Today

- Low Density Parity Check Codes.
- Linear Time Decoding.

Decoding from Parity Check & Syndrome

- Parity check matrix H is $n \times m \ (k = n - m)$.
- y codeword iff $yH = 0$.
- If y is close to codeword, then can yH give any info?
 - Idea: let $(yH)_j \neq 0$, then one of the bits i such that $H_{ij} \neq 0$ is corrupt.
 - Usually: This is not useful. Too many such bits.
 - Low-Density Parity Check Idea: But may be useful if H has low weight.

Low Density Parity Check Matrices

- Defn: H has sparsity c if every column has at most d non-zeroes.
- Defn: $\{H_{n,m}\}_{n,m}$ defines a LDPC Code if there exists d such that every matrix in family is c-sparse.
- Theorem: [Gallager '63] LDPC codes achieve Gilbert-Varshamov bound.
- Theorem: [Gallager '63] \exists LDPC codes that correct constant fraction in linear time (efficiently)!
- Subsequent work: [Tanner] (composition + explicit directions); [Sipser-Spielman]
Graph-theoretic view

- $n \times m$ 0/1 Matrices \equiv Bipartite Graphs (L, R, E) with $|L| = n$, and $|R| = m$.
- Left vertex = coordinate of (code)words.
- Right vertex = constraint
- c_1, \ldots, c_n codeword if parity of neighbors of every right vertex is even.
- When/Why is this an error-correcting code (of large minimum distance)?

Bad graphs

- If there exists a subset $S \subseteq L$ of small size such that S has neighbors of only even degree on right. Then 1_S is a codeword (necessary and sufficient).
- How to rule this out?
- Suppose know that no small set S has neighbors of degree ≥ 2. Or ... Every small set has some "Unique neighbors".
- Then G leads to good code.

Unique neighbors in graphs

- How can we prove existence of unique neighbors for small sets?
- Well studied in context of expansion: If graph is a very good expander then small sets have unique neighbors.
- Defn: G is (c, d)-regular if every left vertex has degree c and every right vertex has degree d.
- Expansion: $G = (L, R, E)$ is a γ, δ expander if every set $S \subseteq L$ with $|S| \leq \delta n$ has $|\Gamma(S)| \geq \gamma|S|$. ($\Gamma(S) = \{j \in R | \exists i \in S, (i, j) \in E\}$).

Folklore theorem about unique neighbors

- $\gamma > c/2$ implies, S of size less than δn has unique neighbor.
- γ and c?
 - Note trivially $\gamma \leq c$.
 - Should scale linearly with c for $\delta = o(1)$.
 - For random (c, d)-regular graph, can get $\gamma = c - 1$ for some $\delta > 0$
Formal folklore claim & proof

Claim: $G(c,d)$-regular and (γ, δ)-expander implies S of cardinality $\leq \delta n$ has at least $(2\gamma - c)|S|$ unique neighbors.

Proof: Let U be unique neighbors and D be degree two or greater neighbors. We have $U + 2D \leq \#$ edge into $S = cS$. $U + D \geq \gamma S$. Combining, get bound.

- Leads to following algorithm.

Decoding?

- Once again boils down to unique neighbors How?
- Lets start with a simple hope: Pick violated constraint and flip some variable in it.
- Not such a good idea - since most likely violated constraint has a unique flipped neighbor and mostly correct neighbors. So we are more likely to flip good guy instead of bad!
- Better idea: Take a violated constraint and try to figure out which one of its neighbors is the error. How to detect this? Erroneous bit hopefully participates in many violated constraints.

Decoding algorithm

- While \exists left vertex with more violated neighbors than unviolated ones, FLIP this vertex.

Note: Alg. can be implemented to take $O(1)$ time per iteration.
Analysis

- # iterations \(\leq \) # initially violated constraints.
- \(\Rightarrow \) Alg. must terminate.
- Termination possibilities:
 1. Terminates with right codeword.
 2. Terminates with wrong codeword.
 3. Terminates at non-codeword.

Analysis: Ruling out (2)

Claim 1: If # errors \(\leq \delta n/(2c) \) then Case 2 can’t happen.

Proof: If # errors as above, then initial # violated constraints is less than \(\delta n/2 \). So alg. terminates in \(\delta n/2 \) steps. At this point distance from transmitted word \(\leq \) #errors + # steps \(\leq \delta n/(2c) + \delta n/2 < \delta n \). But if rec’d vector is distinct from transmitted word, then distance \(\geq \delta n \).

Analysis: Ruling out (3)

Claim 2: At final iteration, say \(S \) is the set of indices that are in error. Then if \(0 < |S| \leq \delta n \), then there exists \(i \in S \) with more violated neighbors than unviolated, provided \(\gamma > 3c/4 \).

Proof: Actually will prove more unique neighbors than non-unique. Say # unique neighbors > \((c/2)|S|\). (True if \(2\gamma - c > c/2\) or \(\gamma > 3c/4\)). Then some vertex in \(S \) has more than \((c/2)\) unique neighbors. QED.

Conclusion

- LDPC code based on very good expander leads to Linear time decoding.
- Can we find such good expanders?
- For long time, answer was NO. Random graph was this good, but couldn’t even pick one at random and test. Big bottleneck exactly at \(\gamma = c/2\). The unique neighbor property can not be guaranteed by the eigenvalue method ...
- Recent breakthroughs: Capalbo, Reingold, Vadhan, and Wigderson. Can build such graphs; and techniques quite familiar. Might do some of this next time.
• What did we know to construct? Graphs with $\gamma < c/2$.

• Can we do anything with these? Yes [Tanner,SipserSpielman].

Tanner products

• Suppose $\gamma > c/\Delta$.

• Can we use this to do anything?

• Can’t prove neighborhood of S has unique neighbor.

• But can prove has low-degree neighbor (into S).

• Claim: $|S| \leq \delta n$ implies $(\Delta \gamma - c)|S|/(\Delta - 1)$ neighbors of degree less than Δ into S.

• Proof as usual.

• So what?

• Now insist that neighbors of constraint vertex come from code C of min. dist. Δ.

• Gives explicit construction of $\Omega(1)$ rel. dist. code.

• Sipser-Spielman give linear time decoding algorithm.