Today

Limitations on performance of codes (contd.).

- Elias-Bassalygo/Johnson bound.
- Linear Programming bound.

Elias-Bassalygo-Johnson Bounds

Motivation: Hamming bound better for small \(\delta \), Plotkin better for large \(\delta \). Any way to get a combined proof?

Elias-Bassalygo Bound: \(R \leq 1 - H(\tau) \)

where \(\tau \) comes from Johnson bound below.

Johnson Bound: If \(C \) is an \((n, ?, \delta n)_2\)-code, then any Hamming ball of radius \(\tau n \) has at most \(O(n) \) codewords, where

\[
\tau = \frac{1}{2} \cdot \left(1 - \sqrt{1 - 2\delta} \right).
\]

- \(\tau \) vs. \(\delta \)?

- \(\delta / 2 \leq \tau \leq \delta \): So E-B bound always better than Hamming, but never better than GV (which is sane).
- \(\delta \to 0, \ \tau \approx \delta / 2 \): So for small rel. distance, don’t improve much on Hamming.
- \(\delta \to 1/2, \ \tau \approx \delta \): So for large \(\delta \), approach GV bound.

Motivation for Johnson bound result

- The \(\tau \) of the Johnson bound comes from the equation: \(\delta = 2\tau - 2\tau^2 \).
- Why this formula?
 - Pick (exponentially) many points from Hamming ball of radius \(\tau n \) around \(0 \).
 - Expected distance between points is \((2\tau - 2\tau^2)n = \delta n\).
 - W.h.p. no pair at distance \((\delta - \epsilon)n\).
- So the Johnson bound is tight.
Elias-Bassalygo Bound

• Pushes the packing bound.
• Go to larger radius.
• Suppose: Can prove that at most 4 balls of radius $e = 2d/3$ contain any one given point.
• Previous argument gives:
 \[V(n, 2d/3, q)q^k \leq 4q^n. \]
• Lose almost nothing on RHS.
• Improve LHS (significantly).

Motivates the Johnson question.

Johnson Bound

Question: Given $r \in \Sigma^n$, $(n, k, d)_q$ code C.
 How many codewords in $B(r, e)$?

Motivation: (for binary alphabet)
 How to pick a bad configuration?
 I.e. many codewords in small ball.
 W.l.o.g. set $r = 0$.
 Pick c_i’s at random from $B(0, e)$.

Expected’ dist. between codewords = ?
 Let $\epsilon = e/n$.
 Codewords simultaneously non-zero on ϵ^2 fraction of coordinates;
 Thus distance $\approx (2\epsilon - 2\epsilon^2)n$.

Johnson bound shows you can’t do better!

Hamming to Euclid

• Map $\Sigma \rightarrow \mathbb{R}^q$: ith element $\mapsto 0^{i-1} 1 0^{q-i}$.
• Induces natural map $\Sigma^n \rightarrow \mathbb{R}^{qn}$:
 – Maps vectors into Euclidean space.
 – Hamming distance large implies Euclidean distance large.

Argue: Can’t have many large vectors with pairwise small inner products.

Hamming to Euclid (contd.)

In our case:

Given: c_1, \ldots, c_m codewords in Σ^n and $r \in \Sigma^n$, s.t.
 \[\Delta(c_i; r) \leq e \]
 \[\Delta(c_i, c_j) \geq d \]

Want: Upper bound on m.

After mapping to \mathbb{R}^{nq}
 (and abusing notation)

Given: $c_1, \ldots, c_m \in \mathbb{R}^{nq}$ and $r \in \mathbb{R}^{nq}$, s.t.
 \[\langle r, r \rangle = n. \]
 \[\langle c_i, c_i \rangle = n. \]
 \[\langle c_i, r \rangle \geq n - e \]
 \[\langle c_i, c_j \rangle \leq n - d \]

Want: Upper bound on m.

©Mathu Sudan, Fall 2002: Essential Coding Theory; MIT 6.896
©Mathu Sudan, Fall 2002: Essential Coding Theory; MIT 6.896
©Mathu Sudan, Fall 2002: Essential Coding Theory; MIT 6.896
©Mathu Sudan, Fall 2002: Essential Coding Theory; MIT 6.896
Hamming to Euclid (contd).

Main idea: Find a new point \(O' \) to set as origin, such that the angle subtended by \(C_i \) and \(C_j \) at \(O' \) is at least 90°.

Conclude: \# vectors \(\leq \) dimension = \(nq \).

Johnson bound (contd).

How to pick the new origin?

Idea 1: Try some point of the form \(\alpha r \).

Then \(\langle c_i - \alpha r, c_j - \alpha r \rangle \)
\[= \langle c_i, c_j \rangle - \alpha \langle c_i r \rangle \]
\[- \alpha \langle c_j, r \rangle + \alpha^2 \langle r, r \rangle \]
\[\leq (1 - \alpha)^2 n + 2\alpha e - d \]

Setting \(\alpha = 1 \), says: Need \(e \leq d/2 \).

Setting \(\alpha = 1 - e/n \) yields:
Need \(e/n \leq 1 - \sqrt{1 - \delta} \).

(Not quite what was promised.)

Johnson bound (contd).

A better choice for origin.

Idea 2: Try some point of the form
\[\alpha r + (1 - \alpha)Q, \]
where \(Q = (\frac{1}{q})^{qn} \).

Appropriate setting of \(\alpha = 1 - e/n \) yields, the desired bound.

Back to Elias Bound

Plugging Johnson bound into earlier argument:
\[k \leq (1 - H_q(e))n + o(n), \]
where \(e \) such that the Johnson bound holds for \(e = \varepsilon n \).

Importance:

- Proves e.g. No codes of exponential growth with distance \((1 - 1/q)n\).
- Decently comparable with existential lower bound on rate from random code.
MacWilliams Identities

Defn: Weight distribution of code is
\(\langle A_0, \ldots, A_n \rangle \), where \(A_i \) is \# codewords of weight \(i \).

- MacWilliams Identity determines weight distribution of code from weight distribution of its dual.
- Quite magical.
- Many nice consequences.

MacWilliams Identities: Proof

(Will only do the Binary case)

Defn: The verbose generating function

(a) The generating function of a bit:
\[W_b(x, y) = (1 - b)x + by \]

(b) The generating function of a word:
\[W_c(x_1, y_1, \ldots, x_n, y_n) = \prod_{i=1}^b W_{c_i}(x_i, y_i) \]

(c) The generating function of a code:
\[W_C(x_1, y_1, \ldots, x_n, y_n) = \sum_{c \in C} W_c(x_1, y_1, \ldots, x_n, y_n) \]

E.g. if \(C = \{000, 011, 101, 110\} \), then
\[W_C(x_1, y_1, x_2, y_2, x_3, y_3) = x_1x_2x_3 + x_1y_2y_3 + y_1x_2y_3 + y_1y_2x_3 \]

MacWilliams Identities (contd).

Trivial Claim: Given \(W_C \), can compute \(W_{C^\perp} \).

Explicit version: (non-trivial)
\[W_C(x_1 + y_1, x_1 - y_1, \ldots, x_n + y_n, x_n - y_n) = |C| \cdot W_{C^\perp}(x_1, y_1, \ldots, x_n, y_n) \]

Proof steps:

Bit case:
\[W_{b'}(x+y, x-y) = \sum_{b \in\{0,1\}} (-1)^{b} W_b(x, y). \]

Vector case:
\[W_C(x_1 + y_1, x_1 - y_1, \ldots, x_n + y_n, x_n - y_n) = \sum_{b \in\{0,1\}^n} (-1)^{b} W_b(x_1, y_1, \ldots, x_n, y_n). \]
Proof (contd).

Code case:

\[W_C(x_1 + y_1, x_1 - y_1, \ldots, x_n + y_n, x_n - y_n) = \sum_{c \in \mathcal{C}} \sum_{b \in \{0,1\}^n} (-1)^{b \cdot c} W_b(x_1, y_1, \ldots, x_n, y_n) \]

\[= \sum_{b \in \{0,1\}^n} W_b(x_1, y_1, \ldots, x_n, y_n) \sum_{c \in \mathcal{C}} (-1)^{b \cdot c} = |\mathcal{C}| \cdot W_{C^\perp}(x_1, y_1, \ldots, x_n, y_n) \]

MacWilliams Identity follows using:

\[(1+y)^n W\left(\frac{1-y}{1+y} \right) = W_C(1+y, 1-y; \ldots, 1+y, 1-y) \]

and \(W'(y) = W_{C^\perp}(1, y; \ldots, 1, y) \)

MDS Codes

Fact: Dual of MDS code is MDS.

Proof: Along lines of Singleton bound.

Fact: MDS code of dim \(k \) has \((q-1)\binom{n}{k} \) codewords of minimum weight.

Proof: By inspection.

Consequence: Have values for \(n+1 \) variables out of \(2(n+1) \) used in M.I. System turns out to have full rank.

Thm: \# poly of degree \(< k \) with \(w \) non-zero evaluations at \(n \) points is:

\[\left(\begin{array}{c} n \\ w \end{array} \right) \sum_{j=0}^{w+\ell-n} (-1)^{j} \left(\begin{array}{c} w \\ j \end{array} \right) (q^{w+\ell-n-j} - 1) \]

LP bound

- One more bound in literature.
- Strongest known bound.
- Analysis hard.
- So hard, one only has upper bounds on the LP bound.
- Current upper bound on LP bound is still far from random code or AG-code (so may not be optimal either).
- Will see LP later.
- However (only) bound proving that if \(d = (\frac{1}{2} - \epsilon)n \), then \(n = O(k/\epsilon^2) \). (Matches random code for small \(\epsilon \).)

LP bound

- Let \(A_0, \ldots, A_n \) be dist. of \([n, ?, d]_q\) code.
- \# codewords = \(A_0 + \cdots + A_n \).
- Know \(A_0 = 1, A_1 = \cdots = A_{d-1} = 0 \).
- Further \(A'_0 = 1, A'_1, \ldots, A'_n \geq 0 \).
- How large can \(A_0 + \cdots + A_n \) be under above conditions?
- Above is a linear program ... Gives best known bound [MRRW].
- Note: Extends to non-linear codes also. Define \(A_i = \mathbb{E}_{c \in \mathcal{C}}[|S(c, i) \cap \mathcal{C}|] \),
 \(S(c, i) = \) sphere of radius \(i \) around \(c \).
Alon’s proof for ϵ-biased spaces

Thm: Suppose have binary code with K codewords of length n s.t. no two are have
distance less than $(\frac{1}{2} - \epsilon)n$ or greater than
$(\frac{1}{2} + \epsilon)n$: Then $K \leq 2n$, provided $\epsilon \leq \frac{1}{2\sqrt{n}}$.

Proof:

- Map 0 to 1 and 1 to -1, and normalize
 so that vectors have unit norm.
- Then inner products lie between -2ϵ and
 2ϵ.
- Let M be $K \times K$ matrix of inner products.
- M close to identity matrix and hence
 has rank close to that of identity matrix.
 Specifically: $\text{rank} \geq \frac{K}{1 + 4(K - 1)\epsilon^2}$.
- On the other hand, $\text{rank}(M) \leq n$.