Today

- q-ary codes.
- Algebraic-geometry & Codes.
- Proof of concept.
- Statement of big claim.

Hamming balls in \mathbb{F}_q^n

- Let $H_q(p) = p \log_q \frac{q-1}{p} + (1 - p) \log_q \frac{1}{1-p}$.
- Let $\text{Vol}_q(r, n) = \text{Volume of Hamming ball of radius } r \text{ in } \mathbb{F}_q^n$.
- Then $\text{Vol}_q(r, n) = q^{(H_q(p) + o(1))n}$.
- q-ary GV bound:
 Theorem: There exists an infinite family of q-ary codes of rate R and relative distance δ satisfying
 \[R \geq 1 - H_q(\delta) \]

Understanding q-ary GV bound

- To get a sense of $H_q(\delta)$, fix $0 < \delta < 1$ and let $q \to \infty$. Get
 \[R \geq 1 - \delta - H_2(\delta)/\log q - o(1/\log q) \]
- Contrast with Singleton (Project on to first $k-1$ coordinates) upper bound on rate:
 \[R \leq 1 - \delta \]
- I.e., GV bound approaches Singleton bound at logarithmic rate in q.
- Is this best possible? RS codes achieve Singleton bound and q is pretty small!

Today:
Algebraic-geometry (AG) codes: Achieve
\[R \geq 1 - \delta - \frac{1}{\sqrt{q} - 1} \]
- Needs q square and prime power.
- Clearly better for large q.
- In fact, better for $q \geq 49$.
Algebraic-geometry codes

- Conceived by Goppa in late 70’s - early 80’s.
- 1982 - Surprising breakthrough …
 - Due to Tsfasman, Vladuts, Zink.
 - Based on some prior work of Ihara.
 - Codes better than random for suff. large, but constant sized, alphabet.
- Almost unique in history of explicit constructions ….

Motivation: Bivariate Codes

- Consider codes obtained by evaluations of bivariate polynomials \(Q(x, y) \) of deg. \(\leq l \) in each variable.
- Gives \(\left[q^2, l^2, \left(1 - \frac{l}{q}\right)^2\right]_q \) code.
- Contrast w. \(\left[q^2, l^2, q^2 - l^2\right] q^2 \) RS code.
 - Bivariate alphabet smaller.
 - Distance smaller by \(2l(q - l) \).
- Why this \(q - l \) deficit?
 - On axis-parallel line \(l \) points zero imply \(q \) points zero.
 - For every line defect of \(q - l \).

AG code idea

- Don’t evaluate poly on all points on plane.
- Ideally, don’t use more than \(l \) points on line.
- Pragmatically, don’t use much more than \(l \) points on line.
- But there exist other bad examples. Degree 2 curves, Degree 3 curves.
- So, don’t use too many points on any (low-degree) curve.
- How to find such points? Use points on some low-degree curve.

Algebraic curves in the plane

Defn: Given a bivariate polynomial \(R(x, y) \) of total degree \(D \), the set of points
\[
\{(a, b) \in \Sigma^2 \mid R(a, b) = 0\}
\]
is called an algebraic curve of degree \(D \) in the plane.

Basic result from algebraic geometry:
Nice algebraic curves don’t meet other nice algebraic curves very often.

Bezout’s Thm: Curves \(R_1, R_2 \) of deg. \(D_1, D_2 \) share at most \(D_1 D_2 \) common zeroes.
Example (stolen from Shokrollahi)

- Let $q = 13$
 \[R(x, y) = y^2 - 2(x - 1)x(x + 1). \]
- Code obtained by evaluating (certain) polynomials at zeroes of R.
- Fact: There exist 19 zeroes of R.
- Legal polynomials: linear combinations of $\{1, x, y, x^2, xy, x^3\}$.
- If legal poly has 6 zeroes, then it is identically zero.
- Gives $[19, 6, 13]_{13}$ code.
 (RS would give $[19, 6, 14]_{19}$ code.)

Codes from Planar Curves

- Generally:
 - Evaluating polys of deg. $\leq l$
 - At zeroes of R, irreducible, of degree D, with n zeroes.
 - Gives $[n, k, n - Dl]_q$ code,
 \[
 k = \begin{cases}
 \binom{l+2}{2} & \text{if } l < D \\
 \binom{l+2}{2} - \binom{l-D+2}{2} & \text{if } l \geq D
 \end{cases}
 \]
- Distance by Bezout’s theorem.

Finding good curves

How to find R with large n?

- No general method.
- But some well-known curves do well. e.g. Hermitian curve for $q = r^2$:
 - $x^{r+1} - y^r - y = 0$
 - has $r^3 + 1$ points.
 - Gives $[r^3 + 1, \binom{r+2}{2}, r^3 + 1 - (r)(r+1)]_{r^2}$ code.
- Bivariate polys gave $[r^4, \binom{r+2}{2}, r^4 - r^3]_{r^2}$.

Going to Higher Dimension

- So far, went from alphabet n to (at best) \sqrt{n}.
- To do better need more variables.
- General AG codes:
 - Pick m variables.
 - Put $m - 1$ polynomial constraints.
 - Evaluate polynomials on zeroes.
“State-of-the-art” codes

[Garcia & Stichtenoth]

- \(q = r^2 \).
- Variables \(x_1, \ldots, x_m, y_1, \ldots, y_m \).
- Constraints:
 \[
 x_1^{r+1} = y_1^r + y_1.
 x_2x_1 = y_1.
 x_2^{r+1} = y_2^r + y_2.
 \vdots
 x_m x_{m-1} = y_{m-1}.
 x_m^{r+1} = y_m^r + y_m.
 \]
- \# zeroes \(\geq (r^2 - 1)r^m \).

Keeping track of distance

- Bezout’s theorem becomes weak.
- Polynomials ordered by “order”.
 Order axioms:
 - \(\text{ord}(f + g) \leq \max\{\text{ord}(f), \text{ord}(g)\} \).
 - \(\text{ord}(f \ast g) = \text{ord}(f) + \text{ord}(g) \).
 - \(f \) has at most \(\text{ord}(f) \) zeroes.
 - Polynomials of all except \(g \) orders exist.
 - \(g = \text{genus of curve} \).
 - Genus of Garcia-Stichtenoth curve \(\leq (r+1)r^m \).
- AG codes follow.

Summary: RS vs. AG

<table>
<thead>
<tr>
<th></th>
<th>RS</th>
<th>AG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinates</td>
<td>(\mathbb{F}_q)</td>
<td>Points on curves</td>
</tr>
<tr>
<td>Messages</td>
<td>Polynomials (\deg < k)</td>
<td>Polynomials order (< k)</td>
</tr>
<tr>
<td>Encoding</td>
<td>Evaluations</td>
<td>Evaluations</td>
</tr>
<tr>
<td>Distance</td>
<td>(n - k + 1)</td>
<td>(n - k + 1)</td>
</tr>
<tr>
<td>Dimension</td>
<td>(k)</td>
<td>(k - \text{genus})</td>
</tr>
<tr>
<td>Axioms</td>
<td>zeroes (\leq \deg)</td>
<td>zeroes (\leq \text{order})</td>
</tr>
<tr>
<td></td>
<td>Sum rule</td>
<td>Sum rule</td>
</tr>
<tr>
<td></td>
<td>Product rule</td>
<td>Product rule</td>
</tr>
<tr>
<td></td>
<td>(\text{dim.} > \deg)</td>
<td>(\text{dim.} > \text{order})</td>
</tr>
</tbody>
</table>

Computational requirements

- Classical AG codes computable in \(O(n^{30}) \) time.
- Newer AG codes computable in \(O(n^{17}) \) time.
- Rumors of \(O(n^2) \) time computability.
- Belief in explicit constructions.
Some best known codes

Fix $q = 2$. Given k and $d/n = \frac{1}{2} - \epsilon$, what is the best known code? (Will allow $\epsilon = \epsilon(n)$).

- Random code: $n = O\left(\frac{k}{\epsilon^2}\right)$.
- RS o Hadamard: $n = \frac{k^2}{\epsilon^2}$.
- AG o Hadamard: $n = O\left(\frac{k}{\epsilon^3 \log(1/\epsilon)}\right)$.
- [ABNNR]: $n = O\left(\frac{k}{\epsilon^3}\right)$. (Polylog space constructible).

© Madhu Sudan, Fall 2002: Essential Coding Theory, MIT 6.896