
6.897 Algorithmic Introduction to Coding Theory October 21, 2002

Lecture 12
Lecturer: Madhu Sudan Scribe: David Woodruff

1 Overview

• Decoding with error-locating pairs

• Decoding concatenated codes

2 Decoding with Error-locating Pairs

We recap our analysis of e-error locating pairs from last time. For more detail, refer to Lecture 11. We
defined u ? v = (u1v1, . . . , unvn) for u, v ∈ Fnq , and A ? C = {a ? b|a ∈ A, b ∈ B} for A,B ⊆ Fnq . Recall
that (A,B) is an e-error locating pair for a linear code C iff

1. A,B are linear codes

2. A ? C ⊆ B

3. dim(A) > e

4. ∆(B) > e

5. ∆(C) > n−∆(A)

Finding an (A,B) pair which satisfies properties 2-4 is nontrivial. We will touch more on this when we
talk about algebraic geometry codes later in the lecture.

2.1 Abstract Decoding Algorithm

Last time we presented a simple decoding algorithm for C given an e-error locating pair (A,B) for C.
Note that the algorithm is nonuniform since it knows A and B. Also it is only required to work correctly
if there are ≤ e errors in the received vector r = (r1, . . . , rn). The algorithm is:

Input: Received vector r, A, B

1. Find a ∈ A, b ∈ B, (a, b) 6= (0, 0), such that a ? r = b and ai = 0 if ri 6= ci.

2. Use erasure decoding to find c ∈ C such that ci = ri if ai 6= 0, and output c.

2.1.1 Correctness

The following were some of the key properties in showing correctness (see Lecture 11 for the proofs):

1. Show that (a, b) as required in Step 1 exist: Use dim(A) > e to prove there exists a nonzero a ∈ A
that is zero if ri 6= ci. Let a be any such vector. Let b = a ? c. It then follows that a ? r = b.

2. Show that any pair (a′, b′) found in Step 1 satisfies a′ ? c = b′: Suppose to the contrary, a′ ? c = b′′

for such a pair (a′, b′) found in Step 1, so that a′ ? r = b′. Then b′ and b′′ agree whenever ri = ci,
which means they disagree on at most e locations. But since ∆(B) > e, we have that b′ = b′′.

3. Show there is a unique c such that a?c = b: Suppose to the contrary, a?c = a?c′. But ai 6= 0 for at
least ∆(A) coordinates, and hence c and c′ agree on these coordinates, and so ∆(c, c′) < n−∆(A),
a contradiction.

12-1

2.2 Typical Cases for Error-locating Pairs

How nontrivial is it to find an e-error-locating pair (A,B) for an [n, k, d]q code C? Suppose A is an
[n, k1, ?]q code, i.e., a linear code with dimension k1 and unspecified minimum distance. Then the dimen-
sion of A?C is at most k ·k1, since if {a1, . . . , ak1} is a basis for A, and if {c1, . . . , ck} is a basis for C, then
{aicj , 1 ≤ i ≤ k1, 1 ≤ j ≤ k} spans A?C. For an A chosen at random you expect the dimension of A?C
to be exactly k ·k1. From the Singleton bound, ∆(B) ≤ n−dim(B)+1 = n−dim(A?C)+1 ≈ n−kk1+1.
This hurts us since kk1 is large, making it difficult to achieve property 4 of an e-error locating pair.

Lets look at RS codes and why we were able to find error-locating pairs for them. Recall that A was con-
tained in the vector space of polynomials of degree at most k1 and C was contained in the vector space of
polynomials of degree k. What’s nice about polynomial vector spaces is that their product, A?C is con-
tained in the vector space of polynomials of degree k+k1. Hence, dim(A?C) = dim(A)+dim(C) = k+k1

for RS decoding. This dimension is much smaller than kk1, which was what was achieved for random A.

2.3 Applications to Algebraic Geometry Codes

Although the above analysis is discouraging, there are some codes other than RS codes for which one
can construct error-locating pairs. One such application is algebraic geometry codes. Recall that in
these codes we fix some subset S ⊆ Fnq with |S| = n. The messages are then m-variate polynomials,
and to encode we evaluate such a polynomial on the points in S. We were able to achieve good distance
in part because of the following properties of the order function ord on polynomials. We will omit the
definition of ord, instead concentrating on its properties that allow application of our abstract decoding
algorithm. We have:

1. ord(f + g) ≤ max(ord(f), ord(g)).

2. ord(f ? g) = ord(f) + ord(g), except if f, g = 0.

3. ∃ a function of all orders with a finite set of exceptions. The cardinality of this set is referred to
as the genus of S. From algebraic geometry, we know there exists an S with |S| = n = q

m
2 and

genus(S) ≤ n√
q−1 (Hurwitz’s genus formula).

4. if ord(f) = k, then f has at most k zeros in S.

Properties 1 and 2 are quite similar to the properties of order on polynomials. It is in fact property
4 which when combined with the other properties allows us to use our abstract decoding algorithm on
these codes. This property is quite similar to the property for degree on univariate polynomials and,
using the notation from the previous section, it is what ensures dim(A?C) = k+k1 instead of k ·k1. Note,
the reader is referred to Matt Lepinski’s Lecture 11 notes from last year for a more rigorous treatment
of algebraic geometry codes in the context of our abstract decoding algorithm.

2.4 Chinese Remainder Codes

In the Chinese Remainder Codes the message space is the set of integers from 0 to K − 1 (i.e., ZK)
where K = p1 · · · , pk is the product of distinct primes p1 < p2 < · · · < pk. For m ∈ ZK , we encode it
as ([m]p1 , . . . , [m]pk), where [m]pi = m mod pi. From the Chinese Remainder Theorem (CRT), we know
that given values for [m]p1 , . . . , [m]pk , we can reconstruct m. Note that this code is not linear.

What if instead of encoding m as ([m]p1 , . . . , [m]pk) we were to encode m as ([m]p1 , . . . , [m]pn) for
n ≥ k distinct primes p1 < · · · < pn? From CRT, we know that we can reconstruct m from any k of
these n residues. Hence, these codes can correct up to n− k erasures, and by the Singleton bound, this
implies they have distance n−k+1. One can now ask whether or not it’s possible to correct (n−k)

2 errors.

12-2

It turns out that there is a decoding algorithm similar in spirit to our abstract decoding algorithm that
was presented in [1] by Goldreich, Ron, and Sudan.

3 Decoding concatenated codes

We now shift our attention to decoding concatenated codes, specifically Forney codes. Recall the defi-
nition of a concatenated code. We were given an [N,K,D]Q outer code C1 with encoding function E1

and an [n, k, d]q inner code C2 with encoding function E2. We impose the constraint Q = qk. Concate-
nated codes can be looked at as applying E1 to a message m, obtaining a codeword u ∈ FNQ . One can
then interpret u as a vector (u1, . . . , uN) ∈ FNqk by splitting it coordinate-wise into individual elements
ui ∈ FQ ≡ Fqk . Now one applies E2 to each ui to get a vector v = (v1, . . . , vn), with E2(ui) = vi. Using
the right representation, one can ensure that the concatenation of linear codes is still a linear code. The
resulting code is thus an [Nn,Kk,Dd]q code. Showing the minimum distances multiply was done in
Lecture 6.

Suppose (v1, . . . , vn) is transmitted across a noisy channel and (r1, . . . , rn) is the received vector. To
decode we can imagine first decoding the the inner code to obtain a vector (y1, . . . , yn) and then inter-
preting the vector as an element in FNQ and then decoding the outer code. In the codes we have considered
so far, the outer code is usually some well-studied code like the RS code for which we can apply efficient
decoding algorithms. The inner code, although less understood, is a very small code so we can just use
brute force to decode, enumerating all possible messages yi, and finding argminyi∆(E2(yi), ri). Since
the inner code is small, the time this takes is polynomial in the length of the concatenated code, and
hence so is the entire decoding algorithm.

Unfortunately the number of errors this decoding algorithm can correct is < dD
4 . This is because

to fail in the outer decoding step, we only need D
2 i’s such that yi 6= ui. Then, for each location i, we

only need d
2 errors in the transmission of vi so that yi 6= ui. Thus a total of dD

4 errors may lead to
a decoding failure. One can reverse this argument to show the above decoding algorithm does in fact
correct at least (d− 1)(D − 1) errors.

We now restrict our attention to Forney codes. Forney was able to improve upon this decoding al-
gorithm by making the observation that the outer code can benefit from correcting both erasures and
errors instead of only errors.

Proposition 1 Suppose C1 is an [N,N − D + 1, D]Q RS code. Suppose r ∈ (FQ ∪ {?})N is a vector
derived from a codeword c ∈ C1 with e errors and s erasures. Then c can be recovered efficiently given
r, e, and s as long as 2e+ s < D.

Proof Removing s coordinates of C results in an [N − s,N − D + 1, D − s] RS code, from which
D−s−1

2 errors can be corrected efficiently. The proposition follows.

As we brute force decode ri into yi, if there are too many errors in ri, we will just replace the ith
coordinate with ? instead of correcting it. At what point are there too many errors? Certainly if there
are more than d

2 errors we should erase. Forney devised a probabilistic decoding algorithm for the case
when the number of errors between ri and the encoding of the nearest codeword yi, ∆(ri, E2(yi)), is
ei with 0 ≤ ei ≤ d

2 . We will denote the actual number of errors between ri and vi as e′i. As a minor
note, for most codes, the nearest codeword c to a received vector r can in fact be such that ∆(c, r) > d

2 ,
although for the Hamming code this was not the case.

The randomized algorithm of Forney is:

12-3

Input: Received vector r

1. For 1 ≤ i ≤ n, brute-force decode ri into yi, i.e., find yi such that ∆(ri, E2(yi)) is as small as
possible for all i.

2. For each i, set yi =? with probability min(1, 2ei
d).

3. Perform an error and erasure decoding algorithm on (y1, . . . yn) to obtain and output m′ (note
that the algorithm is only required to be correct for # errors = Σe′i <

Dd
2).

The above algorithm is actually linear time in the length of the concatenated code NnQ and in the time
taken to perform error and erasure decoding. We propose the following:

Proposition 2 Let Ei be an indicator variable which is 1 iff you get an error in the ith coordinate. Let
Si be an indicator variable which is 1 iff you get an erasure in the ith coordinate. Let E = ΣiEi and
S = ΣiSi. If Σie′i <

Dd
2 , then E[2E + S] < D, where E[X] denotes random variable X’s expectation.

Proof By linearity of expectations, it suffices to prove E[2Ei + Si] <
e′i
d
2

. By definition, E[Si] = ei
d
2

.

Hence it suffices to prove E[Ei] ≤
(
e′i−ei
d
2

)
1
2 = e′i−ei

d . Now if yi = ui, then Pr[error in position i] =

0 = E[Ei] ≤ e′i−ei
d since e′i ≥ ei. On the other hand, if yi 6= ui, then e′i = ∆(vi, ri) ≥ ∆(vi, E2(yi)) −

∆(ri, E2(yi)) ≥ d− ei. Hence in this case,

E[Ei] = 1− ei
d
2

=
d− 2ei
d

=
d− ei − ei

d
≤ e′i − ei

d
,

concluding the proof.

Note that we have just shown the desired result in expectation. Rather than achieving a high proba-
bility result, we can instead derandomize the above algorithm. The algorithm is trivial to derandomize
since linearity of expectations holds regardless of any dependencies amongst the Ei, Si. Hence, to de-
randomize, we choose a threshold τ and in Step 2 we simply set yi =? if 2ei

d > τ . By the probabilistic
method we know there exists a τ such that E[2E + S] < D. Note that we can just choose τ in the set
{0, 1} ∪ { 2ei

d |1 ≤ i ≤ N}. This is because for any other value of τ , our algorithm will output a vector
m′ which is the same for some τ ∈ {0, 1} ∪ { 2ei

d |1 ≤ i ≤ N}

Hence, we have a deterministic decoding algorithm for Forney codes that runs in polynomial time,
solving the unambiguous decoding problem. Note that Forney was not working in the adversarial model.
Instead his goal was to correct errors when every transmitted bit is flipped with some probability p.
Working in the Shannon model, he needed a code of rate 1−H(p)− ε and a decoding error probability
of 2−ε

2n. With an inner code [n, n(1 − H(p) − ε
2), (p + ε

10)] of rate 1 − H(p) − ε
2 , and an RS outer

code [N,N(1 − ε
2), εN2], one gets a terrible relative minimum distance. Forney devised a scheme which

achieves polynomial time encoding, polynomial time decoding, and rate arbitrarily close to the channel
capacity in the Shannon model using concatenated codes.

4 References

• Rui Fan’s notes for Lecture 11 of this year’s version of the course.

• Matt Lepinski’s notes for Lecture 11 of the 2001 version of this course.

[1] Oded Goldreich, Dana Ron, and Madhu Sudan. Chinese remaindering with errors. IEEE Transactions
on Information Theory, 46(5):1330-1338, July 2000. Extended version appears as ECCC Technical
Report TR98-062 (Revision 4), http://www.eccc.uni-trier.de/eccc

12-4

