Today

- Linear time list-decodable codes.
 - (Yet another family of) Expander-based codes.
 - A “simple” decoding algorithm.
 - Towards analysis of list-decodability.
 - Best known results

- Acknowledgments: Thanks to Piotr Indyk for slides and Amir Shpilka for the lecture!

Decoding with adversarial error

- Best known results
 - RS codes of rate ϵ^2 can (list-)decode $1-\epsilon$ fraction error, but take super-linear time.
 - Can construct binary codes of rate ϵ^4 decoding $1/2-\epsilon$ error, again in super-linear time.
 - But what about linear-time.
 - Requires simpler coding/decoding schemes.

ABNNR Codes

- Alon-Bruck-Naor-Naor-Roth ’93.

- Yet another family of expander based codes.

- New elegant idea - using expansion of large sets.

- Only known construction (to Madhu) going from codes over small alphabets to codes over large alphabets. An important direction!

Code

- Ingredients:
 - Asymptotically good $[n, k, \delta n]$ binary code A.
 - (c, c)-regular (γ, δ)-weak bipartite expander G with n vertices on each side: Every set of size δn has at least $\gamma \delta n$ neighbors (no requirements on smaller sets).

- Gives: (non-linear) code over $q = 2^c$-ary alphabet, with message length k/c message and n block length and minimum distance $\gamma \delta n$.

- Construction: given message m ($= k$-bit string), encode using A first to get $c = n$
bit string. Then label left vertices with bits of \(c \). For each right vertex now write the label of all \(c \) right neighbors (in canonical order). The labels of right vertices form a \(q \)-ary string of length \(n \). This is the encoding of \(m \).

\begin{itemize}
 \item Rate = \(k/(cn) \).
 \item Distance = \(\gamma \delta n \).
 \item Alphabet = \(2^c \).
 \item How to make sense?
 \begin{itemize}
 \item Will fix \(k/n = \frac{1}{4} \), say.
 \item Fixes \(\delta = \Omega(1) \).
 \item Remaining parameter \(c \). Study behaviour of code as \(c \) grows.
 \item Rate = \(O(1/c) \), Alphabet size = \(2^c \). Main issue: How does distance behave?
 \item Clearly \(\gamma \leq c \). But we’ll take \(c \gg \frac{1}{2} \).
 \end{itemize}
 In such case, clearly \(\gamma \delta \leq 1 \)!
\end{itemize}

\textit{Properties}

\begin{itemize}
 \item Distance \(\frac{1}{2} - \epsilon \).
 \item Major novelty (partly in hindsight): Leads to linear time encoding and linear time list-decodability.
 \item Encoding obvious. Decoding needs more from graph.
\end{itemize}
Decoding algorithm

- Given set of assignments for right vertices.
- Will compute assignment to left vertices.
- Obvious idea: Write most popular vote for each vertex.
- Then decode left hand side.

Additional assumptions

- Code A is linear-time decodable.
- Graph is a strong weak expander - call it mixer!
- Will want: For every subset T of size $(\frac{1}{2} + \varepsilon)n$ on right, the set of vertices that have fewer than $c/2$ neighbors into T, is at most δn.
- Note: random vertex has most neighbors into T.
- Random graph is a $\delta, \frac{1}{2} + \varepsilon$ mixer.

Expanders, Mixers, Extractors, Refrigerators

- Lots of notions of expansion.
- Should be thought of as a generic notion, not specific (α, β)-property.
- Most supposed to be some notion of “pseudorandom graph”.
- E.g., Extractors: For every large enough left subset S, random neighbor of random element of S is almost uniform left neighbor.
- Mixing is a similar property.

Recent Results

- Guruswami-Indyk Constructions (a factory).
- Construction of list-decodable expander-based codes:
 - Decoding radius: $(1 - \delta)n$
 - Constant rate $r(\delta)$
 - Linear-time encoding/decoding
 - Constant alphabet
- In a sense, unifies the results of Spielman and Guruswami-Sudan
- Departs from the current list-decoding technology
 - Combinatorial construction
 - No polynomials
G-I Results ctd.

• Rate \(r = 1/2^{2^{1/8^2}} \), i.e., pretty low

• However, for simple list decoding scenarios, matches the rate of RS

Central theme: List-Recoverable codes

A code \(C \subseteq \Sigma^n \) is \((\alpha, l, L)\)-recoverable, if for any

\[L = L_1 \ldots L_m, \quad L_i \subseteq \Sigma, \quad |L_i| \leq l, \]

there are at most \(L \) codewords \(c \in C \) such that

\[c_i \in L_i \text{ for } \geq \alpha n \text{ coordinates } i \]

• \(l = 1 \): list decodability

• Algorithmic version defined analogously

List Rec. \(\Rightarrow \) List Dec.

• Assume we have a \((1 - \epsilon, l, L)\)-recoverable code \(C \)

• Take a graph \(G = (A, B, E) \) such that for any \(Y \subseteq B, |Y| \geq |B|/(l+1 + \epsilon') \), the fraction of \(i \in A \) for which \(\text{Neighbors}(i) \cap Y \) is \(\geq l - \epsilon \)

• Then \(G(C) \) is list-decodable from \(1 - (l+1 + \epsilon') \) fraction of errors:

\[\begin{array}{c|ccc}
| & a & b & \{a,b\} \\
\hline
a & \checkmark & & \\
b & & \checkmark & \\
\{a,b\} & & & \checkmark \\
\end{array} \]

- The \(i \)-th left node creates the list \(L_i \) of \(l \) most frequent symbols
- Apply the list-recovering procedure

• \(D = (1/\epsilon + 1/\epsilon' + l)^\epsilon \) suffices (Ramanujan graphs)
Goal: \((1 - \epsilon, l, L)\)-Recoverable Codes

- Will give a \((1, 2, 2)\)-list recoverable, linear-time code
- Indicate how to:
 - Handle errors
 - Allow \(l > 2\)

\((1, 2, 2)\)-Recoverable Codes: Construction

- Take any code \(C\) that:
 - Can be encoded in linear time
 - Can be decoded from, say, 90% of erasures in linear time
- Take a good expander \(G = (A, B, E)\)
- \(C' = G(C)\)

1, 2, 2)-Recoverable Codes: Decoding

- Find large connected component
- Use it to determine the left symbols
- Decode the left code from erasures

- If many left-node symbols determined:
 - Replace rest by erasures
 - Decode the left-code \(C\) from erasures

- If few left-node symbols determined:
 - Remove left nodes with determined symbols
 - For all remaining edges \(i, j\):

\[i \rightarrow C(x) \rightarrow C'(x)\]
(1 - \(\epsilon\), 2, 2)-Recoverable Codes

- There will be erroneous edges between connected components
- Need to find large components with few outgoing edges

Spectral partitioning:
- Find the eigenvectors of the adjacency matrix
- Use them to partition the graph

- \(O(n \log n)\) time, can reduce to \(O(n)\) by one level of concatenation
- \(O(l)\) layers of expander graphs
- Similar ideas, more messy details

Conclusions

- Can decode from 99% of errors in linear time

Questions:
- Can we improve the rate while preserving linear time?
- Can we beat RS rate while preserving polynomial time?