
6.897 Algorithmic Introduction to Coding Theory November 27, 2002

Lecture 21

Lecturer: Madhu Sudan Scribe: Deniss Čebikins

1 Applications of error-correcting codes

Since the main purpose of computers is to manipulate information, it is clear that every
computer must have some information preserving capabilities. The original motivation
for studying error-correcting was to develop methods of protecting data from occasional
transmission errors. Recent progress in coding theory revealed quite fascinating applications
of these codes to other areas in computer science and mathematics. In this lecture, we take
a look at how certain combinatorial properties of error-correcting codes can be used in
solving seemingly unrelated problems.

2 Communication complexity

Suppose that Alice has a string x ∈ {0, 1}k and Bob has a string y ∈ {0, 1}k. They want
to find the value of f(x, y) for some boolean function f : {0, 1}k × {0, 1}k → {0, 1} which
is known to both of them. For example, if they want to determine whether their strings x
and y are equal, then f is the function EQ defined by

EQ(x, y) =
{

1, if x = y,
0, if x 6= y.

Alice and Bob also want to minimize the number of bits they need to send to each
other in order to compute f(x, y). For now, assume that the interaction occurs according
to a certain deterministic procedure, which we call a protocol, in which each message that
Alice (resp. Bob) transmits depends only on x (resp. y) and the previous messages. More
formally, a protocol can be described as follows:

- First, Alice computes a1 ← A1(x) and sends it to Bob;

- Bob computes b1 ← B1(y, a1) and sends it back to Alice;

- Alice computes a2 ← A2(x, a1, b1) and sends it to Bob;

- Bob computes b2 ← B2(y, a1, b1, a2) and sends it to Alice;

- Etc.
Here A1, A2, . . . , and B1, B2, . . . , are sequences of deterministic algorithms modeling

Alice’s and Bob’s behavior, respectively. We require that the lengths |ai| and |bi| of messages
transmitted at each step depend only on the protocol P . We also require that once a person
determines f(x, y), he or she sends it to the other person at the last step of the protocol.

For a fixed k, let the size of a protocol P be the maximum total number of bits, over
all possible pairs x, y ∈ {0, 1}k, that Alice and Bob transmit during the execution of the

21-1

protocol. We define the communication complexity of a boolean fuction f , denoted CC(f),
to be the smallest size of a protocol at the end of which both parties know f(x, y).

An easy way to find f(x, y) in this scenario is to have Alice send to Bob the entire string
x, and then have Bob compute f(x, y) and send the obtained value back to Alice. In this
protocol, a total of k + 1 bits is transmitted. Thus, we get a bound

CC(f) ≤ k + 1

valid for all boolean functions f .
It is natural to ask if the above bound is tight. That is, is there a function f whose

communication complexity is exactly k + 1? The answer is “yes”; moreover, the equality
function EQ(x, y) has this property.

Proposition 1 CC(EQ) = k + 1.

Proof Suppose some protocol P = (A1, B1, A2, B2, . . .) of size at most k determines
EQ(x, y). Then the interaction history (a1, b1, a2, b2, . . .) before one of the parties deter-
mines EQ(x, y) can take at most 2k−1 values. Since there are 2k strings in {0, 1}k, there
exist distinct strings x, x′ ∈ {0, 1}k such that running P on inputs (x, x) and (x′, x′) pro-
duces the same interaction history (a1, b1, . . .). Consider the interaction history (a′1, b

′
1, . . .)

resulting from running P on input (x, x′). We get

a′1 = A1(x) = a1

b′1 = B1(x′, a′1) = B1(x′, a1) = b1

a′2 = A2(x, a′1, b
′
1) = A2(x, a1, b1) = a2

. . .

Thus running P on (x, x′) produces the same interaction history as running P on (x, x), so
we must have EQ(x, x′) = EQ(x, x), which is a contradiction. We conclude that CC(EQ) =
k + 1.

3 Probabilistic communication complexity

Let us modify the scenario of the previous section by allowing Alice and Bob to generate
random bits in private. That is, the parties are permitted to use random bits in producing
messages, but they are not allowed to share these random bits with the other party.

This modification is useful only if we make our requirement of Alice and Bob determining
f(x, y) somewhat less restrictive. For this reason, let us accept the following in this scenario:
a probabilistic protocol described above determines the function f if for any x, y ∈ {0, 1}k,
the probability that the parties compute f(x, y) at the last step correctly is at least 2/3. We
define the probabilistic communication complexity of a boolean function f , denoted PCC(f),
to be the size of a smallest probabilistic protocol that determines f .

It turns out that probabilistic communication complexity of a boolean function can be
significantly smaller than its “regular” communication complexity. Again, we consider the
example of the equality function EQ(x, y).

21-2

Consider the following probabilistic protocol:

- Alice chooses an index i ∈ {1, 2, . . . , k} at random and sends (i, xi) to Bob (here xi
denotes the i-th bit of x);

- Bob sends 1 to Alice if xi = yi, and 0 otherwise.

Clearly, if x = y, then Bob always sends the correct value of EQ(x, y) to Alice at the
last step. If x 6= y, then Bob sends the correct value of EQ(x, y) if x and y differ in the i-th
bit, which is true with probability of at least 1/k.

This is not quite meeting our goal, but we can use error-correcting codes to enhance the
above construction and design small size probabilistic protocols determining EQ.

Proposition 2 PCC(EQ) = O(log k).

Proof Let E : {0, 1}k → F
3k
q be the encoding function of a Reed-Solomon [3k, k, 2k]q-

code, where q is slightly greater than 3k. Consider the following probabilistic protocol:

- Alice chooses an index i ∈ {1, 2, . . . , 3k} at random and sends (i, E(x)i) to Bob, where
E(x)i denotes the i-th coordinate of E(x) (we regard F3k

q as a 3k-dimensional vector space
over Fq);

- Bob sends 1 to Alice if E(x)i = E(y)i, and 0 otherwise.

If x = y, then Bob always sends the correct value of EQ(x, y) to Alice at the last step.
If x 6= y, then E(x) and E(y) differ in at least 2k out of 3k coordinates, so the probability
that E(x) and E(y) differ in the i-th coordinate and hence Bob sends the correct value of
EQ(x, y) to Alice is at least 2/3, as desired.

It remains to compute the number of bits transmitted in the above protocol. We need
log 3k bits to transmit i, and since E(x)i ∈ Fq, we need log q ≈ log 3k bits to transmit
E(x)i. Finally, Bob transmits one more bit at the last step, so

PCC(EQ) ≤ log 3k + log q + 1 = O(log k).

We conclude the section by considering the scenario in which Alice and Bob share their
random bits. In this case, Alice and Bob are first given the function f . Then, they generate
a random string s together. Afterwards, Alice is given x and Bob is given y, and they
determine f(x, y) according to a deterministic protocol in which they are allowed to use
their knowledge of s.

It is clear that in this scenario, Alice and Bob can determine EQ(x, y) by transmitting
O(log k) bits using the protocol of the above proposition; the only difference is that the
index i is generated by the two parties together rather than by Alice alone. We can also
increase the efficiency of the protocol since the index i does not need to be transmitted.
If we choose a binary code with relative minimum distance of at least 2/3, then Alice and
Bob need to transmit only two bits, namely, E(x)i and the bit sent by Bob at the last step.

21-3

4 Secret sharing

In this section, we discuss an application of error-correcting codes to the problem of secret
sharing. Suppose we have a piece s of secret information, and we want to “spread” this
information across n parties, p1, . . . , pn. We do so by generating a random string r and
letting the party pi know the value of si = fi(s, r), where fi is a function which is up to us
to define. We want our secret sharing scheme to satisfy two basic properties:

- Secrecy: no subset {pi1 , . . . , pit} of t parties can determine s from their shares si1 , . . . ,
sit of the secret;

- Recovery: every subset {pi1 , . . . , piT } of T parties can determine s from their shares
si1 , . . . , siT of the secret.

Here 1 ≤ t < T ≤ n are fixed parameters. The following construction due to Shamir
achieves the desired properties in the “ideal” case T = t + 1. The secret information s in
this construction is an element of the field Fq.

- Given s, choose non-zero elements α1, . . . , αt of Fq and distinct elements β1, . . . , βn
of Fq;

- Set p(x) = αtx
t + . . .+ α1x+ s and si = (βi, p(βi)).

We omit the proof of the validitiy of this scheme. Instead, we consider another scheme,
which is also constructed using an error-correcting code.

Let C be a linear [n+ 1, k, d]q-code. Consider the following secret sharing scheme (s is
a member of the alphabet of C):

- Choose a codeword (c0, c1, . . . , cn) ∈ C such that co = s;

- Set si = ci.

Any T parties can recover s from their shares of the secret if it is possible to decode a
codeword with n+1−T erasures (one erasure at c0, and n−T more erasures corresponding
the other n− T parties). Such decoding is possible if n− T + 1 < d.

It can also be shown that if the code C⊥ dual to C has minimum distance ∆, then no
subset of ∆− 2 parties can determine s from their shares of the secret.

Thus, if n − T + 1 ≤ d − 1 and t ≤ ∆ − 2, then the above secret sharing scheme has
the desired properties. To show that the two conditions can be satisfied in the “ideal” case
T = t + 1, let C be a Reed-Solomon [n + 1, t + 1, n − t + 1]q-code. Then its dual is an
[n + 1, n − t, t + 2]-code. Thus, ∆ = t + 2 and d = n − t + 1 = n − T + 2, so the above
conditions are satisfied.

21-4

