Today

Limitations on performance of codes (contd.).

- Elias-Bassalygo/Johnson bound.
- Linear Programming bound.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

- $\delta/2 \le \tau \le \delta$: So E-B bound always better than Hamming, but never better than GV (which is sane).
- $\delta \to 0$, $\tau \approx \delta/2$: So for small rel. distance, don't improve much on Hamming.
- $\delta \to \frac{1}{2}$, $\tau \approx \delta$: So for large δ , approach GV bound.

Elias-Bassalygo-Johnson Bounds

Motivation: Hamming bound better for small δ , Plotkin better for large δ . Any way to get a combined proof?

Elias-Bassalygo Bound: $R \leq 1 - H(\tau)$ where τ comes from Johnson bound below.

Johnson Bound: If C is an $(n,?,\delta n)_2$ -code, then any Hamming ball of radius τn has at most O(n) codewords, where

$$\tau = \frac{1}{2} \cdot \left(1 - \sqrt{1 - 2\delta} \right).$$

• τ vs. δ ?

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Motivation for Johnson bound result

- The au of the Johnson bound comes from the equation: $\delta = 2\tau 2\tau^2$.
- Why this formula?
 - Pick (exponentially) many points from Hamming ball of radius τn around 0.
 - Expected distance between points is $(2\tau 2\tau^2)n = \delta n$.
 - W.h.p. no pair at distance $(\delta \epsilon)n$.
- So the Johnson bound is tight.

Elias-Bassalygo Bound

- Pushes the packing bound.
- Go to larger radius.
- Suppose: Can prove that at most 4 balls of radius e=2d/3 contain any one given point.
- Prveious argument gives:

$$V(n, 2d/3, q)q^k \le 4q^n.$$

- Lose almost nothing on RHS.
- Improve LHS (significantly).

Motivates the Johnson question.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

5

Johnson Bound

Question: Given $\mathbf{r} \in \Sigma^n$, $(n,k,d)_q$ code \mathcal{C} . How many codewords in $B(\mathbf{r},e)$?

Motivation: (for binary alphabet)
How to pick a bad configuration?
I.e. many codewords in small ball.
W.l.o.g. set $\mathbf{r} = \mathbf{0}$.
Pick c_i 's at random from $B(\mathbf{0}, e)$.

Expected' dist. between codewords = ? Let $\epsilon = e/n$.

Codewords simultaneously non-zero on ϵ^2 fraction of coordinates;

Thus distance $\approx (2\epsilon - 2\epsilon^2)n$.

Johnson bound shows you can't do better!

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Hamming to Euclid

- Map $\Sigma \to \mathbb{R}^q$: *i*th element $\mapsto 0^{i-1} \ 1 \ 0^{q-i}$.
- Induces natural map $\Sigma^n \to \mathbb{R}^{qn}$:
 - Maps vectors into Euclidean space.
 - Hamming distance large implies Euclidean distance large.

Argue: Can't have many large vectors with pairwise small inner products.

Hamming to Euclid (contd).

In our case:

Given: c_1, \ldots, c_m codewords in Σ^n and $\mathbf{r} \in \Sigma^n$, s.t.

- $\Delta(c_i, \mathbf{r}) \leq e$
- $\Delta(c_i, c_j) \geq d$

Want: Upper bound on m.

After mapping to \mathbb{R}^{nq} (and abusing notation)

Given: $c_1, \ldots, c_m \mathbb{R}^{nq}$ and $\mathbf{r} \in \mathbb{R}^{nq}$, s.t.

- $\bullet \langle \mathbf{r}, \mathbf{r} \rangle = n.$
- $\bullet \langle c_i, c_i \rangle = n.$
- $\langle c_i, \mathbf{r} \rangle \ge n e$
- $\langle (\rangle c_i, c_j) \leq n d$

Want: Upper bound on m.

Hamming to Euclid (contd).

Main idea: Find a new point O' to set as origin, such that the angle subtended by C_i and C_j at O' is at least 90° .

Conclude: # vectors \leq dimension = nq.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Johnson bound (contd).

How to pick the new origin?

Idea 1: Try some point of the form $\alpha \mathbf{r}$.

Then
$$\langle c_i - \alpha \mathbf{r}, c_j - \alpha \mathbf{r} \rangle$$

$$= \langle c_i, c_j \rangle - \alpha \langle c_i \mathbf{r} \rangle$$

$$-\alpha \langle c_j, \mathbf{r} \rangle + \alpha^2 \langle \mathbf{r}, \mathbf{r} \rangle$$

$$\leq (1 - \alpha)^2 n + 2\alpha e - d$$

Setting $\alpha = 1$, says: Need $e \leq d/2$.

Setting $\alpha = 1 - e/n$ yields: Need $e/n \le 1 - \sqrt{1 - \delta}$.

(Not quite what was promised.)

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Johnson bound (contd).

A better choice for origin.

Idea 2: Try some point of the form $\alpha \mathbf{r} + (1 - \alpha) \mathbf{Q}$, where $\mathbf{Q} = (\frac{1}{a})^{qn}$.

Appropriate setting of $\alpha=1-e/n$ yields, the desired bound.

Back to Elias Bound

Plugging Johnson bound into earlier argument:

$$k \le (1 - H_q(\epsilon))n + o(n),$$

where ϵ such that the Johnson bound holds for $e=\epsilon n$.

Importance:

- Proves e.g. No codes of exponential growth with distance (1-1/q)n.
- Decently comparable with existential lower bound on rate from random code.

MacWilliams Identities

Defn: Weight distribution of code is $\langle A_0, \ldots, A_n \rangle$, where A_i is # codewords of weight i.

- MacWilliams Identity determines weight distribution of code from weight distribution of its dual.
- Quite magical.
- Many nice consequences.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

13

15

MacWilliams Identities

Thm:

- Let A_0, \ldots, A_n wt. dist. of \mathcal{C} .
- Let A'_0, \ldots, A'_n wt. dist. of \mathcal{C}^{\perp} .
- Let $W(y) = \sum_i A_i y^i$.
- Let $W'(y) = \sum_i A_i' y^i$.
- Then $W'(y) = \frac{(1+(q-1)y)^n}{|\mathcal{C}|} W\left(\frac{1-y}{1+(q-1)y}\right).$
- Implications: Equating coefficients of y^i , get n+1 linear equations in 2(n+1) variables.
- Natural use, gives weight distribution of primal given dual or vice-versa.
- Interesting use: Can compute weight distribution of MDS codes!

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

14

MacWilliams Identities: Proof

(Will only do the Binary case)

Defn: The verbose generating function

- (a) The generating function of a bit: $W_b(x,y) = (1-b)x + by$
- (b) The generating function of a word: $W_c(x_1,y_1,\ldots,x_n,y_n)=\prod_{i=1}^b W_{c_i}(x_i,y_i)$

 $= \sum_{c \in \mathcal{C}} W_c(x_1, y_1, \dots, x_n, y_n)$

(c) The generating function of a code: $W_{\mathcal{C}}(x_1, y_1, \dots, x_n, y_n)$

E.g. if
$$\mathcal{C}=\{000,011,101,110\}$$
, then
$$W_{\mathcal{C}}(x_1,y_1,x_2,y_2,x_3,y_3)\\ =x_1x_2x_3+x_1y_2y_3+y_1x_2y_3+y_1y_2x_3$$

MacWilliams Identities (contd).

Trivial Claim: Given $W_{\mathcal{C}}$, can compute $W_{\mathcal{C}^{\perp}}$.

Explicit version: (non-trivial)

$$W_{\mathcal{C}}(x_1 + y_1, x_1 - y_1, \dots, x_n + y_n, x_n - y_n)$$

= $|\mathcal{C}| \cdot W_{\mathcal{C}^{\perp}}(x_1, y_1, \dots, x_n, y_n)$

Proof steps:

Bit case:

$$W_{b'}(x+y, x-y) = \sum_{b \in \{0,1\}} (-1)^{\langle b,b' \rangle} W_b(x,y).$$

Vector case:

$$W_c(x_1 + y_1, x_1 - y_1, \dots, x_n + y_n, x_n - y_n) = \sum_{b \in \{0,1\}^n} (-1)^{\langle b,c \rangle} W_b(x_1, y_1, \dots, x_n, y_n).$$

Proof (contd).

Code case:

$$W_{\mathcal{C}}(x_1 + y_1, x_1 - y_1, \dots, x_n + y_n, x_n - y_n)$$

$$= \sum_{c \in \mathcal{C}} \sum_{b \in \{0,1\}^n} (-1)^{\langle b,c \rangle} W_b(x_1, y_1, \dots, x_n, y_n)$$

$$= \sum_{b \in \{0,1\}^n} W_b(x_1, y_1, \dots, x_n, y_n) \sum_{c \in \mathcal{C}} (-1)^{\langle b,c \rangle}$$

$$= |\mathcal{C}| \cdot W_{\mathcal{C}^{\perp}}(x_1, y_1, \dots, x_n, y_n)$$

MacWilliams Identity follows using:

$$(1+y)^n W(rac{1-y}{1+y}) = W_{\mathcal{C}}(1+y,1-y,\ldots,1+y,1-y)$$
 and $W'(y) = W_{\mathcal{C}^\perp}(1,y,\ldots,1,y)$

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

MDS Codes

Fact: Dual of MDS code is MDS.

Proof: Along lines of Singleton bound.

Fact: MDS code of dim k has $(q-1)\binom{n}{k}$ codewords of minimum weight.

Proof: By inspection.

Consequence: Have values for n+1 variables out of 2(n+1) used in M.I. System turns out to have full rank.

Thm: # poly of degree < k with w non-zero evaluations at n points is:

$$\binom{n}{w} \sum_{j=0}^{w+k-n} (-1)^j \binom{w}{j} (q^{w+k-n-j} - 1)$$

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

LP bound

- One more bound in literature.
- Strongest known bound.
- Analysis hard.
- So hard, one only has upper bounds on the LP bound.
- Current upper bound on LP bound is still far from random code or AG-code (so may not be optimal either).
- Will see LP later.
- However (only) bound proving that if $d=(\frac{1}{2}-\epsilon)n$, then $n=O(k/\epsilon^2)$. (Matches random code for small ϵ .)

LP bound

- Let A_0, \ldots, A_n be dist. of $[n,?,d]_q$ code.
- # codewords = $A_0 + \cdots + A_n$.
- Know $A_0 = 1$, $A_1 = \cdots = A_{d-1} = 0$.
- Further $A_0' = 1, A_1', \dots, A_n' \ge 0$.
- How large can $A_0 + \cdots + A_n$ be under above conditions?
- Above is a linear program ... Gives best known bound [MRRW].
- Note: Extends to non-linear codes also. Define $A_i = \mathbf{E}_{c \in \mathcal{C}}[|S(c,i) \cap \mathcal{C}|]$, S(c,i) = sphere of radius i around c.

19

Alon's proof for ϵ -biased spaces

Thm: Suppose have binary code with Kcodewords of length n s.t. no two are have distance less than $(\frac{1}{2}-\epsilon)n$ or greater than $(\frac{1}{2} + \epsilon)n$: Then $K \leq 2n$, provided $\epsilon \leq \frac{1}{2\sqrt{n}}$.

Proof:

- Map 0 to 1 and 1 to -1, and normalize so that vectors have unit norm.
- Then inner products lie between -2ϵ and 2ϵ .
- Let M be $K \times K$ matrix of inner products.
- -M close to identity matrix and hence has rank close to that of identity matrix. $\begin{array}{l} \text{Specifically: rank} \geq \frac{K}{1+4(K-1)\epsilon^2}. \\ - \text{ On the other hand, } \mathrm{rank}(M) \leq n. \end{array}$

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896