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Overview:

• Linear time encodable and decodable codes.

• Shannon capacity with linear time algorithms.

1 Introduction

Graph-based codes were presented in the previous lecture. A linear time decoding algorithm was pre-
sented for this codes, but encoding may take quadratic time. Now, we are interested in efficient, linear
time encodable and decodable codes. Analogous to the idea of sparse parity-check matrices, the encoding
could be faster if the generator matrix were sparse, but in this case it can’t be a good error correcting
code: if the generator matrix has at most c ones per row (for small c), then changing ith bit of the
message changes at most c bits of its encoding.

Spielman’s family of codes achieves linear time encoding and decoding, and will be described in the
following notes.

2 Error reducing code

A sparse generator matrix cannot provide a good error correcting code but can provide an error reducing
code, that is, and encoding and decoding procedure such that, under suitable hypothesis, can reduce the
number of errors (but not necessarily correct all of them). In this case, it is possible to get linear time
encoding and decoding.

For a message length k, instead of specifying directly the generator matrix, we will specify a bipartite
graph G with k left nodes and k/2 right nodes. The associated generator matrix will be:

G :=
[
I Ag

]
,

where I is the k× k identity and Ag is the k× k/2 adjacency matrix of the graph G. The first k bits of
the encoding are the message itself, the last k/2 bits are the check bits. This code will be denoted Rk.

Note that there is a fundamental difference between the meaning of this graphs and the graphs in
the previous lecture. In both cases the left nodes are labelled with the bits of the message. Previously,
the right nodes represented constraints over the left nodes, in this case the right nodes are labelled with
check bits that are computed from the parity of their (right) neighbors.

If the degree of the left nodes is at most c, then the minimum distance is at most c + 1 (a one-bit
change in the message flips 1 message bit and at most c check bits).

It is easy to see that this codes can be encoded in time O(k). If we use a slightly modified version of
the flip algorithm of the previous lecture, we can achieve linear time error-reduction. In terms of the
previously defined flip algorithm, an unsatisfied right vertex in this case is one with a label different to
the parity of its neighbors.

The following lemma states in a precise way the error-reducing capability of Rk:

Lemma 1 Assume that the bipartite graph G, with k right nodes, is (c, c′)-regular and (γ, δ)-expander,
and suppose that the original encoding, (m, c), and the encoding with errors, (x, y), are (a, b)-close, that
is ∆(m,x) ≤ a and ∆(c, y) ≤ b. Suppose also that a(c + 1) + b ≤ δk, γ ≥ 7c/8, and c ≥ 8. Then flip

terminates and outputs a word that differs from m in at most b/2 bits. Moreover, flip takes time O(k).
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Proof Denote S = {i : mi 6= xi}, T = {i : ci 6= yi}. For every iteration, the algorithm flip decreases
in at least one the number of unsatisfied constraints, which is at most ca+b. Then, the algorithm finishes
with some word x′ such that ∆(x′,m) ≤ ∆(x,m) + ca+ b ≤ a+ ca+ b ≤ δk. Denote S′ = {i : mi 6= x′i},
then |S′| ≤ δk. Because G is an expander, |Γ1(S′)| ≥ (2γ − c)|S|. Denote U the set of unsatisfied right
nodes, at the end of the algorithm. In this situation, every left vertex has at most c/2 unsatisfied right
neighbors, thus |U | ≤ |S′|c/2. On the other hand, Γ1(S′) − T ⊆ U , then |U | ≤ (2γ − c)|S′| − b. The
combination of both inequalities for |U | implies (2γ − 3c/2)|S′| ≤ b. This inequality and the hypotheses
give immediately |S′| ≤ b/2.

3 Spielman’s error-correcting code

Denote Ck the Spielman’s code for messages of length k. This code will be defined recursively in terms
of error-reducing codes and Spielman’s codes for shorter messages. The intuitive idea is to take into
account the fact that the codes Rk can be error-correcting and efficient if we are able to protect the
check bits from errors. A key step in achieving this is to encode the check bits with a Spielman’s code
of smaller message length.

More precisely, given a message of length k, its Ck-encoding has length 4k. The first 3k/2 bits of
the encoding are the result of Rk applied to the message, that is, the first k bits of the encoding are the
message itself (this bits are denoted Mk) and the next k/2 bits are the check bits (denoted Ak). This k/2
check bits are encoded with Ck/2 to provide the next 3k/2 check bits (denoted Bk). Finally, (Ak, Bk),
the 2k bits that are the result of this Ck/2-encoding, are encoded with R2k to provide k additional check
bits (denoted Dk). The rate of Ck is 1/4.

For the encoding time of Ck, it is clear that Rk-encoding takes time O(k). Then, if TE(k) is the
encoding time of Ck, we have

TE(k) ≤ O(k) + TE(
k

2
) +O(k).

This implies that TE(k) = O(k).
A decoding algorithm for Ck is:

1. Run flip on (Ak, Bk, Dk) (the last 3k bits) until it stops to obtain (A′k, B
′
k).

2. Recursively decode the result of the previous step (A′k, B
′
k) with Ck−1 to obtain A′′k .

3. Run flip on A′′k , the result of the previous step, to recover message.

For the decoding time of Ck, steps 1 and 3 take linear time. Then, if TD(k) is the decoding time of
Ck, we have:

TD(k) ≤ O(k) + TE(
k

2
) +O(k).

This implies that TE(k) = O(k).
About the effectiveness of the decoding of Ck, suppose that we allow at most εk errors. After step 1,

the number of errors in (A′k, B
′
k) is less that or equal to εk

2 . By inductive hypothesis, this implies that
step 2 will recover Bk without errors. Because this are the check bits of Rk for the original message,
this implies that algorithm flip will recover the message Mk without errors in step 3.1

4 Modification to Spielman’s codes to handle a tiny fraction of
errors with small overhead

It is possible to modify Spielman’s codes to have a rate better than 1/4, if we reduce the error-correction
capability appropriately, while we retain the linear encoding and decoding property. The idea is to

1In fact, the same argument and conclusion applies if we allow 3εk errors, distributed in the following way: εk errors in
Mk, the message, εk errors in (Ak, Bk), and εk errors in Ck.
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compute few check bits in the first step: instead of k/2 check bits we consider αk bits, for small α,
0 < α < 1. Then we protect this check bits with Cαk, and add additional check bits as in the low-rate
case. This code has an ε > 0 fraction of errors correcting capability, such that α→ 0 as ε→ 0.

5 The Random Errors Case

Consider now the case of random errors that flip every bit independently with probability p, that is,
BSCp. We will construct a code based on Forney’s idea, that is, composition, but instead of considering
the Reed-Solomon codes as the outer code we will consider a high-rate Spielman’s code (as described in
the previous section), that can correct an ε fraction of (adversarial) errors and has rate 1 + f(ε), with
f(ε) → 0 as ε → 0. The inner code takes blocks of length c (independent of the message length k) and
gives encoded blocks of length c′, c ≈ (1−H(p))c′. The encoded length is

n :=
k(1 + f(ε))
1−H(p)

.

The inner code is decoded by maximum likelihood decoding, that is, in constant time. Because of a
Chernoff-bound argument (or Shannon’s theorem), the probability of decoding error in a particular block
after inner decoding is very small. Thus, with high probability the outer code is able to correct this
errors.

The main conclusion of this argument is that we can achieve correction of random errors up to
Shannon’s bound with linear time encoding and decoding.
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