Essential Coding Theory 6.896 Due: Wednesday, October 30, 2002

Problem Set 3

Instructions: See PS1.

- 1. Asymptotics of codes: Given $\epsilon > 0$ express the rate of the best family of binary codes of relative distance $\frac{1}{2} \epsilon$, you can (a) construct, and (b) show the existence of. Express the rate in big-Oh notation (i.e., $O(\epsilon^d)$ implies there exist constants c and ϵ_0 such that for all $\epsilon < \epsilon_0$, the rate of the code of relative distance $\frac{1}{2} \epsilon$ is at least $c\epsilon^d$.) How constructive are your codes in Part (a)?
- 2. Variants of RS codes: The two parts of this question consider variants of Reed-Solomon codes over \mathbb{F}_q , obtained by evaluations of polynomials at n distinct points $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q$. The message will be speified by a sequence of coefficients $c_0, \ldots, c_{k-1} \in \mathbb{F}_q$ and its encoding will be the evaluation of a polynomial p(x) at $\alpha_1, \ldots, \alpha_n$. What will be different is the definition of p(x) given c_0, \ldots, c_{k-1} . Give exact bounds on the distance of the resulting code. (Note, the distance may be a function of the set $\{\alpha_1, \ldots, \alpha_n\}$.)
 - (a) $p(x) = \sum_{i=0}^{k-1} c_i x^{i+\ell}$, where ℓ is some non-negative integer.

(b)
$$p(x) = \sum_{i=0}^{k-1} c_i x^{2i}$$
.

- 3. Hadamard matrices: Recall that an $n \times n$ matrix H all of whose entries are from $\{+1, -1\}$ is a Hadamard matrix if $H \cdot H^T = n \cdot I$ where the matrix product is over the reals and I is the $n \times n$ identity matrix.
 - (a) Show that if there is an nxn Hadamard matrix then n is either 1 or 2 or a multiple of 4.
 - (b) Given an $n \times n$ Hadamard matrix H_n and an $m \times m$ Hadamard matrix H_m , construct an $(nm) \times (nm)$ Hadamard matrix.
 - (c) (Not to be turned in) Let q be a prime power equivalent to 3 modulo 4. Let $H = \{h_{ij}\}$ be the $(q+1) \times (q+1)$ matrix with $h_{ij} = 1$ if i = 1 or j = 1 or i = j, and $h_{ij} = (j-i)^{(q-1)/2}$ otherwise. Verify that H is a Hadamard matrix. (The purpose of this exercise is point out that Hadamard matrices of many size, and not just powers of 2, exist.)
- 4. Let C be an infinite family of binary codes obtained by concatenation of two infinite families of codes C_1 and C_2 . (The *i*th code of C is obtained by concatenating the *i*th code of C_1 with the *i*th code in C_2 . The block lengths of the codes in C_1 and C_2 tend to infinity as $i \to \infty$.) Give an upper bound on the rate of C as a function of its minimum distance.
- 5. Consider the following simple edit distance between strings: $x \in \Sigma^n$ is at distance d from $y \in \Sigma^m$ if y can be obtained from x by first deleting up to d coordinates of x and getting an intermediate string $z \in \Sigma^{\ell}$ where $\ell \ge n d$, and then inserting up to d characters into z (at arbitrary locations) to get y. What are the analogs of the Singleton bound, the Hamming (packing) bound on codes, and the Gilbert-Varshamov bounds for this measure of distance?