Today

- Local decoding of Reed-Muller codes.
- Local list-decodability.

Recall Problem

- Given:
 - Oracle access to $r : \mathbb{F}^m \to \mathbb{F}$.
 - Point of interest: $x \in \mathbb{F}^m$.
 - Promise: $\exists p : \mathbb{F}^m \to \mathbb{F}$ of degree D s.t.
 $\Delta(r, p) = \Pr_{y \in \mathbb{F}^m}[r(y) \neq p(y)] \leq \delta$.
- Goal: Compute $p(x)$ with probability $> \frac{1}{2}$.
- Desired runtime: $\text{poly}(m, D, \log q)$. Can even tolerate $\text{poly}(q)$, where $q = |\mathbb{F}|$.

Basic idea

- Restrict r/p to some line L.
 - For $a, b \in \mathbb{F}^m, t \in \mathbb{F}$, let $L_{a, b}(t) = a + t \cdot b$.
 - $L_{a, b} = \{L_{a, b}(t) | t \in \mathbb{F}\}$.

- Line is a function $L_{a, b} : \mathbb{F} \to \mathbb{F}^m$.

- $f : \mathbb{F}^m \to \mathbb{F}$ restricted to line L is just the composed function $f|_L : \mathbb{F} \to \mathbb{F}$, with $f|_L(t) = f(L(t))$.

Lines in \mathbb{F}^m

- Algebraic Property: Low-degree poly restricted to subspace is a low-degree polynomial.
 $$\deg(f) \leq D \Rightarrow \deg(f|_L) \leq D.$$

- Randomness Property: Random line is a collection of pairwise independent points.
 $$\forall t \neq s, \Pr_{a, b}[L_{a, b}(t) = c \text{ and } L_{a, b}(s) = d] = 1/q^{2m}.$$
 Random line through a is $L_{a, b}$ with b being random. Random line through a is 1-wise random, except at $t = 0$.
 $$\forall t \neq 0, \Pr_b[L_{a, b}(t) = c] = 1/q^m.$$
Decoding Algorithm

- Fix $\alpha_1, \ldots, \alpha_{D+1} \in \mathbb{F}$ non-zero and distinct.
- Pick $y \in \mathbb{F}^m$ at random.
- Let $\beta_i = r(x + \alpha_i y)$.
- Compute univ. degree D poly $h(t)$ s.t. $h(\alpha_i) = \beta_i$.
- Output $h(0)$.

Analysis

- Hope for every query Q that $r(Q) = p(Q)$.
- Bad event $E_i : p(L_x, y(\alpha_i)) \neq r(L_x, y(\alpha_i))$.
- Claim 1: $\Pr_{y}[\exists i \text{ s.t. } E_i] \leq (D + 1)\delta$.
 $\Pr_{y}[E_i] = \Delta(r, p) \leq \delta + \text{Union bound}$.
- Claim 2: $\forall i E_i \Rightarrow \text{Algorithm correct}$.
 - For all $i \in [D + 1]$, $p|_L(\alpha_i) = h(\alpha_i)$.
 - But $p|_L$, h of degree D.
 - So $p|_L = h$ and $h(0) = p|_L(0) = p(x + 0y) = p(x)$.

Conclude: RM code with parameters m, D, \mathbb{F} is $D+1$-locally decodable for $\delta < 1/(2(D+1))$ with $\text{poly}(m, D)$ field operations.

Some range of parameters

- If $D = \log^c k$ and $m = \Omega(\log k/(c - 1) \log \log k))$, then $\#$ coefficients $= k$.
- Pick field size $= 2D$ to get encoding size $n = (2D)^m = k^{c/(c-1)}$ (= poly rate).
- Get D-local decodability = $\text{poly log } n$.
- Pretty good. Almost best known.
- Error-tolerance not so good. Will do better next time.

Improving error-correction

- Idea 1:
 - Sample more points $\alpha_i, i \in [10D]$ from L.
 - Now get $\beta_i, i \in [10D]$. Find h of degree D agreeing with many pairs α_i, β_i (just RS decoding!) and output $h(0)$.
 - Analysis: Use Markov’s inequality to bound too many errors.
 - Can get error close to $\frac{1}{4}$.
- More sophisticated algorithm + analysis corrects error close to $\frac{1}{2}$.
List-decoding?

- What is implicit list-decoding?
 - Main issue: First think about list-decoding; then about implicit representation of the output.
 - Technically easier to do it the other way, but that may be pointless.
 - Specifically, if \(p_1, \ldots, p_c \) are the nearby polynomials, then easier to come up with an algorithm that produces \(\{p_1(x), \ldots, p_c(x)\} \). But how do you produce an algorithm that only outputs, say, \(p_1(x) \)?
 - How does the algorithm distinguish \(p_1 \) from the rest?
 - Solution: Give it some advice (non-uniform) to allow it to distinguish \(p_1 \) from the rest.
 - Example \(p_1(z) = \gamma \).

Implicit “List-Decoding” Algorithm

- Given: Oracle \(r \), Advice \(z, \gamma \), input \(x \).
- Algorithm:
 - Let \(L = L_{x,z-x} \), so \(L(0) = x, L(1) = z \).
 - Compute a list of all polynomials \(h_1, \ldots, h_c \) of deg. \(D \) s.t. \(h_i(\alpha) = r(\alpha) \) for \(\delta/2 \) fraction of \(j \in \mathbb{F}'s \).
 - If \(\exists \) unique \(i \) s.t. \(h_i(1) = \gamma \), then output \(h_i(0) \), else “BLAH”.

Analysis

- No randomness? !
- Can’t do it - right? Right!
- Will only show correct for
 - Random \(z \).
 - Random \(x \).
 - W.h.p. assuming \(p_1(z) = \gamma \).
Analysis (contd.)

- Bad events:
 - $A : (x, z)$ s.t. $p(L(\alpha)) = r(L(\alpha))$ for less than $\epsilon/2$ fraction of $\alpha \in F$.
 - $B : z$ s.t. some $h_j! = p|_L$ satisfies $h_j(1) = p|_L(1)$.
 - $Pr[A]$ bounded by Chebychev.
 - $Pr[B]$ more subtle. Think of L being picked first, and z later. Then $Pr_{x|L}[B] \leq cD/q$.

- If neither A nor B occur, then printer outputs correct response.