This week’s Topics

Shannon’s Work.
- Mathematical/Probabilistic Model of Communication.
- Definitions of Information, Entropy, Randomness.
- Noiseless Channel & Coding Theorem.
- Noisy Channel & Coding Theorem.
- Converse.
- Algorithmic challenges.

Detour from Error-correcting codes?

Goals/Options

- Noiseless case: Channel precious commodity. Would like to optimize usage.
- Noisy case: Would like to recover message despite errors.
- Source can “Encode” information.
- Receiver can “Decode” information.

Theories are very general: We will describe very specific cases only!

Shannon’s Framework (1948)

Three entities: Source, Channel, and Receiver.

Source: Generates “message” - a sequence of bits/ symbols - according to some “stochastic” process \(S \).

Communication Channel: Means of passing information from source to receiver. May introduce errors, where the error sequence is another stochastic process \(E \).

Receiver: Knows the processes \(S \) and \(E \), but would like to know what sequence was generated by the source.

Noiseless case: Example

- Channel transmits bits: \(0 \rightarrow 0, 1 \rightarrow 1 \). 1 bit per unit of time.
- Source produces a sequence of independent bits: \(0 \) with probability \(1 - p \) and \(1 \) with probability \(p \).
- Question: Expected time to transmit \(n \) bits, generated by this source?
Noiseless Coding Theorem (for Example)

Let \(H_2(p) = -(p \log_2 p + (1-p) \log_2(1-p)) \).

Noiseless Coding Theorem: Informally, expected time \(\to H(p) \cdot n \) as \(n \to \infty \).

Formally, for every \(\epsilon > 0 \), there exists \(n_0 \) s.t. for every \(n \geq n_0 \),

\[\exists E : \{0,1\}^n \to \{0,1\}^* \text{ and } D : \{0,1\}^* \to \{0,1\}^n \text{ s.t.} \]

- For all \(x \in \{0,1\}^n \), \(D(E(x)) = x \).
- \(\mathbb{E}_x[|E(x)|] \leq (H(p) + \epsilon)n \).

Proof: Exercise.

Entropy of a source

- Distribution \(\mathcal{D} \) on finite set \(S \) is \(\mathcal{D} : S \to [0,1] \) with \(\sum_{x \in S} \mathcal{D}(x) = 1 \).
- Entropy: \(H(\mathcal{D}) = \sum_{x \in S} -\mathcal{D}(x) \log_2 \mathcal{D}(x) \).
- Entropy of \(p \)-biased bit \(H_2(p) \).
- Entropy quantifies randomness in a distribution.
- Coding theorem: Suffices to specify entropy # of bits (amortized, in expectation) to specify the point of the probability space.
- Fundamental notion in probability/information theory.

Binary Entropy Function \(H_2(p) \)

- Plot \(H(p) \).
- Main significance?
 - Let \(B_2(y,r) = \{ x \in \{0,1\}^n | \Delta(x,y) \leq r \} \) \((n \text{ implied}) \).
 - Let \(\text{Vol}_2(r,n) = |B_2(0,r)| \).
 - Then \(\text{Vol}_2(pn,n) = 2^\left(\frac{H(p) + o(1))n}{n}\right) \).

Noisy Case: Example

- Source produces 0/1 w.p. 1/2.
- Error channel: Binary Symmetric Channel with probability \(p \) (BSC\(_p\)), transmits 1 bit per unit of time faithfully with probability \(1 - p \) and flips it with probability \(p \).
- Goal: How many source bits can be transmitted in \(n \) time units?
 - Can permit some error in recovery.
 - Error probability during recovery should be close to zero.
 - Prevailing belief: Can only transmit \(o(n) \) bits.
Noisy Coding Theorem (for Example)

Theorem: (Informally) Can transmit \((1 - H(p)) \cdot n\) bits, with error probability going to zero exponentially fast.

(Formally) \(\forall \epsilon > 0, \exists \delta > 0\) s.t. for all \(n\):

Let \(k = (1 - H(p + \epsilon))n\). Then \(\exists E : \{0, 1\}^k \rightarrow \{0, 1\}^n\) and \(\exists D : \{0, 1\}^n \rightarrow \{0, 1\}^k\) s.t.

\[
\Pr_{\eta, x}[D(E(x) + \eta) \neq x] \leq \exp(-\delta n),
\]

where \(x\) is chosen according to the source and \(\eta\) independently according to BSC\(_p\).

The Encoding and Decoding Functions

- \(E\) chosen at random from all functions mapping \(\{0, 1\}^k \rightarrow \{0, 1\}^n\).
- \(D\) chosen to be the brute force algorithm - for every \(y\), \(D(y)\) is the vector \(x\) that minimizes \(\Delta(E(x), y)\).
- Far from constructive!!!
- But its a proof of concept!
- Main lemma: For \(E, D\) as above, the probability of decoding failure is exponentially small, for any fixed message \(x\).
- Power of the probabilistic method!

Proof of Lemma

- Will fix \(x \in \{0, 1\}^k\) and \(E(x)\) first and pick error \(\eta\) next, and then the rest of \(E\) last!
- \(\eta\) is Bad if it has weight more than \((p+\epsilon)n\).

\[
\Pr_{\eta}[\eta \text{Bad}] \leq 2^{-\delta n}
\]

(Cheroff bounds).
- \(x'\) Bad for \(x, \eta\) if \(E(x') \in B_2(E(x) + \eta, (p+\epsilon)n)\).

\[
\Pr_{E(x')}[x' \text{Bad for } x, \eta] \leq 2^{H(p+\epsilon)n}/2^n
\]

- \(\Pr_{E}[\exists x' \text{ Bad for } x, \eta] \leq 2^{k+H(p) \cdot n-n}\)

- If \(\eta\) is not Bad, and no \(x' \neq x\) is Bad for \(x\), then \(D(E(x) + \eta) = x\).
- Conclude that decoding fails with probability at most \(e^{-\Omega(n)}\), over random choice of \(E, \eta\) (for every \(x\), and so also if \(x\) is chosen at random).
- Conclude there exists \(E\) such that encoding and decoding lead to exponentially small error probability, provided \(k+H(p) \cdot n \ll n\).
Converse to Coding Theorems

- Shannon also showed his results to be tight.
- For noisy case, $1 - H(p)$ is the best possible rate ...
- ... no matter what E, D are!
- How to prove this?
- Intuition: Say we transmit $E(x)$. W.h.p. # erroneous bits is $\approx pn$. In such case, symmetry implies no one received vector is likely w.p. more that $\binom{n}{pn} \approx 2^{-H(p)n}$. To have error probability close to zero, at least $2^{H(p)n}$ received vectors must decode to x. But then need $2^k \leq 2^n / 2^{H(p)n}$.

Formal proof of the Converse

- η Easy if weight $\leq (p-\varepsilon)n$. $\Pr[\eta \text{ Easy }] \leq \exp(-n)$. For any y of weight $\geq (p-\varepsilon)n$, $\Pr[\eta = y] \leq 2^{-H(p-\varepsilon)n}$.
- For $x \in \{0, 1\}^k$ let $S_x \subseteq \{0, 1\}^n = \{y|D(y) = x\}$. Have $\sum_x |S_x| = 2^n$.
- $\Pr[\text{ Decoding correctly}]$
 \[= 2^{-k} \sum_{x\in\{0,1\}^k} \sum_{y\in S_x} \Pr[\eta = y - E(x)] \]
 \[= \Pr[\eta \text{ Easy}] + 2^{-k} \sum_{x} \sum_{y\in S_x} \Pr[\eta = y - E(x)|\eta \text{ Easy}] \]
 \[= \exp(-n) + 2^{-k} \cdot 2^{-H(p)n} \cdot 2^n \]
 \[= \exp(-n) \]

Importance of Shannon’s Framework

- Examples considered so far are the baby examples!
- Theory is wide and general.
- But, essentially probabilistic + “information-theoretic” not computational.
- For example, give explicit E! Give efficient D! Shannon’s work does not.

More general source

- Allows for Markovian sources.
- Source described by a finite collection of states with a probability transition matrix.
- Each state corresponds to a fixed symbol of the output.
- Interesting example in the original paper: Markovian model of English. Computes the rate of English!
More general models of error

- i.i.d. case generally is a transition matrix from \(\Sigma \) to \(\Gamma \). (\(\Sigma, \Gamma \) need not be finite! (Additive White Gaussian Channel). Yet capacity might be finite.)

- Also allows for Markovian error models. May be captured by a state diagram, with each state having its own transition matrix from \(\Sigma \) to \(\Gamma \).

General theorem

- Every source has a Rate (based on entropy of the distribution it generates).

- Every channel has a Capacity.

Theorem: If Rate < Capacity, information transmission is feasible with error decreasing exponentially with length of transmission. If Rate > Capacity, information transmission is not feasible.

Contrast with Hamming

- Main goal of Shannon Theory:
 - Constructive (polytime/linear-time/etc.) \(E, D \).
 - Maximize rate = \(k/n \) where \(E : \{0, 1\}^k \to \{0, 1\}^n \).
 - While minimizing \(P_{err} = Pr_{x, \eta}[D(E(x) + \eta) \neq x] \)

- Hamming theory:
 - Explicit description of \(\{E(x)\}_x \).
 - No focus on \(E, D \) itself.
 - Maximize \(k/n \) and \(d/n \), where \(d = \min_{x_1, x_2} \Delta(E(x_1), E(x_2)) \).

- Interpretations: Shannon theory deals with probabilistic error. Hamming with adversarial error. Engineering need: Closer to Shannon theory. However Hamming theory provided solutions, since min. distance seemed easier to analyze than \(P_{err} \).