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1 Introduction

In this lecture, we present a local decoding algorithm and a local list-decoding algorithm for Reed-
Muller codes. These algorithms are very interesting, since they played a significant role in many
developments in complexity theory over the past two decades. For example, these algorithms were
used in the following results.

• “The permanent of a matrix is hard to compute on random matrices”, due to Lipton [11].
(This result makes use of a simple unambiguous decoding algorithm for Reed-Muller codes
implicit, in Beaver and Feigenbaum [6]).

• “IP = PSPACE [12, 14]”, “MIP=PSPACE [4]” and the “PCP Theorem [2, 1]”.

• The sequence of results showing progressively weaker complexity-theoretic conditions that
would suffice to show “BPP = P” [13, 5, 10].

The algorithms in today’s lecture are very simple, and do not exploit any serious algebraic property.
The only algebraic elements that the algorithms use are decoding algorithms for Reed-Solomon
codes, and we’ll just adopt them as a black box from a previous lecture.

We’ll describe the algorithms in three steps - first we give an algorithm that decodes from a very
low error rate. Then we show how, using a Reed-Solomon decoder, one can recover from a slightly
larger error rate. Finally, we jump to a list-decoder, which uses a Reed-Solomon list-decoder, and
can recover from a much larger error rate.

Let us first recall the definition of Reed-Muller codes (defined in lecture 4). Recall that these are
the generalization of Reed-Solomon codes to multivariate polynomials.

Definition 1 (Reed-Muller Codes) A Reed-Muller code, RMm,d,q, is the code whose codewords
are evaluations of m-variate polynomials of total degree at most d, over all elements in Fq.

The RMm,d,q code is a linear code with n = qm, k =
(
m+d
d

)
, and with relative distance

(
1− d

q

)
when d ≤ q (follows from the ”Schwartz Lemma”).

For today’s lecture, it is convenient to think of the decoding task as a “function reconstruction task”
rather than as a task of reconstructing a vector or string representing the codeword. We will thus
think of the received word being given by some function f : Fmq → Fq, and our goal is to output a
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codeword (or a list of all nearby codewords), where the codewords are also functions p : Fmq → Fq.
For any two functions f and g, let

δ(f, g) = Pr
x∈Fmq

[f(x) 6= g(x)].

Note that, if f and g are interpreted as strings rather than functions, this is just the standard
Hamming distance normalized so as to be between 0 and 1.

Reed-Muller Decoding:
Given: Oracle access to a function f : Fmq → Fq, a degree parameter d and a disagree-
ment parameter δ.
Task: A (list of all) degree d polynomials p : Fmq → Fq such that δ(f, p) ≤ δ.

We will present randomized algorithms that, given any vector a ∈ F
m
q , compute p(a) in time

poly(m, d, q). Note that the length of the codewords is
(
m+d
d

)
, which could be exponentially larger

than poly(m, d, q), and hence the our algorithms are much more efficient than explicit decoding
algorithms.

2 Decoding from very low error

We start with describing an extremely simple randomized algorithm that recovers from a very low
error rate δ. The amount of error will certainly be small enough to put us in the case of an
unambiguous decoding problem. So the polynomial p that is δ-close to f is unique. Our algorithm
will try to guess the value p(a), by looking at f on a small random sample of values. The trick is in
picking the right “random sample”. We will look at f on a “line” in Fmq .

2.1 Lines in Fmq

Definition 2 The line Fmq through a point a with slope b is the set of points:

`a,b := {a + tb | t ∈ Fq}.

In the definition above, we thought of a line as an unordered set of points. However, it is also useful
to think of a line as a function `a,b : Fq → F

m
q , given by `a,b(t) = a + tb.

Let us point out two nice properties of lines.

1. Randomness Property: The first nice property of a line is its randomness property.

• (Pairwise Independence): A random line through Fmq is a collection of pairwise indepen-
dent points in Fmq . I.e., for t1 6= t2 ∈ Fq, the points `a,b(t1) and `a,b(t2) are distributed
independently and uniformly in Fmq .

• (1-wise Independence): For every a, every non-zero point on a random line through Fmq
is a random point. I.e., for every t ∈ Fq − {0}, the point `a,b(t) is distributed uniformly
in Fmq , when b is distributed uniformly in Fmq .
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2. Algebraic Property: This property alludes to the restriction of functions to lines. Note that
when the line is viewed as a function ` : Fq → F

m
q , then it composes naturally with a function

f : Fmq → Fq to give a “univariate function” f |` : Fq → Fq, given by f |`(t) = f(`(t)).

• For every degree d polynomial p : Fmq → Fq and every line ` : Fq → F
m
q , the function p|`

is a univariate polynomial of degree at most d.

2.2 The algorithm

Our first algorithm for decoding Reed-Muller codes is an elementary algorithm that uses the above
two properties of lines in Fmq . This algorithm, given oracle access to a function f : Fmq → Fq that is
very close to a degree d polynomial p : Fmq → Fq, and given an element a ∈ Fmq , outputs p(a) with
probability greater than, say, 2/3, over its internal coin tosses. Repetition followed by a plurality
vote suffices to reduce this error probability. Once the error probability reduces to say less than
1
3q
−m, then repeating this trial for every choice of a produces the correct codeword with probability

at least 2
3 .

The basic idea to compute p(a) is to focus on just a random line ` through a and to reconstruct
the function p|`. From the algebraic property, p|` is a univariate polynomial of degree d. ¿From the
randomness property, p|` and f |` have good agreement. So p|` can hopefully be recovered efficiently.
Once this is done, all we need to do is output p`(a). Below we describe and analyze the most
elementary form of this idea. In this form, the algorithm only needs q ≥ d + 2 to work. However,
the amount of error it will correct is quite small.

Simple RM decoder:

Given: Oracle access to f : Fmq → Fq, a point a ∈ Fmq and a degree parameter d.

Promise: There exists a degree d polynomial p : Fmq → Fq such that δ = δ(p, f) ≤ 1
3(d+1) .

Goal: Output p(a).

Step 1: Pick b←Fmq at random and let ` = `a,b.

Step 2: Let α1, . . . , αd+1 be distinct elements in Fq − {0}. For i ∈ [d+ 1], let βi = f(a + αib).

Step 3; Interpolate to find a degree d univariate polynomial h such that h(αi) = βi for every
i ∈ [d+ 1].

Step 4: Output h(0).

Note that Step 2 above requires q ≥ d + 2. We will show below that this requirement suffices for
correctness, provided the error is small enough.

Lemma 3 Under the assumption δ = δ(f, p) ≤ 1
3(d+1) , the algorithm Simple RM decoder outputs

p(a) with probability at least 2
3 .

Proof We define d + 1 “bad” events Bi over the random choice of b. We show that if none of
these events occurs, then the algorithm correctly outputs p(a). Then we show that the probability
that none of these events occurs is at least 1 − (d + 1)δ. Note that the Lemma follows once this is
shown.
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We define the event Bi to be the case “βi 6= p|`(αi)”. Note that if none of these events occur, then
we know the value of the function p|`(·) at d + 1 distinct values in Fq. Furthermore, the algebraic
property implies that p|` is a polynomial of degree at most d. Thus, the polynomial h found in Step
3 is the function p|`, and hence the value output in Step 4 is p|`(0) = p(`(0)) = p(a). So it suffices
to bound the probability of the bad events.

Note that Bi happens if and only if f(`(αi)) 6= p(`(αi)). The randomness property implies that
`(αi) is a random point in Fmq and hence the probability that f does not agree with p at this point is
exactly δ(f, p). Thus, we have that the probability of Bi is δ. By the union bound, the probability
that at least one of the bad events occurs is at most (d + 1)δ. The probability that none of them
occurs is at least 1− (d+ 1)δ. This concludes the proof.

Note that the algorithm is quite efficient — it runs in time poly(m, d), while the codeword has length(
m+d
d

)
which could be exponentially larger. Of course, it does not recover all the codeword at once

— this is simply impossible in this much time; but it can recover any coordinate of the codeword in
such time.

Note that with the following choice of parameters, we get a Reed-Muller code with polynomial rate
and constant distance, that can correct a poly-logarithmic fraction of errors.

• d = (lg k)c

• m = lg k
(c−1) lg lg k

(Verify that
(
d+m
m

)
≈ k).

• q = 2(d+ 2)

• n = qm ≈ (2d)m ≈ k1+ 1
c−1

3 Improving the error-correction capability

We would like to improve the error-correction capability of the simple algorithm described in the
previous section. Increasing the error-correction capability comes at a price: The requirement on
the field size goes up, and the algorithm gets slightly more complicated.

To motivate the basic idea behind the improvement, let us look back at the reason why the error
correction capability was so low (Θ(1/d)) in the algorithm of the last section. The reason we lost so
much was that we required that d + 1 queries on a random line through a should all be error-free.
To improve the performance, we will make a few more queries, but then allow for the possibility
that a few answers are incorrect. The polynomial p|` will then be the polynomial that “usually”
agrees with the queried values — this polynomial can be found by a Reed-Solomon decoding step.
The number of queries that the algorithm makes depends on the rate of error we wish to correct, on
the running time we desire, and on the field size. We will set this number, somewhat arbitrarily, to
5(d+ 1) and demonstrate the effect.

Improved RM decoder:

Given: Oracle access to f : Fmq → Fq, a point a ∈ Fmq and a degree parameter d.
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Promise: There exists a degree d polynomial p : Fmq → Fq such that δ = δ(p, f) < 1
5 .

Goal: Output p(a).

Step 1: Pick b←Fmq at random and let ` = `a,b.

Step 2: Let α1, . . . , α5(d+1) be distinct elements in Fq−{0}. For i ∈ [5(d+1)], let βi = f(a+αib).

Step 3; Find a degree d univariate polynomial h such that h(αi) = βi for at least 3(d+ 1) choices
of i ∈ [5(d+ 1)].

Step 4: Output h(0).

All steps above are efficient. In particular, Step 3 can be executed in poly(d) time by using an
unambiguous Reed-Solomon decoding algorithm (such as the Welch-Berlekamp algorithm described
in a previous lecture). We thus get the following proposition.

Proposition 4 Improved RM decoder runs in poly(d,m) time.

Lemma 5 Under the assumption δ = δ(f, p) < 1
5 , the algorithm Simple RM decoder outputs

p(a), with probability greater than 1
2 .

Proof As in the proof of Lemma 3, we define for every i ∈ [5(d + 1)], Bi to be the event
“βi 6= p|`(αi)”. Note that for every i the probability of Bi is exactly δ. Now let B be the event that
Bi is true for more than 2(d+ 1) choices of i. The probability that B occurs can be upper bounded,
using Markov’s inequality, by 5δ(d+ 1)/2(d+ 1) = 5δ/2. Note that if B does not occur, then p|`
agrees with the points {(αi, βi) | i ∈ [(5(d+1)]} on 3(d+1) points and hence is the unique solution
in Step 3, and thus, in Step 4 we output p|`(0) = p(a). Hence, to achieve error probability less than
1
2 , we need 5δ/2 < 1/2, which happens for δ < 1/5.

The ideas in the algorithm above can be pushed further to get a decoding algorithm for δ < 1/4. It
is known that we cannot achieve a decoding algorithm for δ ≥ 1/4, using Markov’s inequality.

4 A List Decoding Algorithm

Part of the reason why the algorithms from the previous section could not correct too many errors
is that they never exploited the ability to list-decode the Reed-Solomon codes (in Step 3). If we
did, we would be able to find polynomials with much smaller agreement with f on any given line `.
However, what should we do with a list of univariate polynomials that agree with f on `? How do
we find out which one is the polynomial “p”? In fact, what is p? In previous sections p was uniquely
specified as the nearest polynomial (codeword) to the function f (the received vector). Now that
we are hoping to perform list-decoding, there is a list of polynomials that could have the desired
agreement.

We will solve this problem by focussing on one of the specific polynomials p that is close to f . This
will be done by giving a small amount of additional information, called advice, that suffices to specify
it uniquely. We will then give a reconstruction procedure that computes p(a) given a. By varying
the advice, we’ll then be able to compute all the polynomials close to f .
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So what is the advice that we’ll use to specify p? It turns out that with high probability, the value
of p at one, randomly chosen point b ∈ Fmq , specifies it uniquely, provided q is large enough relative
to δ and d. As usual, when it comes to list-decoding, it is more informative to focus on the amount
of agreement rather than the amount of disagreement between f and the polynomial p. Define

τ(f, g) = Pr
x←Fmq

[f(x) = g(x)]

to be the agreement between f and g. We start with the following simple proposition that proves
that, with high probability, the value of a polynomial at a random point specifies it uniquely, given
a nearby function f .

Proposition 6 Let p1, . . . , pn be a list of all m-variate degree d polynomials over Fq satisfying
τ(f, pi) ≥ τ . If τ ≥

√
2d/q then n ≤ 2/τ , and with probability at least 1−

(
n
2

)
(dq ) ≥ 1− 2d

τ2q over the
choice of z ∈ Fmq it is the case that the sequence of elements 〈p1(z), . . . , pn(z)〉 are all distinct.

Proof The first part of the proposition, claiming n ≤ 2/τ is just recalling the Johnson bound
from a previous lecture. The second part follows from an application of the union bound to the

(
n
2

)
possible “bad” events Bij , 1 ≤ i < j ≤ n, where Bij is the event “pi(z) = pj(z)”. Note that Bij
occurs with probability at most d

q (by the “Schwartz Lemma”).

This motivates the idea of the next algorithm. We will assume that we are given one useful piece
of information — namely the value of p at one (randomly chosen) point z ∈ Fmq . Say p(z) = γ.
Now suppose we wish to reconstruct the value of p at a ∈ Fmq . We will execute the algorithm of the
previous section and pick a line ` through a. Suppose we are fortunate enough that z lies on `. In
this case, given a list of polynomials h1, . . . , hn that have non-trivial agreement with f on `, we can
determine which one is p|` by considering the values hi(z). Hopefully they are all different and then
the polynomial hi for which hi(z) = γ is p|`. hi(a) is then the value we are seeking. The only catch
is that a random line will no longer work - it is very unlikely to pass through z. We will fix this
by deterministically picking the line that passes through z! The algorithm is described for a fixed
choice of z and advice γ.

List-decoding procedure Az,γ

Given: Oracle access to f , a point a ∈ Fmq , a degree parameter d, and an agreement parameter τ .

Step 1: Let b = z− a and let ` = `a,b. (Note that `(0) = a and `(1) = z).

Step 2: Find all degree d univariate polynomials h1, . . . , hn such that hi(α) = f(`(α)) for at least
τ
2 q choices of α ∈ Fq.

Step 3: If there exists a unique index i ∈ [n] such that hi(z) = γ, output hi(0), else output error.

We start by noticing that all steps require a polynomial running time, provided the parameters are
favorable. In particular, Step 2 can be executed in polynomial time assuming τ

2 >
√
d/q using the

improved List-decoding algorithm for Reed-Solomon codes from a previous lecture.

Proposition 7 If τ >
√

4d/q then the subroutine Az,γ runs in time poly(q,m).
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Next we analyze the correctness of the algorithm. Note that Az,γ is a deterministic algorithm. We
will analyze it only for a random a. That is, We show that for a random pair (z,a), if τ(p, f) ≥ τ ,
then the algorithm Az,p(z) is very likely to output p(a). We conclude that there exists a vector z
(in fact most choices would work) such that Az,p(z) computes a function very close to p. This is
not what we want — we want an algorithm that always computes p. However the algorithms of
the previous section can now be applied to Az,p(z) to get a randomized algorithm that computes p
correctly everywhere with high probability. Thus, the following lemma will be quite sufficient for
our purposes.

Lemma 8 Let p be a polynomial which agrees with f on a τ fraction of the inputs. Then, for any
ε > 0, and for random z,a ∈ Fmq , Az,p(z) outputs p(a) with probability at least 1 − ε, assuming
q ≥ 16(d+1)

τ2ε .

Proof As in previous proofs, we describe some bad events and then claim that if none of the bad
events occur, then the algorithm Az,p(z) outputs p(a). Our first bad event B is the event that “p
and f have less than τ/2 agreement on `”. Let h1, . . . , hn be all univariate polynomials that have
τ/2 agreement with f |`. The second bad event, C, is the event that there exists a pair 1 ≤ i < j ≤ n
such that hi(z) = hj(z). We show below that if neither B nor C occurs, then the algorithm Az,p(z)

outputs p(a). Later we give upper bounds on the probabilities of B and C.

Claim 9 If neither of the events B or C occurs, then Az,p(z) outputs p(a) on input a.

Proof This is relatively straightforward. Since the event B does not occur, we have
that the polynomial p|` has at least τ/2 agreement with f on the line `. Thus, one of the
polynomials h1, . . . , hn computed by Az,p(z) in Step 2 is p|`. Say it is the polynomial hi.
Then hi(z) = p(z). But since the event C did not occur, we know that hj(z) 6= hi(z) for
any other index j. Thus, hi is the unique polynomial satisfying the condition of Step 3
and hence Step 3 results in the output hi(0) = p(a).

Claim 10 The probability of event B, taken over the choices of z and a, is at most 4
τq .

Proof This is a simple application of the Chebychev inequality. Since ` is a random
line (for random z,a ∈ Fmq ), the randomness property implies that the points in the line
` are distributed uniformly over Fmq and are pairwise independent. On any one point, the
probability that f agrees with p is τ . Thus, the expected number of agreements between
f and p on all q points in ` is τq. Since these q points are pairwise independent, using
the Chebychev inequality, we derive that the probability that this number deviates from
its expectation by half the expectation is bounded by 4

τq .

Claim 11 The probability of event C, taken over the choice of z and a, is at most 8d
τ2q ,

provided τ > 2
√
d/q.

Proof The claim would be obvious, following immediately from Proposition 6, if z was
chosen to be a random point on line ` after the line is fixed. But this is not the case! Or
is it?

In the way the algorithm is described, a and z are chosen first and then ` is defined
based on them. However we could pick ` at random first, and then choose a and z at
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random from `. Let h1, . . . , hn be all the univariate polynomials that have η
2 agreement

with f |`. Thus, the probability, when we pick z at random from `, that hi(z) = hj(z)
for some distinct pair i, j is at most 8d

τ2q (applying Proposition 6 in the univariate case
with agreement set to τ/2). The claim follows.

We are now ready to glue together the proof of the lemma. We will pick q large enough so that the two
events above happen with probability at most ε/2 each. Thus we get the condition q ≥ max{ 8

τε ,
16d
τ2ε}.

To make this simpler we set q ≥ 16(d+1)
τ2ε . Once we have this condition we find that the probability

that B or C occurs is at most ε and with the remaining probability Az,p(z) outputs p(a).

5 Bibliographic Notes

The simple algorithm for decoding Reed-Muller codes from Section 2 is based on an algorithm of
Beaver and Feigenbaum [6], whose ability to decode all polynomials was pointed out by Lipton [11].
The improvement in Section 3 is due to Gemmell et al. [8]. Further improvements to this algorithm,
decoding arbitrarily close to half the minimum distance for q � d were given by Gemmell and
Sudan [9]. The list-decoding algorithm in Section 4 is due to Sudan, Trevisan, and Vadhan [15].
This algorithm simplifies a previous list-decoding algorithm of Arora and Sudan [3].
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