Teaching an Old Robot New Tricks: Learning via Interaction with People and Things

Matthew J. Marjanovic MIT AI Lab

Embodied AI

Lots of structure *built-in...* What about *building structures*?

Overview

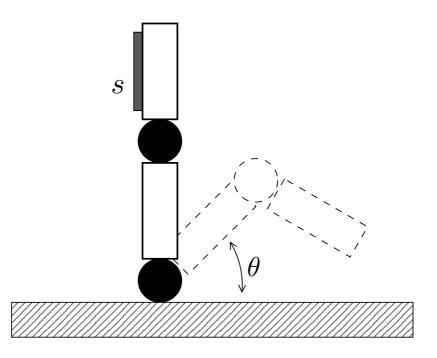
Three contributions to Embodied AI:

- sok: Environment for behavior-based programming.
- meso: A biologically-motivated motor-control system (virtual muscles).
- pamet: A modular system for learning from interaction with the environment and people, with enough modules to learn some simple behaviors.

What you will see:

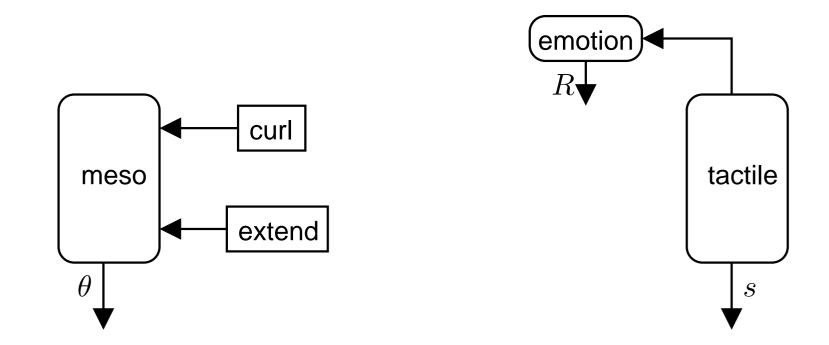
Cog is taught to perform some simple motor tasks.

An Example: The FingerBot

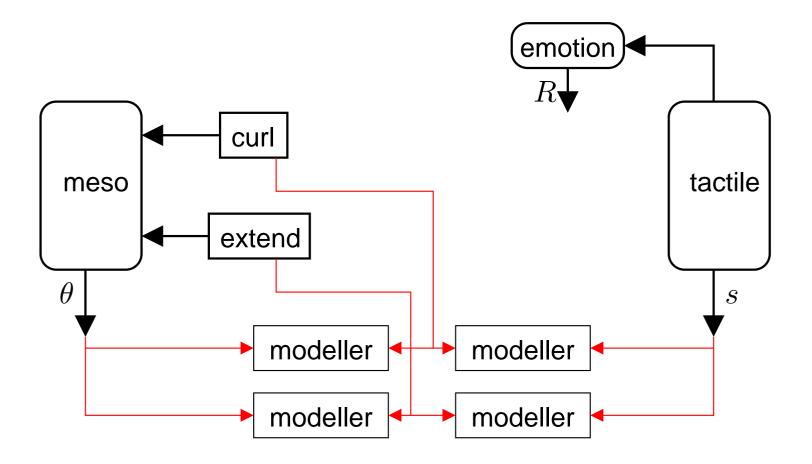


- One degree-of-freedom motion; single tactile sensor.
- Our goal: teach FingerBot to point in response to touch.

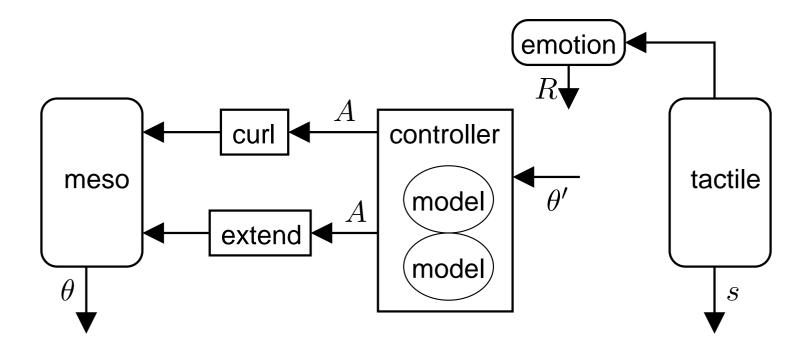
FingerBot initial state



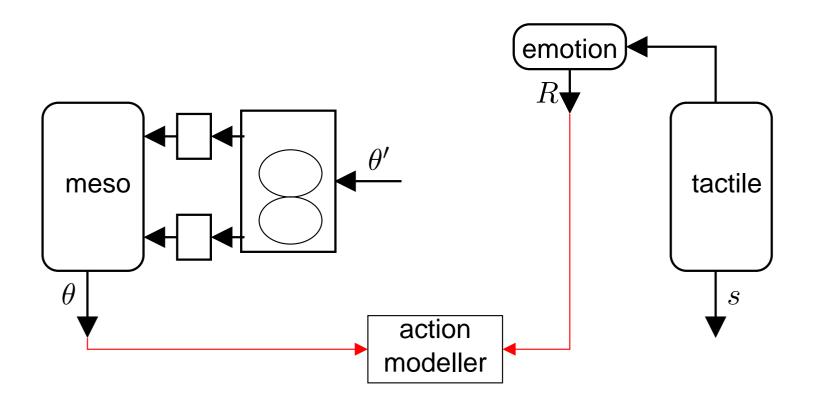
FingerBot learns to move



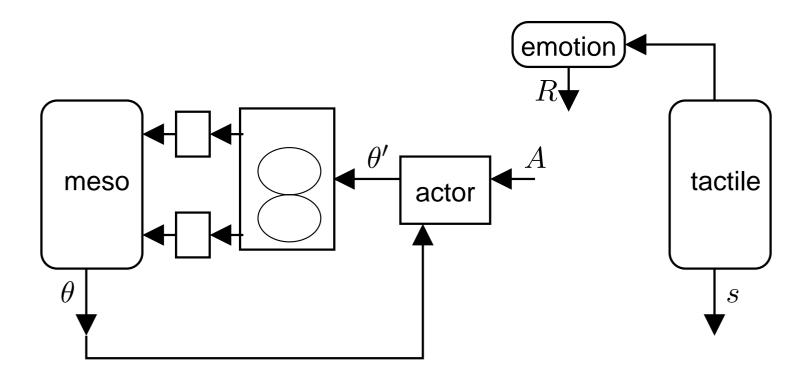
FingerBot controller



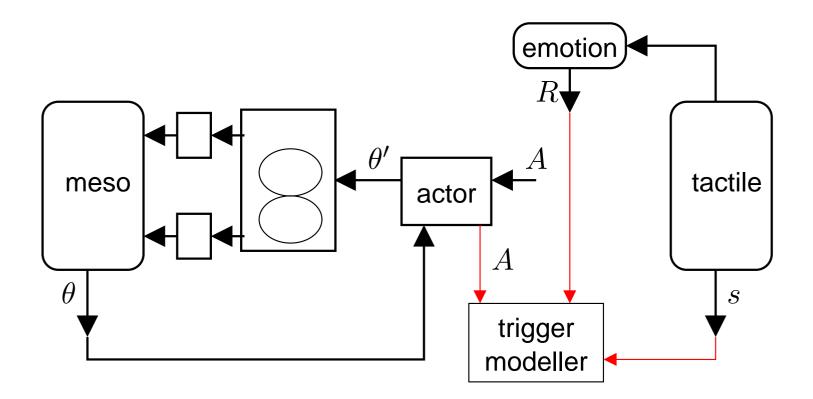
Teach FingerBot *how* **to point**



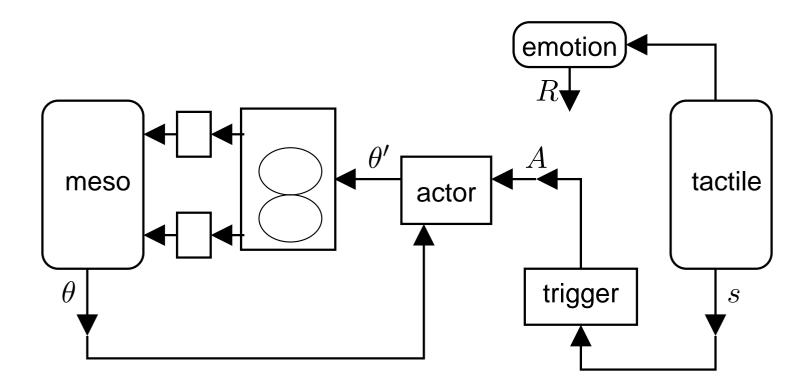
FingerBot points



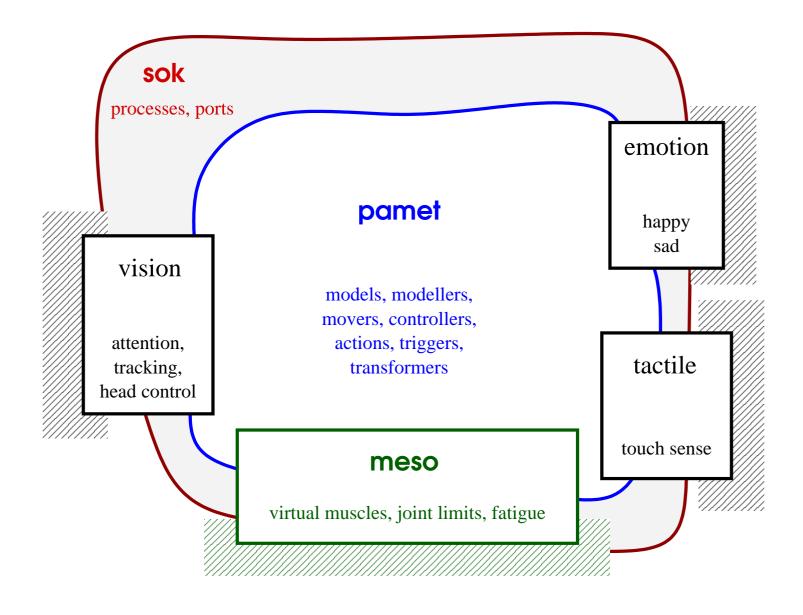
Teach FingerBot when to point



FingerBot points when touched



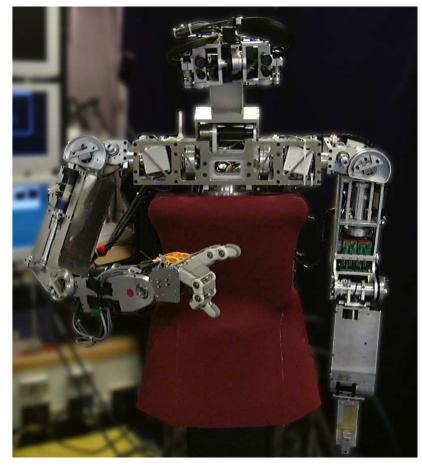
Overview



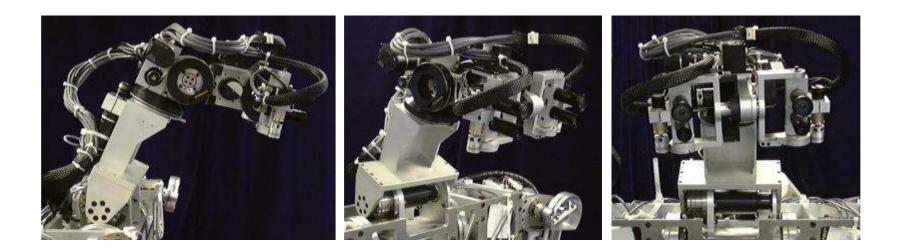
The Robot: Cog

Humanoid, anthropomorphic robot:

- 4-dof head, with 3-dof stereoscopic eyes
- two 6-dof torque-controlled arms
- 3-dof torque control in the torso
- off-board processing: ~28 off-the-shelf x86 PC's running QNX4

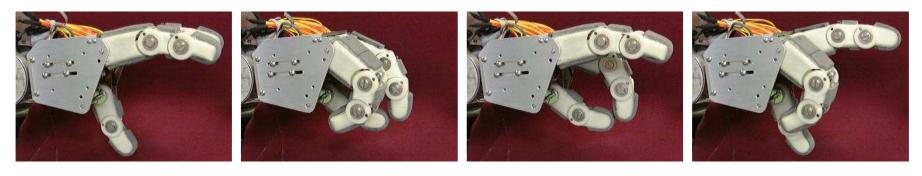


Cog's Head



- 4-dof in head: tilt, pan, roll, neck "lean"
- gyroscope: angular velocity, inclination
- 3-dof in two eyes: separate tilt, linked pan
 - Jual cameras: wide-angle, narrow-angle "foveal"

Cog's Hand



reach

grasp

pinch

point

- 2-dof: linked finger/thumb, paddle
- Four recognizable gestures (sorry, no "thumbs up")
- Six surfaces of tactile sensation

Why build a humanoid robot?

Assorted "practical" reasons:

- Create machines/tools which adapt to human environments.
- Test theories from cognitive science, neuroscience.

Grand philosophical reason:

- We want to create a human-level machine intelligence.
- Intelligence is predicated on how an agent interacts with the world.

Metaphors We Live By

[Lakoff & Johnson, 1980]

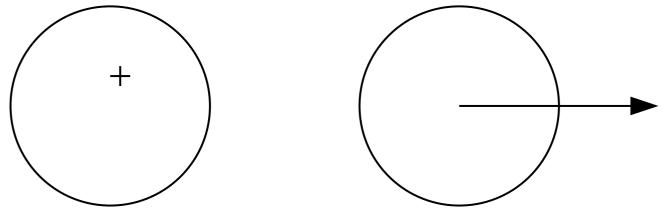
- Metaphors are not just linguistic constructs; we *think* in metaphors.
 - Happy is Up; Sad is Down.
 - Significant is Big.
 - Time is Money.
- No *literal* meaning; no reduction to discrete propositional forms or symbols.
- Operational meaning: represent consistent patterns of interaction.
- Grounded in experience.

The Body in the Mind

[Johnson, 1987]

Some metaphors are cultural;

some arise from basic human physical interactions: *image* schemata.



CONTAINER IN-OUT **Simple relationships which appear at all levels of thought:**

- Physical: "George put the toys in the box."
- Abstract: "Donald left out some facts."

So, what does this mean?

If you want to build a *human-like* machine intelligence:

- 1. You need a system which can develop and manipulate metaphorical structures.
- 2. Those structures must be grounded in raw sensory and motor experiences.
- 3. Those experiences must be human-like.

(You need a humanoid robot.)

Cog is a humanoid robot.

Much work on different aspects of humanoid-ness...

- Matt Williamson: motor control via coupled non-linear oscillators (central pattern generators).
- Robert Irie: auditory localization.
- Cynthia Breazeal (Kismet): facial/vocal gestures, social interaction, emotional models.
- Brian Scasselatti: visual animate/inanimate distinction, theory of body, imitation of simple motions.
- Paul Fitzpatrick: visuomotor object understanding.
- Isolated parts, lacking direction/means for integration.
 - Mostly learning parameters, not structures.

(Where are the metaphors gonna go?!)

Metta's Babybot

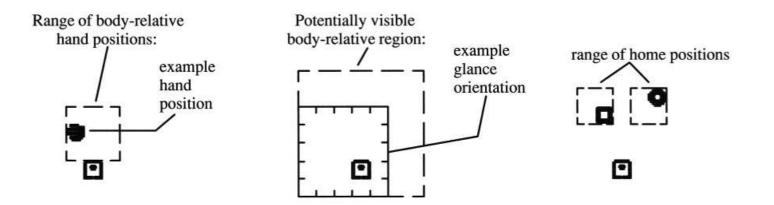
- 5-dof head with stereoscopic vision, gyroscope
- 6-dof torque-controlled arm
- Learns a developmental progression of sensorimotor coordination:
 - Saccades to visual targets via visual feedback (head motion rare).
 - Coordinated head and eye movement (random arm movement).
 - Controlling movement of arm, as a visual target.
- Culminates in reaching out toward moving visual stimuli.

[Metta, 1999]



Drescher's Schema Mechanism

Simulated robot learns progressively more abstract relations by interacting with its world. [Drescher, 1991]



- Mechanism has *items*, *actions*, *schemas*: predictors, CONTEXT + ACTION \Rightarrow RESULT
- Learning and abstraction:
 - New schemas for more specific context or result.
 - Composite actions and synthetic items.

Schema Issues

Completely unrealistic simulation:

- 2-D grid-world with binary features.
- 10 discrete primitive actions.
- Total of 141 bits of primitive binary state.
- No physics, no noise.
- Serialized state-machine for action execution.

It's a symbolic AI engine for a symbolic universe.

A Design Philosophy

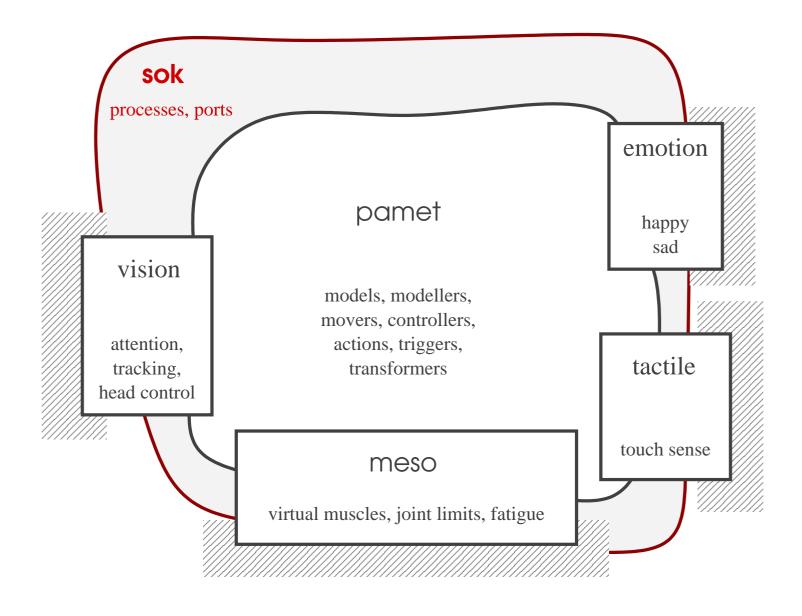
First and foremost, Real-World Constraints:

- Real robot, real physics.
- Real-time operation human time-scales.
- Distributed computation expandable, scalable.
- Noise because separating signal from noise is what it's all about!

A Design Philosophy

- Dynamic: create new models/concepts.
- Transparent: compatible representations across modalities.
 - Reuse same machinery at different levels of development or abstraction.
- Malleable: states/actions/etc allowed to change/evolve.
- Distributed control: no central planner, arbitrator, action selector, modeller.
 - Only serialize operations when required by resource contention.
- Grounded close to the raw physics.

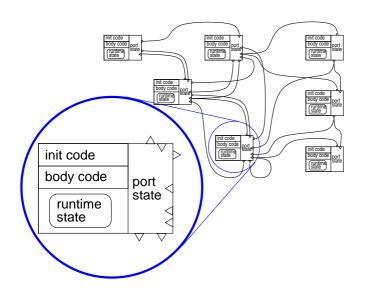
Three Pieces

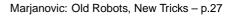


sok: Behavior-based Environment

Dynamic network of sok processes, connected via inports and outports.

- Provides interprocess communication and process control.
- Connection-based message-passing.
- Event-driven code.
- Distributed: works transparently over a network of processors (via QNX).
- C, C++ libraries, plus utilities.





sok Features

- Processes and connections are dynamic.
- Network is tangible.
 - Processes can be aware of the network topology.
 - Processes can search for other ports/processes by traversing the network.
 - Ports are typed.
- Separation of message-handling code and body code.
 - Processes can be killed and restarted without affecting connectivity.
- State of sok space can be dumped/restored from disk.

sok Type System

- Ports are typed: C-like (or IDL)
 - Int and float types, plus arrays and structures.
 - Can define constants, too.
- Scheme-based type compiler generates .h and .c files from .stc files.
- Type compiler is embedded in the sok library; type descriptions can be processed at runtime.
- Functions for walking typed buffers, generating composite type identifiers, housekeeping.

sok Arbitrators

Message passing is asynchronous and anonymous:

- Data received by an inport is buffered, and body process receives an event.
- Default behavior is to overwrite no queueing.
- Body code doesn't know about multiple connections.

Arbitrator: code which will change reception behavior, e.g.

- *Summing*: Inport keeps a running sum of received data.
- Averaging: Body process sees the mean of all data received between reads.
- Blocking: One connection wins right to monopolize the port; messages from others are discarded.

Dump and Restore

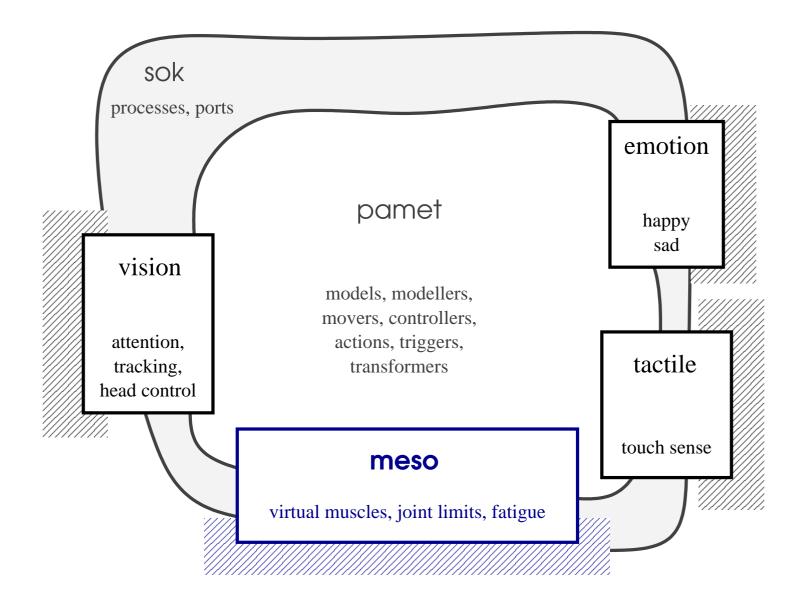
sok provides a dynamic environment, processes and connections come and go as a system develops.

- sok processes can be told to dump state to disk:
 - Connections to ports.
 - Persistent data, arbitrator state.
 - Command-line arguments, etc.
- Entire state of machine can be dumped or restored with single shell command.

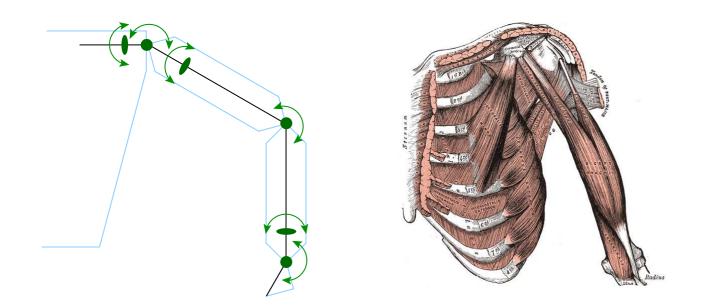
Handy Utilities

- sok command-line interface:
 - inspect network, processes, ports
 - make/break connections
 - spawn/kill processes, send signals
 - initiate dump and restore
- *Megasliderama* Swiss-army GUI:
 - create panels of widgets connected to ports
 - sliders, stripcharts, buttons, image planes, ...

Sensory and Motor Boxes



meso: Biological Motor Control



- Implements spring-like virtual muscles.
- Allows for *multi-joint coupling*.
- Provides performance feedback:
 - Muscle fatigue.
 - Joint pain.

Why muscles? Fatigue? Pain?

- Movement is influenced by limitations of physiology.
 - We try to minimize energy use, take advantage of physics.
 - We avoid uncomfortable motions.
- Concepts linked to physical interaction are derived from those limitations.
 - "heavy" = "things which make muscles tired"
 - "stretching limits"
- Cog's electric motors have no innate fatigue.

Why spring-like? Multi-joint?

Why spring-like?

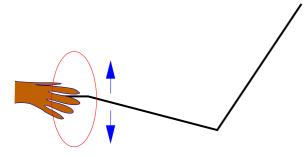
- Real muscles are very non-linear force-producing elements, operate in antagonistic pairs.
- At spinal level, feedback loops make muscle groups behave like simple springs.
 - *Equilibrium-point control* hypothesis. [Bizzi, Kelso]

Why multi-joint coupling?

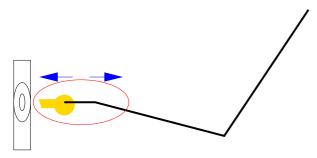
- Real muscles do span multiple joints.
- Necessary for complete control of endpoint stiffness. [Hogan, 1985]
- Multi-joint muscles enhance efficiency of certain movements. [Gielen, 1993]

meso: Endpoint Stiffness

- Single-joint springs do not allow for full control of stiffness in *endpoint* space.
- Endpoint stiffness should be tuned to match the task.

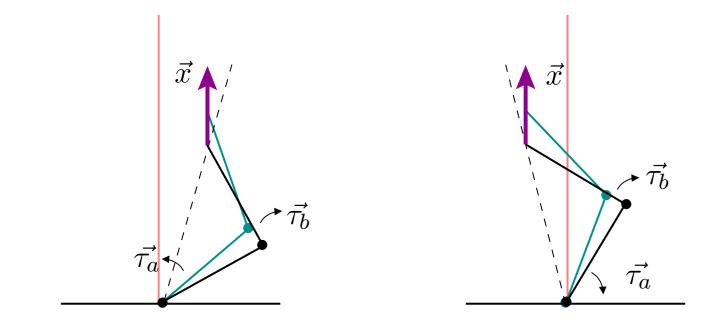


Handshake: low vertical stiffness



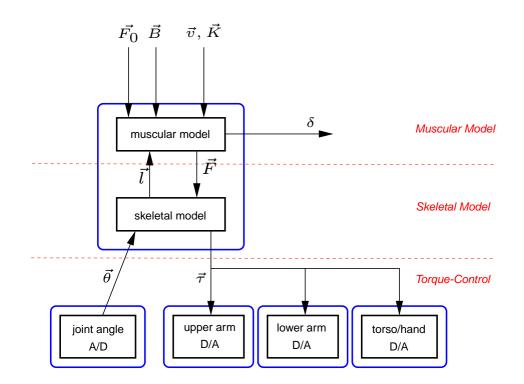
Key in lock: high vertical stiffness

meso: Multi-joint Efficiency



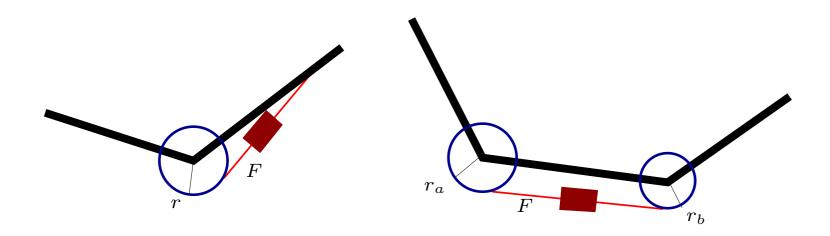
- Depending on configuration, single-joint muscles may undergo *lengthening contraction*, i.e. dissipating energy.
- A multi-joint muscle acting as stiff linkage prevents this, makes motion more efficient.
 - To Cog, such motion will feel more efficient. Marjanovic: Old Robots, New Tricks p.38

meso: Three Layers



- Low-level torque control.
- Skeletal model (muscle kinematics).
- Muscle model (muscle dynamics, fatigue).

meso: Skeletal Model



- Compute muscle lengths $\vec{l}(\vec{\theta})$, joint torques $\vec{\tau}(\vec{F},\vec{\theta})$.
- Simple "pulley" model:

$$l_m = \sum_j r_{jm} \theta_j, \ \tau_j = \sum_m r_{jm} F_m$$

meso: Muscle Model

Compute forces from lengths, i.e. spring-law:

$$F = K(l - l_0) - B(\dot{l}) + F_0$$

- Setpoint l_0 and stiffness K are control parameters.
- Damping constant B needs to be tuned.
- Bias force F_0 can be used for feedforward control (e.g. gravity/posture).

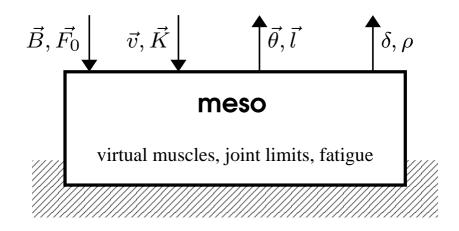
Fatigue Model

Adams [2000]: detailed biochemical fatigue model:

- Glucose/glycogen, adipose tissue, heart rate, insulin/glucagon/epinephrine...
- Abstracted further:
 - Required power: $P = \alpha |Fv| + \beta |F| + \gamma K$
 - Metabolic supply: P_R
 - Energy reserves: short-term S_S , long-term S_L .
- Discomfort and muscle efficiency due to S_L :

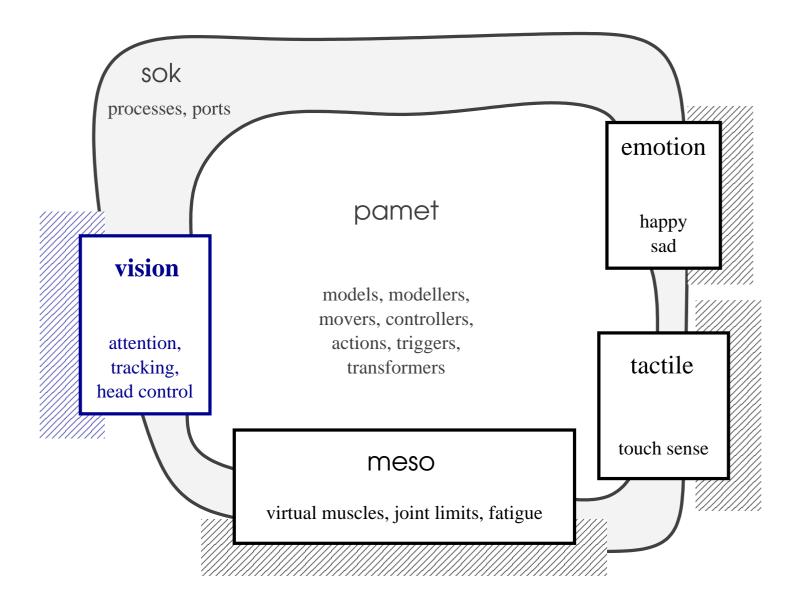
$$\delta = 1 - \left(\frac{S_L}{S_{L0}}\right), \ \phi = \left(\frac{S_L}{S_{L0}}\right)^{1/2}$$

meso as a Black-box



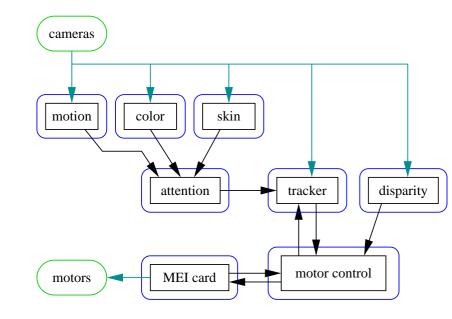
- Inputs: muscle setpoint velocity, stiffness.
- Outputs: joint angles, muscle lengths, fatigue, pain.

Next Box: Vision



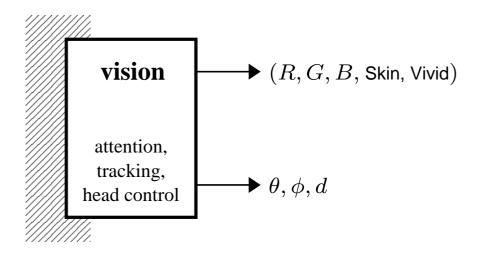
Vision System

- Saliency filters:
 - Color, skin tone, motion.
- Attention:
 - Weights/adds saliencies
 - Chooses potential targets.
- Tracking system:
 - Locks onto image patch.
 - Follows it around.



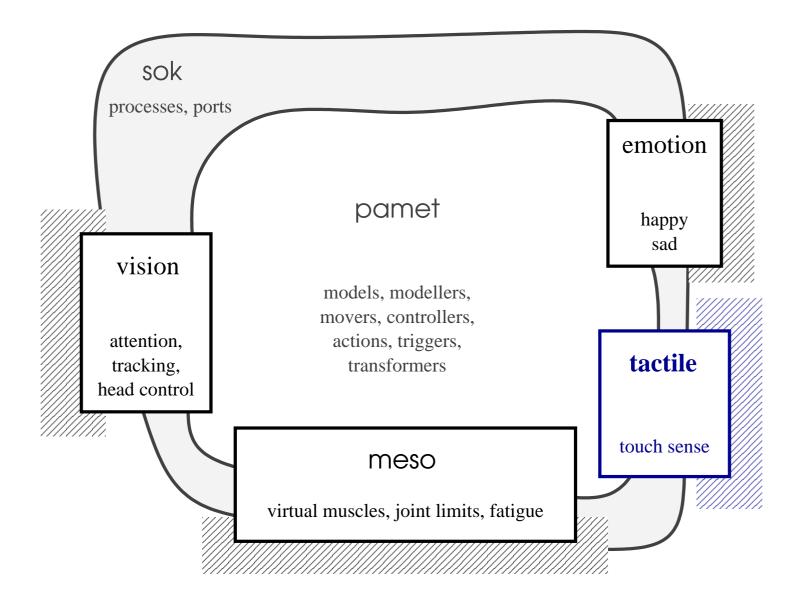
(thanks Paul and Giorgio!)

Vision as a Black Box

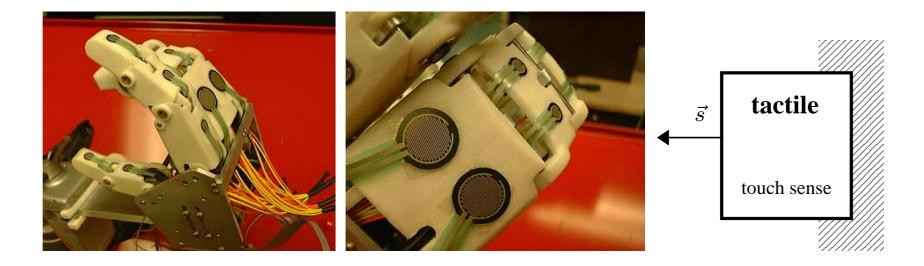


- Outputs only:
 - Target gaze-angles, disparity: (θ, ϕ, d)
 - Visual features of target: (R, G, B, Skin, Vivid)

Next Box: Tactile Sense

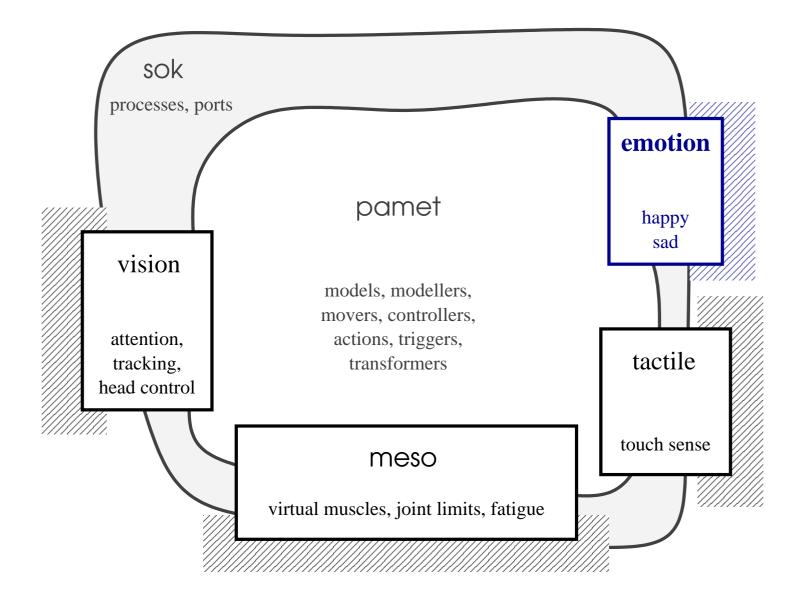


Tactile Sense

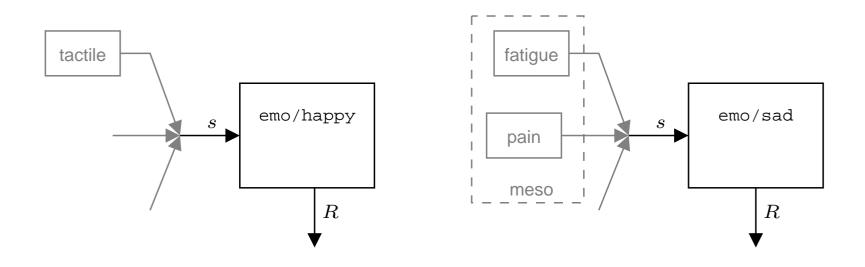


- 22 force-sensitive-resistor pads.
- Wired in parallel to yield six sensor surfaces.
 - Vector of six values, [0,1].

Last Box: "Emotion"



"Emotion"

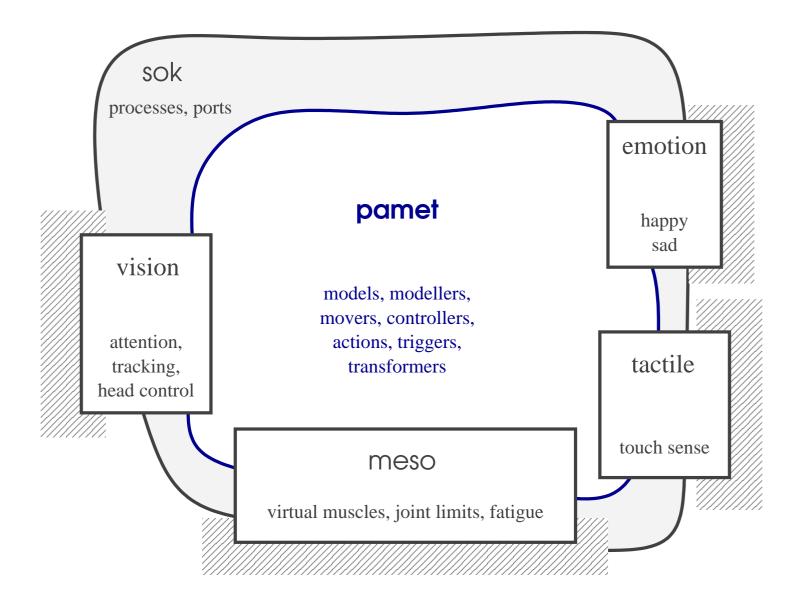


Combines sources of innate positive/negative reward.

- Positive: hand-squeezes.
- Negative: muscle fatigue, joint pain.
- Leaky integrator dynamics:

$$R(t) = \lambda R(t-1) + \sum r_i(t-1,t)$$

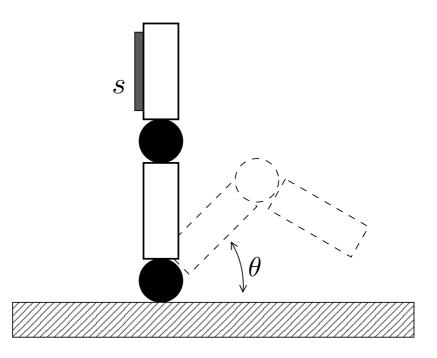
Final layer: pamet



pamet: connecting, learning

- Static modules (sok processes) provide initial structure:
 - Sensory and motor primitives (black boxes, movers).
 - Proto-modeller modules to create modellers.
- Modeller modules try to discover relations between state parameters, and create models.
 - Mover models, action models, trigger models, transform models.
- Instance modules use the models to produce behavior, create new state parameters.
 - Controllers, actors, triggers, transformers.
- Moveledge is acquired in network structure and models.

An Example: The FingerBot



- One degree-of-freedom: joint angle θ .
- Controlled by a single virtual muscle, length l.
- Single tactile sensor s.

Goal: Teach the finger to point in response to touch.

Implementation of the FingerBot

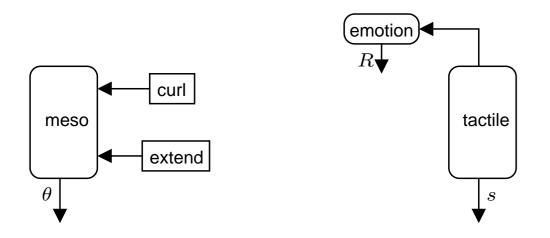
Marjanovic: Old Robots, New Tricks - p.54

A Menagerie of Modules

Module	Subclass	Inputs	Outputs
mover	meso	A	
controller		ec v	A
actor	position-constant	$A, ec{s}$	$ec{v}$
	position-parameter	A, \vec{s}_1, \vec{s}_2	"
	velocity-constant	$A, ec{s}$	"
trigger	position	\vec{s}	A
	activation-delay	A_1, A_2	A
transformer		$ec{s}_1,ec{v}_2$	\vec{s}_2, \vec{v}_1, A

Basic data types: state parameters \vec{s} , activations A, drive signals \vec{v}

FingerBot initial state



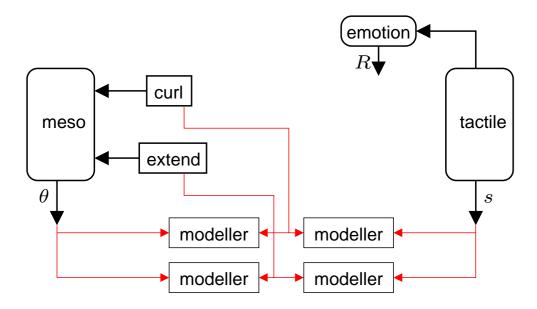
- Two hard-coded mover modules: "curl" and "extend".
- *Mover* modules activate at random: exploration.
- Random activation is supressed by explicit activation.

Mover

"Causes movement, rate modulated via a scalar parameter."

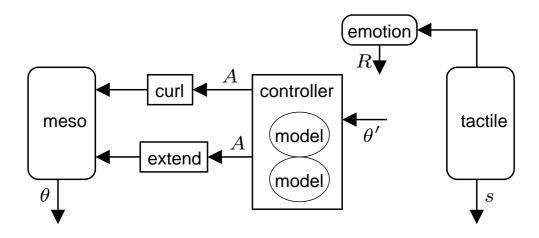
- meso movers are the primitive connections to the motor system.
 - Send a vector of muscle velocities, scaled by control parameter (and fixed stiffness).
- Effect on state parameters is modelled by mover models.

FingerBot mover modelling



- Mover modellers are spawned for each pair of state parameter and mover activation.
- Learn/discover the relationship between the movers and the joint velocity.

FingerBot controller



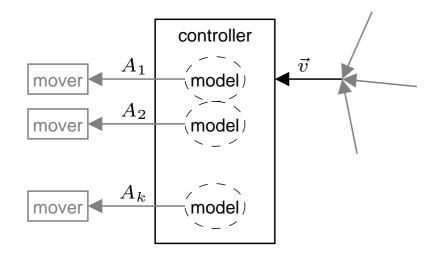
- A controller is created for the joint angle: controls joint velocity by activating movers.
- Joint angle becomes a *controllable parameter*.

Controller

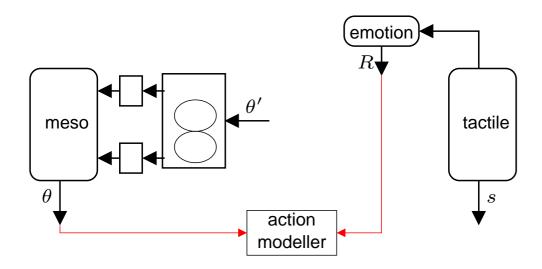
"Controls the velocity of a state parameter by activating movers."

- Uses the mover models to determine how movers will affect state parameter.
- At each instant, activates the mover which will yield the velocity closest to the control input v:

$$m = \arg \max(\frac{\vec{v} \cdot \vec{v}_m}{\|\vec{v}_m\|})$$

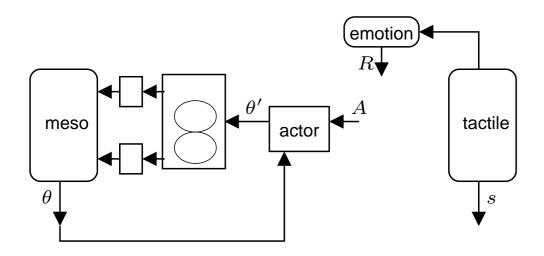


Training FingerBot to Point



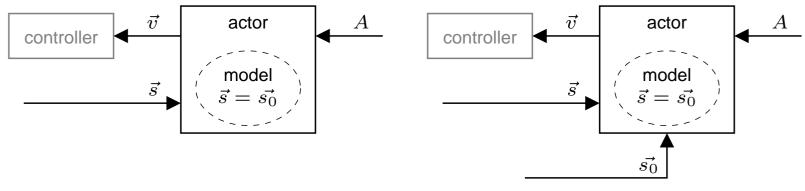
- An action modeller is created for each controllable parameter.
- Correlates reward with joint angle; creates an action model for the pointing posture.

Training FingerBot to Point



An actor is spawned, which moves finger to the pointing position at random times.

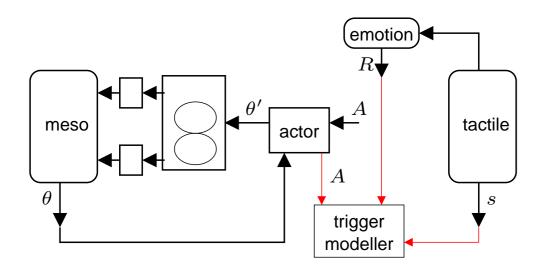
Actor



"Drives a controllable parameter to a goal value."

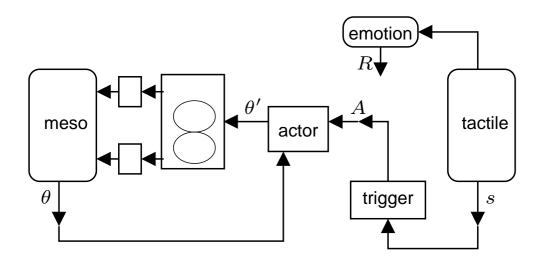
- position-constant: constant prototype value in action model.
- position-parameter: goal derived from another input parameter.
- Have random activation.
- Unused actors/actions will expire.

Pointing in response to Touch



- A trigger modeller is created for pairs of actors and state parameters.
- Correlates state parameter with reward and activation.
- Creates a *trigger model* linking pointing action to a range of tactile sense values.

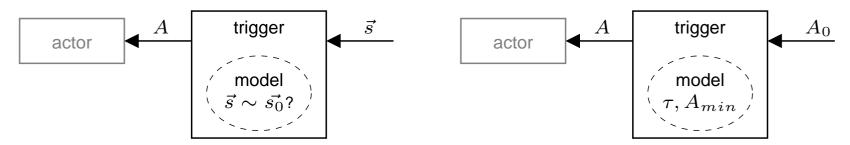
Pointing in response to Touch



A trigger is spawned, which activates the pointing actor in response to touch.

Marjanovic: Old Robots, New Tricks – p.65

Trigger



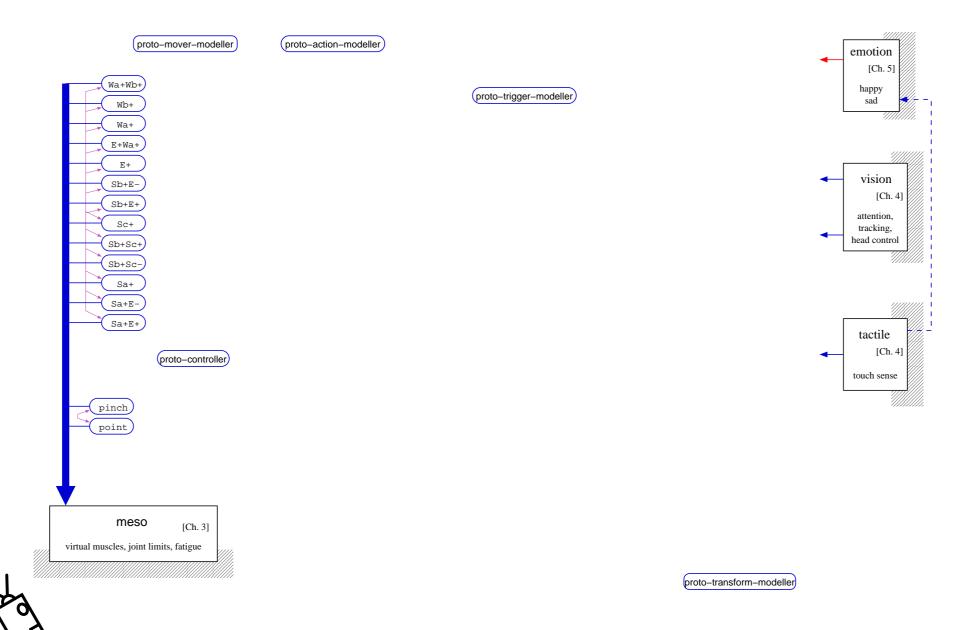
"Activates an actor when input state satisfies a context."

- *position*: context is a region in input state space.
- *activation-delay*: context is another activation signal.
- Activation output indicates how well context is satisfied.

Video of Three Arm Actions

Marjanovic: Old Robots, New Tricks - p.67

Cog, Initial State



Mover Modelling

Modeller's question:

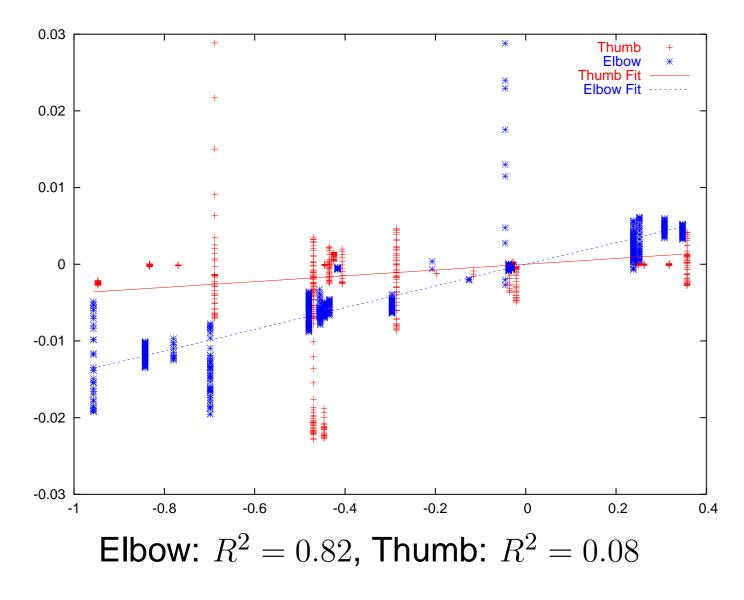
"Which state parameters are affected by the mover?"

Linear model of state velocity as a function of activation

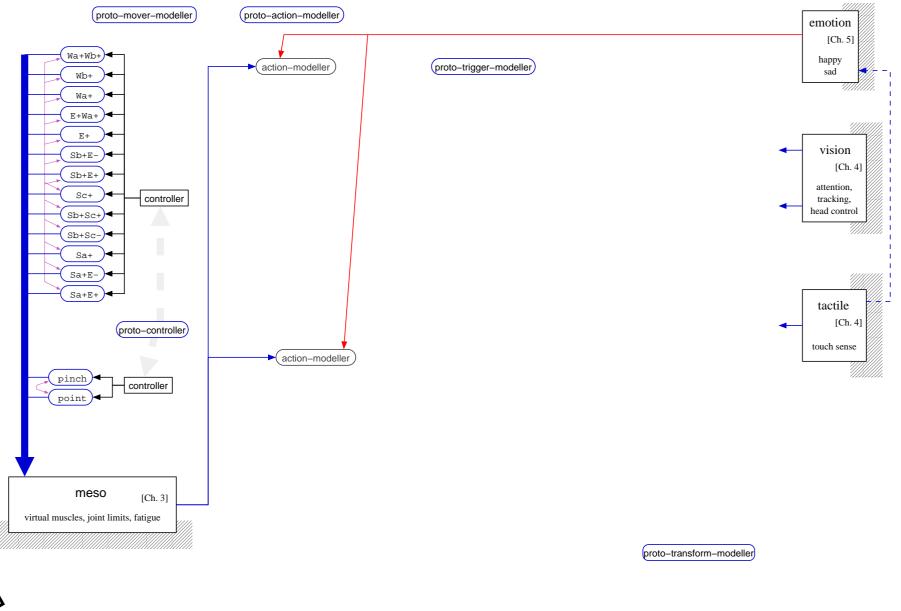
$$\vec{v}_s = A\vec{m}$$

- Modeller operation:
 - 1. Record samples (\vec{s}, A) ; calculate velocities \vec{v} .
 - 2. Perform linear regression to estimate \vec{m} .
 - 3. Check correlation coefficient R^2 for each axis of \vec{v} .

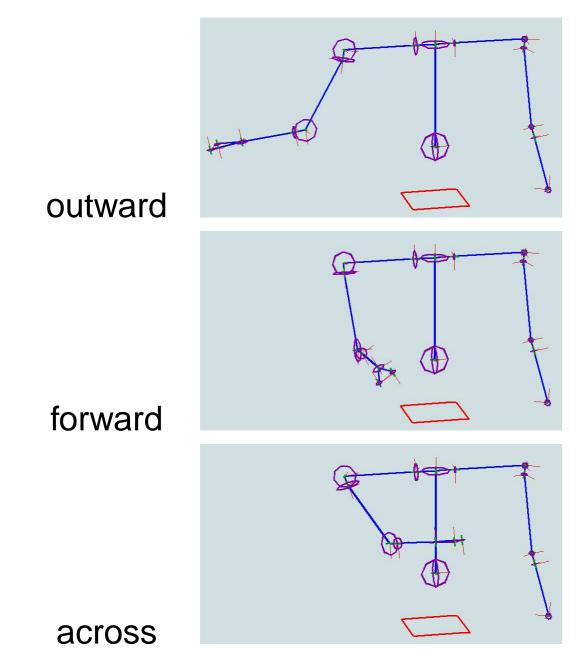
Elbow Mover (vs. Thumb)



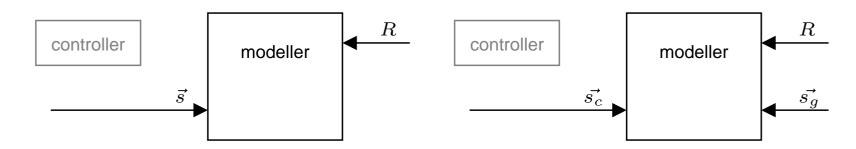
Cog, with Controllers



Three Arm Actions



Action Modelling

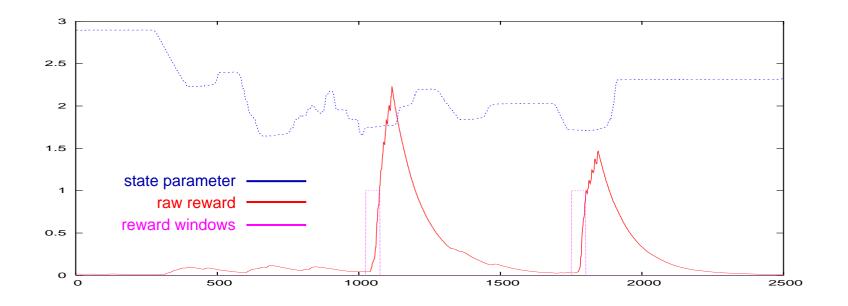


Modeller's question:

- Is there a prototype state sample being rewarded?
- If so, what is it?

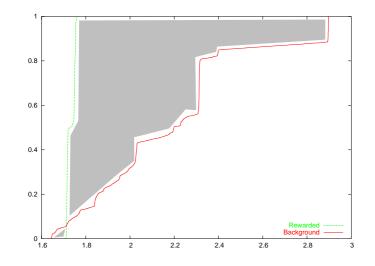
Model acts as a binary classifier: *rewarded* vs. *unrewarded*.

Action Modelling, cont.



- **•** Collect samples (\vec{s}, R) .
- Calculate reward windows, preceding the reward.
- Label \vec{s} samples:
 - Within windows: rewarded, "T".
 - Outside windows: unrewarded, "F".

Is there an Action?



- Compare per-axis distributions $p(s_i|T)$ and $p(s_i|F)$.
 - Measure absolute areal difference of CDF's:

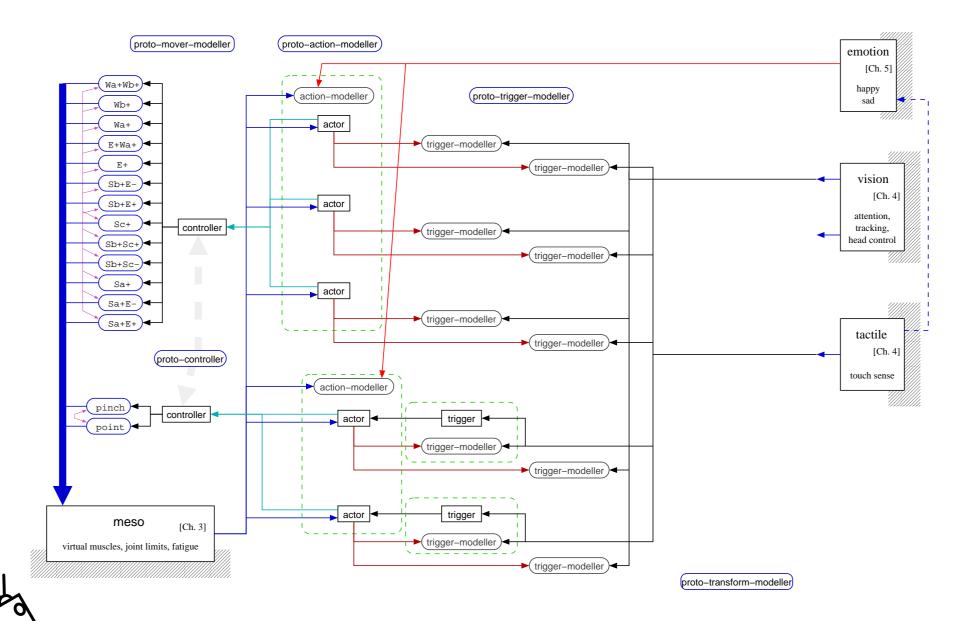
$$\alpha_i = \int |P(s_i|T) - P(s_i|F)| \, ds_i$$

If $\alpha_i > 0.1$, axis *i* is *relevant*. (None = no model!)

What is the Action?

- Model distributions $p(s_i|T)$ of relevant axes by gaussian.
 - Measure mean and variance of rewarded samples.
- Mean is the prototype position goal of action.

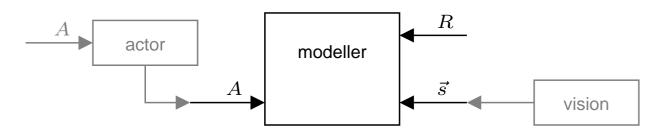
Cog, with Actors



Visual Triggers for the Arm

Marjanovic: Old Robots, New Tricks - p.78

Trigger Modelling

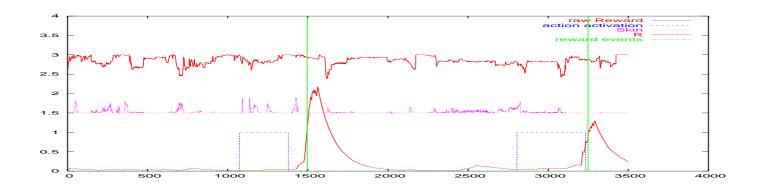


Modeller's question:

- Is there a prototype stimulus coincident with both action and reward?
- If so, what is it?

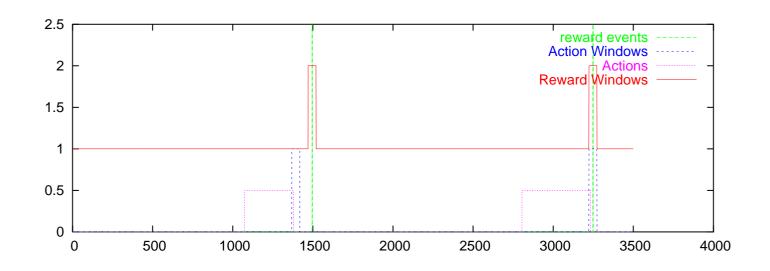
Model acts as a binary classifier: stimulus vs. background.

Trigger Modelling, cont.



- **•** Collect samples (\vec{s}, A, R) .
- Determine reward windows and action windows.
- Label samples \vec{s} :
 - Within both windows: stimulus, "T".
 - Outside both windows: background, "F".

Trigger Modelling Windows



- Reward is "associated" with action if near action endpoint.
- Reward windows relative to reward event.
- Action windows = reward windows for associated rewards.

Position Trigger

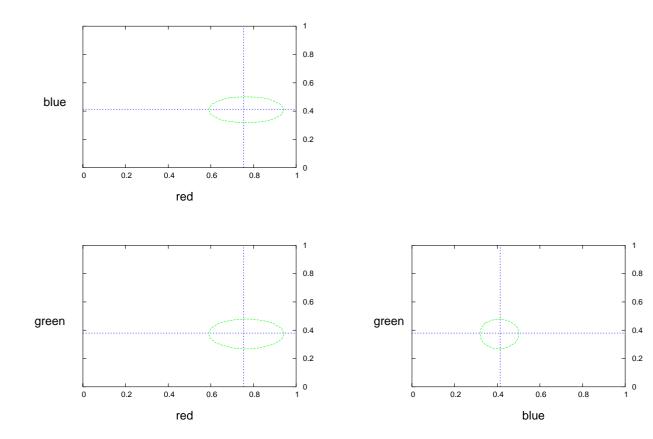
- Relevant axes of T and F modelled by gaussian distributions.
- Stimulus" and "background" distributions determine salient region of state space:

$$\rho = P(T|\vec{s}) = \frac{p(\vec{s}|T)P(T)}{p(\vec{s}|T)P(T) + p(\vec{s}|F)P(F)}$$

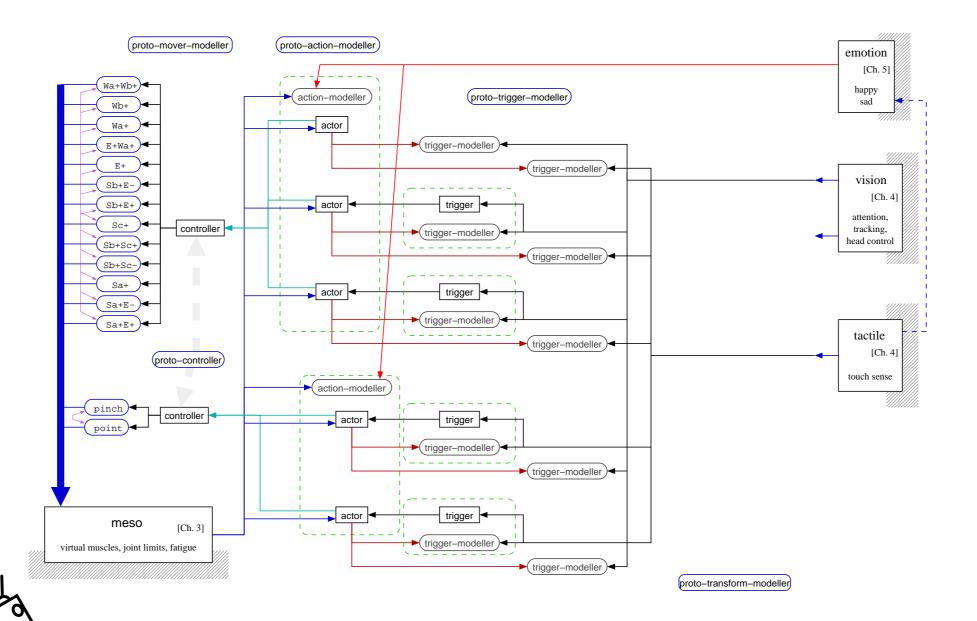
- Trigger context is satisfied when $\rho > 0.5$.
 - ρ sent as activation value to actor.
- Background distribution is updated/adapted over time.
 - Trigger will habituate to a continuous stimulus.

Example Trigger Context

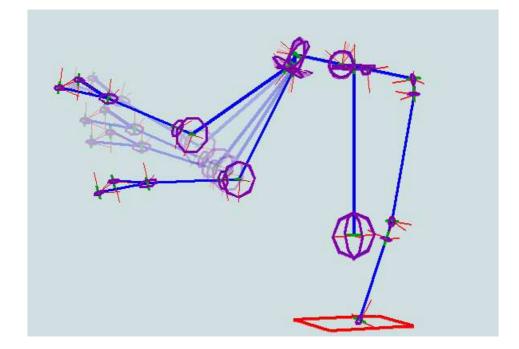
Decision boundary of "Red Ball" trigger:



Cog, with Triggers



Action Model Refinement



- Action modeller continues to collect data, to discover new actions.
- If a new model would be similar to an existing one, the old model is *refined*.
 - Connections to triggers, etc., remain intact.

Conclusion

- Robot learns from interaction with self and environment.
- Robot can be taught a few simple behaviors.
- Holds true to design philosophy:
 - Dynamic: new models, structure created.
 - Malleable: models can be refined.
 - Distributed: no central planner/learner.
 - Real robot, real world conditions.

Future Work

- Negative reward/reinforcement
 - Using the muscle-fatigue/joint-pain signals.
- Inhibition and un-learning
 - Learning when *not* to do something.
 - Forgetting triggers.
- Accounting/distributing reward.
- Consistency, "success" as a reinforcer.

Future Work, cont.

Models for Johnson's "important" image schemata?

CONTAINER	BALANCE	COMPULSION
BLOCKAGE	COUNTERFORCE	RESTRAINT REMOVAL
ENABLEMENT	ATTRACTION	MASS-COUNT
PATH	LINK	CENTER-PERIPHERY
CYCLE	NEAR-FAR	SCALE
PART-WHOLE	MERGING	SPLITTING
FULL-EMPTY	MATCHING	SUPERIMPOSITION
ITERATION	CONTACT	PROCESS
SURFACE	OBJECT	COLLECTION

Future Work, cont.

- Incorporate earlier/other work into framework:
 - Richer perceptual primitives.
 - Social primitives; emotional system.
 - Reflexes which encourage interaction.
 - ... but, "black boxes" should not be opaque.

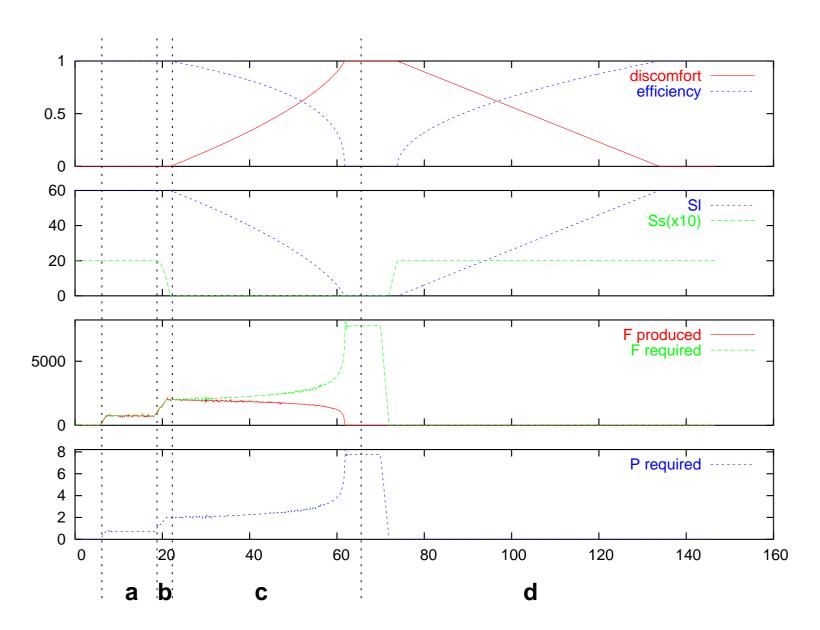
Brain-teasers...

- How many primitives do we need to implement?
- How small do the building blocks need to be?
- How dense must the interconnections be?
- Do we need to simulate cells? Proteins?

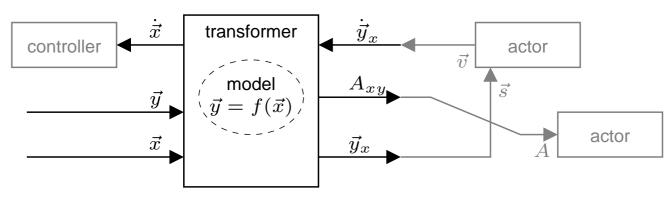
EXTRA SLIDES

Marjanovic: Old Robots, New Tricks – p.91

Phases of Fatigue



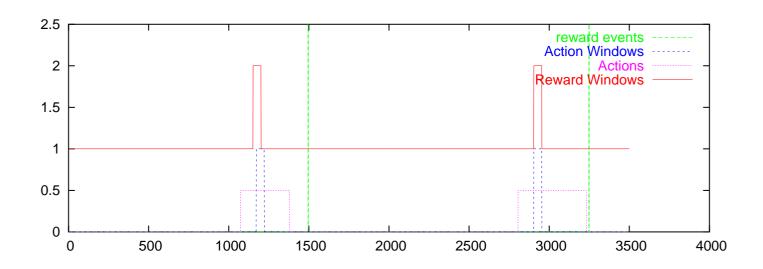
Transformer



Transformer module can do three things:

- Predict state of \vec{x} in y coordinate frame. ($\vec{y}_x = f(\vec{x})$)
- Decide whether or not \vec{x} and \vec{y} are observing the same process. (A_{xy})
- Control \vec{x} via its velocity $\dot{\vec{y}}_x$ in the y coordinate frame. $(\dot{\vec{x}} = F^{-1}\dot{\vec{y}}_x)$

Trigger Modelling Windows, v1.0



- Action is "rewarded" if reward event soon after action endpoint.
- Action windows near action onset.
- Reward windows = action windows for rewarded actions.

To be effective, need to slide action windows, Marjanovic: Old Robots