≥ (θ1+θ2) and hence γ ≥ 0 : When θb is greater than

or equal to the summation of θ1 and θ2, S1 and S2 are
complementary services. For example, the customers are
willing to buy both services S1 and S2 as each service
has a unique functionality.

• θb < (θ1 + θ2) and hence γ < 0: When θb is less than
the summation of θ1 and θ2, S1 and S2 are substitute
services. For example, the customers are not willing to
buy both services S1 and S2 as they are similar and
comparable in functionality.
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HF =

[
− 2M
α1−α2 exp(α3r)

− 2Mα2α3ps exp(α3r)

(α1−α2 exp(α3r))
2

− 2Mα2α3ps exp(α3r)

(α1−α2 exp(α3r))
2 − 2Mα2

2α
2
3p

2
s exp(2α3r)

(α1−α2 exp(α3r))
3 − Mα2α

2
3p

2
s exp(α3r)

(α1−α2 exp(α3r))
2

]
. (12)

Service 2

Service 1

Subscription
fee

Customers

Service
bundle

Bundling

Fig. 4: System model of bundled people-centric services.

The customer demand on buying Sb can be found as in
Figure 5. uk is the service quality of the k-th service in
Sb. The shaded regions represent the probability of buying
Sb. pb is the subscription fee of Sb. Each point in the figure
represents the reservation price pair (θ1, θ2) of the two services
in the bundle. For both complementary and substitute services,
a customer will buy Sb if (θ1, θ2) lies above the decision
line (1 + γ)(θ1u1 + θ2u2) = pb. Moreover, the customers of
substitute services will also buy Sb when (θ1, θ2) lies at the
right side of the line pb

u1
and above the line pb

u2
. We observe

that the customers are more willing to buy Sb containing
complementary services than substitute services.

B. Complementary People-Centric Services (γ ≥ 0)

S1 and S2 are complements when the reservation price of
the service bundle Sb is greater than the total reservation price
of the standalone services θb ≥ (θ1+θ2). The gross profit of Sb
containing complementary services can be defined as follows:

Gc(r1, r2, pb) = MpbP ((1 + γ)(θ1u1 + θ2u2) > pb)︸ ︷︷ ︸
Total subscription revenue

−N (c1 (1− r1) + c2 (1− r2))︸ ︷︷ ︸
Total data cost of S1and S2

, (18)

where M is the number of potential customers willing to buy
the service bundle Sb. pb is the subscription fee of Sb. r1
and r2 are the privacy levels of S1 and S2, respectively. N
is the number of crowdsensing participants. c1 and c2 are the
reservation wages of the crowdsensing participants in S1 and
S2, respectively. u1 = α1−α2 exp (α3r1) is the service quality
of S1 and u2 = β1 − β2 exp (β3r2) is the service quality of
S2 as formulated in (2). P ((1 + γ)(θ1u1 + θ2u2) > pb) is the
probability of buying Sb as defined by the shaded area of
complementary services in Figure 5. Assuming that θ1 and

θ2 follow a uniform distribution, (18) can be re-written as
follows:

Gc(r1, r2, pb) = Mpb

(
1− 0.5p2b

(1 + γ)
2
u1u2

)
−Nc1 (1− r1)−Nc2 (1− r2) . (19)

The profit maximization problem by selling two comple-
ments in Sb is then expressed as follows:

maximize
r1,r2,pb

Gc(r1, r2, pb)

subject to C3 : pb ≥ 0,

C4 : r1 ≥ 0,

C5 : r2 ≥ 0,

(20)

where C3, C4, and C5 are the optimization constraints
required to ensure nonnegative solutions of pb, r1, and r2,
respectively. The Lagrangian dual function of (20) is derived
as:

Lc (r1, r2, pb, λ, λ4, λ5) = Gc(r1, r2, pb)+λ3pb+λ4r1+λ5r2,
(21)

where λ3, λ4, and λ5 are the Lagrange multipliers.

Proposition 4. The closed-form solutions p∗b , r∗1 , and r∗2 of
(20) are given as follows:

p∗b =
0.5A1

Mα3β3
, (22)

r∗1 =
1

α3
log

(
13.5N2c1c2

M2α2α3β1β3 (γ2 + 2γ + 1)

+
2.25Nc1A1

M2α2α2
3β1β3 (γ2 + 2γ + 1)

)
, (23)

r∗2 =
1

β3
log

(
13.5N2c1c2

M2α1α3β2β3 (γ2 + 2γ + 1)

+
2.25Nc2A1

M2α1α3β2β2
3 (γ2 + 2γ + 1)

)
, (24)

where

A1 =
[8
2
α1β1M

2α2
3γ

2β2
3 +

16

3
α1β1M

2α2
3γβ

2
3

+
8

2
α1β1M

2α2
3β

2
3 + 9N2α2

3c
2
2 − 18N2α3c1c2β3

+ 9N2c21β
2
3

]0.5 − 3Nα3c2 − 3Nβ3c1. (25)

Proof: This result can be proved by taking the first
derivatives of (21) with respect to r1, r2, and pb. From
the three resulting equations and with inactive constraints
(λ1 = λ2 = λ3 = 0), the closed form solutions can be
obtained.



8

0 0.2 0.4 0.6 0.8 1

Reservation price (3
1
)

0

0.2

0.4

0.6

0.8

1

R
es

er
va

tio
n 

pr
ic

e 
(3

2
)

Complementary services . 6 0

Buy the bundle
Do not buy

(1+.)(3
1
u

1
+3

2
u

2
)=p

b
*

0 0.2 0.4 0.6 0.8 1

Reservation price (3
1
)

0

0.2

0.4

0.6

0.8

1

R
es

er
va

tio
n 

pr
ic

e 
(3

2
)

Substitute services . < 0

Buy the bundle
Do not buy

(1+.)(3
1
u

1
+3

2
u

2
)=p

b
*pb

u2(.+1)

pb

u1(.+1)

pb

u2(.+1)

pb

u1(.+1)

1
pb

u1
; !.pb

u2(.+1)

21
!.pb

u1(.+1)
; pb

u2

2
pb

u2(.+1)

pb

u1(.+1)

pb

u2(.+1)

pb

u1(.+1)

1
pb

u1
; !.pb

u2(.+1)

21
!.pb

u1(.+1)
; pb

u2

2

Fig. 5: Customer demand on the service bundles of complements and substitutes.

Proposition 5. The profit function Gc(r1, r2, pb) defined in
(19) for complementary people-centric services is concave.
The closed-form solutions p∗b , r∗1 , and r∗2 given in (22), (23),
and (24), respectively, are globally optimal.

Proof: The Hessian matrix HG of Gc(r1, r2, pb) is found
as in (26), shown at the top of the next page. The leading
principal minors can then be obtained as in (27)-(29), shown
at the top of the next page, where

A2 = M3α1α2α
2
3p

7
bβ

2
2β

2
3exp (α3r1) exp (2β3r2)

+M3α2
2α

2
3p

7
bβ1β2β

2
3exp (β3r2) exp (2α3r1)

− 2M3α1α2α
2
3p

7
bβ1β2β

2
3exp (α3r1) exp (β3r2) . (30)

Gc(r1, r2, pb) is concave as D1 ≤ 0, D2 ≥ 0, and D3 ≤
0 when A2 ≤ 0. Accordingly, the closed-form solutions are
globally optimal.

We next present the optimal solutions to the profit maxi-
mization problem with fixed privacy levels for S1 and S2.

1) Fixed Privacy Level: When the privacy levels are en-
forced by an external legislation entity, we have the following
proposition.

Proposition 6. When the privacy levels r1 and r2 are fixed by
an external entity, the optimal subscription fee of the service
bundle is expressed as follows:

p∗b =
0.82 (γ + 1) (α1 − α2exp (α3r1)) (β1 − β2exp (β3r2))

((α1 − α2exp (α3r1)) (β1 − β2exp (β3r2)))
0.5 .

(31)
(31) is globally optimal.

Proof: The second derivatives of Gc(r1, r2, pb) defined
in (19) with respect to pb is derived as follows:

∂2Gc (·)
∂p2b

=

−3Mpb

(α1 − α2exp (α3r1)) (β1 − β2exp (r2β3)) (γ + 1)
2 ≤ 0,

(32)

which is nonpositive. Thus, the profit maximization problem
with a fixed privacy level is concave and the solution in (31)
is globally optimal.

C. Substitute People-Centric Service (γ < 0)

As they have comparable functionality, substitute services
are only required to obtain better overall service quality,
e.g., predictive performance. Services S1 and S2 are called
substitutes when the reservation price of the service bundle
Sb is less than the total reservation price of the separate sales
θb < (θ1 + θ2). Bundling substitute services yields in the
following gross profit:

Gc(r1, r2, pb) = MpbP

(
[(1 + γ)(θ1u1 + θ2u2) > pb]

∪
[
θ1 ≥ pb

u1

]
∪
[
θ2 ≥ pb

u2

] )
︸ ︷︷ ︸

Total subscription revenue

−Nc1 (1− r1)−Nc2 (1− r2)︸ ︷︷ ︸
Total data cost of S1and S2

. (33)

P
(

[(1 + γ)(θ1u1 + θ2u2) > pb] ∪
[
θ1 ≥ pb

u1

]
∪
[
θ2 ≥ pb

u2

])
is the probability for a customer to buy Sb which can be
defined by the shaded area of substitute services in Figure 5.
Then, (33) can be re-written as follows:

Gs(r1, r2, pb) = Mpb

(
1− 0.5p2b + γ2p2b

(1 + γ)
2
u1u2

)
−Nc1 (1− r1)−Nc2 (1− r2) . (34)

The profit maximization problem of selling two substitute
services in Sb is expressed as follows:

maximize
r1,r2,pb

Gs(r1, r2, pb)

subject to C6 : pb ≥ 0,

C7 : r1 ≥ 0,

C8 : r2 ≥ 0.

(35)

The objective is maximizing the gross profit of Sb under the
constraints C6, C7, and C8 for nonnegative solutions in p∗b ,
r∗1 , and r∗2 , respectively.

Proposition 7. The profit function Gs(r1, r2, pb) defined in
(34) for substitute people-centric services is concave. The
closed-form solutions p∗b , r∗1 , and r∗2 are given in (36), (37),
and (37), respectively,
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HG =


− 0.5Mα2α

2
3p

3
bexp(α3r1)u1

(γ+1)2u3
1u2

− 0.5Mα2α3p
3
bβ2β3exp(α3r1)exp(r2β3)

(γ+1)2u2
1u

2
2

− 1.5Mα2α3p
2
bexp(α3r1)

(γ+1)2u2
1u2

− 0.5Mα2α3p
3
bβ2β3exp(α3r1)exp(r2β3)

(γ+1)2u2
1u

2
2

− 0.5Mp3bβ2β
2
3exp(r2β3)u2

(γ+1)2u1u3
2

− 1.5Mp2bβ2β3exp(r2β3)

(γ+1)2u1u2
2

− 1.5Mα2α3p
2
bexp(α3r1)

(γ+1)2u2
1u2

− 1.5Mp2bβ2β3exp(r2β3)

(γ+1)2u1u2
2

− 3Mpb
(γ+1)2u1u2

 . (26)

D1 = − 0.5Mα2α
2
3p

3
bexp (α3r1) (α1 + α2exp (α3r1))

(γ + 1)
2

(β1 − β2exp (β3r2)) (α1 − α2exp (α3r1))
3 , (27)

D2 =
0.25M2α2α

2
3p

6
bβ2β

2
3exp (α3r1 + r2β3) (α1β1 + α2β1exp (α3r1) + α1β2exp (r2β3))

(γ + 1)
4

(β1 − β2exp (r2β3))
4

(α1 − α2exp (α3r1))
4 , (28)

D3 =
0.375A2

(γ + 1)
6

(β1 − β2exp (β3r2))
5

(α1 − α2exp (α3r1))
5 . (29)

p∗b = − 0.5A3

Mα3β3
, (36)

r∗1 =
1

α3
log

(
13.5

(
c1c2N

2γ2 + c1c2N
2
)

M2α2α3β1β3 (γ2 + 2γ + 1)
−

2.25
(
Nc1γ

2 +Nc1
)
A3

M2α2α2
3β1β3 (γ2 + 2γ + 1)

)
, (37)

r∗2 =
1

β3
log

(
13.5Nc2

(
Nc1γ

2 +Nc1
)

M2α1α3β2β3 (γ2 + 2γ + 1)
−

2.25Nc2
(
γ2 + 1

)
(A3)

M2α1α3β2β2
3 (γ2 + 2γ + 1)

)
. (38)

where

A3 = 3Nα3c2 + 3Nc1β3 − 3Nα3c2 − 3Nc1β3

+
1

9 (γ2 + 1)
2

[
8α1β1M

2α2
3γ

2β2
3 + 16α1β1M

2α2
3γβ

2
3

+ 8α1β1M
2α2

3β
2
3 + 27N2α2

3c
2
2γ

2 + 27N2α2
3c

2
2

− 54N2α3c1c2γ
2β3 − 54N2α3c1c2β3 + 27N2c21γ

2β2
3

+ 27N2c21β
2
3

]0.5
. (39)

These closed-form solutions are globally optimal.
Proof: The proof is similar to the ones of Propositions 4

and 5 and will be omitted due to the space limit.

D. Profit Sharing
A service bundle can be formed by two service providers

forming a bundling coalition K. We next present a profit shar-
ing model to divide the bundling profit among the cooperative
providers.

1) Core Solution: Let ϕk indicate the profit share of the
service provider Sk, where k ∈ K. The core solution C is
defined as follows [34]:

C =

{
ϕ |
∑
k∈K

ϕk = G∗K︸ ︷︷ ︸
group rationality

and
∑
k∈S

ϕk ≥ F ∗S ,S ⊆ K︸ ︷︷ ︸
individual rationality

}
(40)

where G∗K is the bundling profit and F ∗S is the profit resulting
from selling the services separately.

The core solution C can contain an infinite number of
possible share allocations, can be empty, or lead to unfair share
allocations when considering the contributions of services in
Sb. We next present the Shapley value concept which provides
a fair and single solution to the profit sharing problem of Sb.

2) The Shapley Value Solution: For each service Sk, where
k ∈ K, forming the bundle Sb, the Shapley value solution
η = (η1, η2) ensures fairness and assigns a payoff ηk defined
as [34]:

ηk =
∑

S⊆K\{k}

|S|! (|K| − |S| − 1)!

|K|!︸ ︷︷ ︸
probability of random ordering

(G∗K − F ∗S)︸ ︷︷ ︸
marginal contribution

. (41)

The first term defines the random order of joining the bundle.
The second term defines the marginal contribution of each
service on increasing the bundling profit.

VI. EXPERIMENTAL RESULTS

In this section, we first present three people-centric services
which are trained using real-world datasets. We also analyze
the quality of the services when deep learning [25] and
random forests [26] are utilized as data analytics algorithms.
We then introduce numerical results of selling the services
separately. Finally, we evaluate the bundling models for selling
complementary and substitute services, respectively.

A. People-Centric Services and Bundles

Using real-world datasets, we design the following people-
centric services:
• Service S1 (sentiment analysis using deep learning): Us-

ing the Sentiment140 dataset [23], we develop a service to
predict people’s sentiment from social networking tweets.
The sentiment can be either positive or negative. People
post tweets which typically include personal information,
and privacy awareness is reasonably required. We use
629, 145 tweet samples for model training and 419, 431
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tweet samples for model testing and quality calculation.
We assume that the reservation wage of each crowdsens-
ing participant is 0.24.

• Service S2 (sentiment analysis using random forests):
This service is similar to service S1 above, except in
using a random forest classifier instead of deep learning.

• Service S3 (activity tracking using random forests): This
service enables the tracking of human activities using
the accelerometer sensors of mobile devices. We use
the Actitracker dataset [24] containing a time series
of 1, 098, 207 data points. We divide the accelerometer
time series into overlapping window frames resulting in
23, 072 training and 5, 768 testing samples. The predicted
activities are walking, jogging, walking upstairs, walking
downstairs, sitting, and standing. We set the reservation
wage of each crowdsensing participant as 0.1.

These people-centric services can be sold separately or inter-
related in service bundles. We consider the following bundling
scenarios:
• Bundle Sb1 (S1 and S3): Section VI-D considers the

economic strategy of virtually packaging services S1 and
S3 into one service bundle. Services S1 and S3 are
complementary as both services are typically required
to provide in-depth understanding of mobile users. We
assume that the degree of contingency is γ = 0.1 which
indicates the high customer willingness in acquiring both
services at once.

• Bundle Sb2 (S1 and S2): In Section VI-E, we analyze
services S1 and S2 as substitutes because they have
comparable functionality, i.e., both services S1 and S2

are used for sentiment analysis, but they differ in the
data analytics algorithm. To reflect the low customer
willingness of buying comparable services, the degree of
contingency is set as γ = −0.1.

We set the number of crowdsensing participants to N = 100
and the number of customers to M = 1000.

B. The Quality-Privacy Tradeoff

Figure 6 shows the quality-privacy models of S1, S2, and
S3, respectively. We observe three major results. Firstly, the
service quality decreases as the privacy level increases. This
is clear as increasing the privacy level results in higher data
distortion. Secondly, it can be also noted that the real data fits
the quality function defined in (2). Thirdly, the service quality
of S1 and S2 are different even though they use the same
dataset. This is due to the different data analytics algorithms
used in S1 and S2.

C. Standalone Sales

We use service S1 to evaluate the profit maximization model
for selling people-centric services as a standalone product.
From Figure 6, the quality-privacy fitting parameters of S1

are α1 = 0.822, α2 = 0.004, and α3 = 2.813.

4We use monetary units for all payment, cost, and profit analysis in the
experimental results. Actual currency, such as the United States dollar, can
be applied without affecting the optimization models or results.

1) Gross Profit Optimization: Figure 7 shows the gross
profit F ∗(r, ps) of S1 defined in (5) under varied privacy level
r and subscription fee ps. When the subscription fee is high,
the profit decreases as fewer customers will be willing to pay
the subscription fee. When the subscription fee is low, more
customers will buy S1. However, the gross profit falls down
due to the low subscription fee. Likewise, a high privacy level
results in a low service quality and fewer customers will be
accordingly interested in the service of poor quality. A low
privacy level results in a high service quality, but gross profit
will decrease due to the high spending in buying the true data
from the crowdsensing participants. The optimal settings of
the subscription fee p∗s = 0.406 and privacy level r∗ = 0.62
can be found using the closed-form solutions in (8) and (9),
respectively. Then using (5), the maximum profit is calculated
as F (r∗, p∗s) = 195.5.

2) The Impact of Reservation Wage: In Figure 8, we
consider the impact of varying the reservation wage of the
crowdsensing participants on the gross profit F ∗(·), privacy
level r∗, subscription fee p∗s , and total data cost. Firstly, there
is an inverse correlation between the reservation wage and
the gross profit. Specifically, when the reservation wage is
increased, the total data cost will increase up to c = 0.15 and
the profit will accordingly decrease. Increasing the reservation
wage beyond c = 0.15 yields a fall of the total data price as a
rational service provider will intensively increase the privacy
level as defined in (9). Secondly, we note that the reservation
wage and subscription fee are also inversely proportional. In
particular, the service provider reduces the subscription fee to
attract more customers due to the degradation in the service
quality.

3) The Impact of Customer Base: Figure 9 shows the gross
profit F ∗(·), privacy level r∗, subscription fee p∗s , and total
data cost under varied number of customers. When the number
of customers increases, the gross profit and subscription fee
increase as the benefit of the increased demand. Moreover, the
service provider decreases the privacy level to collect more
true data which increases the service quality and total data
cost.

4) Fixed Privacy Level: In some scenarios, the service
provider does not control the privacy level as discussed in
Section IV-C, e.g., due to legislation rules. Instead, the service
provider only specifies the subscription fee as in (15) to gain
the maximum gross profit. In Figure 10, we analyze the gross
profit F ∗(·), subscription revenue, subscription fee p∗s , and
total data cost of S1 at varied privacy level r. We observe two
important results. Firstly, the subscription revenue, subscrip-
tion fee, and total data cost are inversely correlated with the
privacy level. This is expected as increasing the privacy level
negatively affects the service quality and fewer customers will
be interested in buying S1. Besides, the total data cost will
decrease when the privacy level is high. Secondly, we note
that the gross profit increases up to r = 0.62, then it decreases
due to the extreme loss of customers at the high privacy levels
r > 0.62.



11

0 0.2 0.4 0.6 0.8 1

Privacy level

0.76

0.77

0.78

0.79

0.8

0.81

0.82

S
er

vi
ce

 q
ua

lit
y

Service 1

Real data: Random forest
Curve fitting: ,=[0.822 0.004 2.813]

0 0.2 0.4 0.6 0.8 1

Privacy level

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

S
er

vi
ce

 q
ua

lit
y

Service 2

Real data: Deep learning
Curve fitting: ,=[0.856 0.013 1.861]

0 0.2 0.4 0.6 0.8 1

Privacy level

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

S
er

vi
ce

 q
ua

lit
y

Service 3

Real data: Random forest
Curve fitting: ,=[0.867 0.001 4.2]

Fig. 6: The prediction quality of the services S1, S2, and S3 (from left to right) under varied privacy levels.
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D. Complementary People-Centric Services

We consider bundling S1 and S3 as complementary services
into Sb1. From Figure 6, the fitting parameters of S1 are
α1 = 0.822, α2 = 0.004, and α3 = 2.813. For S3, the fitting
parameters are β1 = 0.867, β2 = 0.001, and β3 = 4.2. We
first analyze the bundling profit and the impacts of the different
parameters on Sb1. We then present the payoff allocations
among S1 and S3 based on the importance of each service
on the sales of Sb1.

1) Gross Profit Optimization: The gross bundling profit
Gc(r1, r2, pb) defined in (19) is presented in Figure 11. When
the subscription fee pb and the privacy levels r1 and r2 are ei-
ther high or low, the gross profit goes down. Specifically, fewer
customers will buy overpriced or poor quality service bundles.
Likewise, Sb1 makes a low profit when the subscription fee
and privacy level are low due to the low revenue and high
total data cost, respectively. The optimal settings p∗b = 0.754,
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r∗1 = 0.513, and r∗2 = 0.499 can be obtained using the closed-
form solutions given in (22), (23), and (24), respectively. The
optimal gross profit of Sb1 is Gc(r∗1 , r

∗
2 , p
∗
b) = 487.84 which

is greater than that of selling services S1 and S3 as standalone
products with F1(r∗, p∗s) = 195.5 and F3(r∗, p∗s) = 206.02,
respectively. Thus, the rational service providers will decide
to build Sb1 and stop selling S1 and S3 as standalone services.

2) Demand Boundaries: Figure 12 shows the demand
boundary of Sb1 in the reservation price spaces. The customers
buy Sb1 when the customer valuations lie above the decision
line (1+γ)(θ1u1+θ2u2) = p∗b , where u1 = 0.82, u2 = 0.859,
γ = 0.1, and p∗b = 0.754. The customers do not buy Sb1 when
their valuations are below the decision line.

3) The Impact of Contingency Degree: In Figure 13, we
analyze the gross profit G∗c(·), privacy levels r∗1 and r∗2 ,
subscription fee p∗b , and total data cost under varied degree
of contingency γ. The total data cost of service bundle Sb1
includes the data costs of S1 and S3 as expressed in (19).
Firstly, we note that the gross bundling profit is proportional
to the degree of contingency. This is clear as the high degree
of contingency indicates strong interrelation between S1 and
S3. Thus, the customers are more interested in buying both
services together. Secondly, the subscription fee of Sb1 is
increased to meet any increase in the degree of contingency.
The resulting increase in the gross profit motivates the service
provider to enhance the overall service quality by decreasing
the privacy levels r∗1 and r∗2 .

4) The Impact of Reservation Wage: We consider the
impact of varying the reservation wage of service S1 on
the optimal pricing and profits of service bundle Sb1. We
observe two important results from Figure 14. Firstly, the
bundling profit G∗c(·) goes down when the reservation wage
c1 increases. This is due to the increased data cost of S1 as
defined in (19). Secondly, in order to minimize the total data
cost, the privacy level r∗1 of S1 is increased. The privacy level
r∗2 of S2 is also slightly increased but at a lower rate than

r∗1 . These results can also be deduced from the closed-form
solutions of r∗1 and r∗2 in (23) and (24), respectively.

5) Profit Sharing: The bundling profit can be divided
between services S1 and S3 as shown in Figure 15. The
feasible payoffs guarantee that the summation of payoffs does
not exceed the bundling profit η1 + η3 ≤ Gc(r

∗
1 , r
∗
2 , p
∗
b) =

487.84. The efficient payoffs assign the allocations such that
the total payoff is equal to the bundling profit η1 + η3 =
Gc(r

∗
1 , r
∗
2 , p
∗
b) = 487.84. The core solution defined in (40)

ensures that the payoff allocations of either S1 or S3 cannot be
improved by leaving the bundle and selling services separately.
Finally, the Shapley value solution defined in (41) assigns fair
payoff allocations based on the importance of each service
forming Sb1.

We next study the impacts of varying the reservation wage
c1 of S1 on the profit shares from Sb1. Figure 16 shows
the profit resulting from offering S1 and S3 separately and
jointly as Sb1. The profit allocations in Sb1 is found using
the Shapley value solution defined in (41). Two important
observations can be made. Firstly, the gross profit falls as
c1 is increased. This has negative effects on the profit of S3

in both the bundling and separate sales. The maximum-to-
minimum profit difference of S3 in the bundling and separate
sales are 13.19 and 11.36, respectively. Secondly, we observe
that higher profit allocations can be obtained from Sb1 for S1

and S3 compared to the separate sales. Thus, the providers
of services S1 and S3 have a monetary incentive in making
the service bundle Sb1 regardless of the data cost. This result
shows that the fairness of the Shapley value solution is crucial
for stable service bundling in people-centric services.

E. Substitute People-Centric Services

As substitute services, we next consider combining ser-
vices S1 and S2 in into the service bundle Sb2. As shown
in Figure 6, the fitting parameters of S1 are α1 = 0.822,
α2 = 0.004, and α3 = 2.813. For S2, the fitting parameters
are β1 = 0.856, β2 = 0.013, and β3 = 1.861.

1) Demand Boundaries: Figure 17 presents the demand on
Sb2 consisting of substitute services. There are three decision
boundaries. Firstly, the customers buy the bundle if their
valuations lie above and to the right of the decision line
(1 + γ)(θ1u1 + θ2u2) = p∗b , where u1 = 0.811, u2 = 0.793,
γ = −0.1, and p∗b = 0.58. Secondly, the customers buy Sb2 if
their valuation θ1 of S1 is greater than or equal to pb

u1
. Thirdly,

the customers buy Sb2 if their valuations θ2 of S2 are greater
than or equal to pb

u2
.

2) The Impact of Contingency Degree: Interrelated prod-
ucts are modeled as substitutes when γ < 0. Figure 18 shows
that when the degree of contingency is decreased, the gross
profit G∗s(·), subscription fee p∗b , and total data cost decrease.
This correlation is expected as decreasing γ indicates high
similarity among S1 and S2. Thus, the customer valuations of
the resulting bundle decrease and the subscription fee moves
to lower values accordingly.

3) Profit Sharing: Bundling substitute services is detrimen-
tal for the gross profit compared to the separate sales as shown
in Figure 19. In particular, the customer valuation of Sb2
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Fig. 11: Gross profit Gc(r1, r2, pb) by bundling S1 and S3 into the service bundle Sb1 under varied privacy levels r1 and r2
and subscription fee pb.
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Fig. 12: Demands on Sb1 containing both S1 and S3.

containing similar and comparable services is reasonably low.
The bundling profit, therefore, falls below the total profits
under the separate sales of S1 and S2 Gs(r

∗
1 , r
∗
2 , p
∗
b) <

F1(r∗, p∗s) + F2(r∗, p∗s). The rational service providers will
decide to sell S1 and S2 separately.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented the profit maximization and
pricing models for selling people-centric services separately
and as service bundles. We have firstly modeled the tradoff be-
tween the service quality and privacy level from data analytics
perspectives. Specifically, the service quality has been shown
to be inversely proportional to the privacy level. For separately
offered services, the service provider jointly optimizes the
privacy level and subscription fee to maximize the gross
profit resulting from offering services to a set of customers.
For service bundling, the people-centric services are bundled
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Fig. 13: Impacts of the degree of contingency γ on the gross
profit G∗c(·), privacy levels r∗1 and r∗2 , subscription fee p∗b , and
total data cost.

as complementary and substitute services. Accordingly, the
privacy levels of the two services and subscription fee are
optimized to gain the maximum gross profit for the service
provider. Finally, we have presented a model for sharing the
resulting bundling profit among the cooperative people-centric
services.

For the future work, the heterogeneity of the crowdsensing
participants and competitive markets can be included in the
profit maximization models.
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