Today

- Complexity results for coding problems
 - (Might as well restrict to linear codes).
 - Hardness of the nearest codeword problem (NCP).
 - Approximation variants.
 - Decoding with preprocessing.
 - Decoding Relatively Near Codeword.
 - Minimum distance problem.

- What is not (known to be) hard?

Hardness of Nearest Codeword

- Given code with generator matrix G and received vector r, find x that minimizes $\Delta(xG, r)$.
- Hard even when $r = 1$.
- Let G be incidence matrix of graph.
 - Rows = vertices
 - Columns = edges
 - 1 if edge incident to vertex.
- Messages = subset S of vertices; Codewords = characteristic vectors of cuts (1 if edge $S \rightarrow \bar{S}$).
- Nearest codeword to 1 is Max Cut!

Approximations

Search question: Given G and r compute x' such that $\Delta(x'G, r) \leq \alpha \Delta(xG, r)$ for any x.

Estimation question: Compute $t \in [\Delta(xG, r), \alpha \Delta]$.

Gap decision problem: Given (G, r, e) promise that $r = \min_x \Delta(xG, r) \in [t, \alpha t]$ decide if $r \leq t$ or not.

Note: Problems are provably no harder as we go down.

Analogous definitions for maximization problems.

Approximating NCP

- Know: Max Cut hard to approximate to within some $\alpha > 1$.
- Conclude? NCP hard to approximate?
 - Not immediate: If $X \in \{0, \ldots, m\}$ hard to approximate, is $m - X$ also hard? Not necessarily. E.g., if X actually in $\{0, \ldots, \sqrt{m}\}$, then m is a GOOD approximation to $m - X$!
 - Fortunately, in our case, we know $X \in \{m/2, \ldots, m\}$.
 - Can conclude: α approximation to $m - X$ gives $\alpha' = 1/(2 - \alpha)$ approximation to X. (Not useful if $\alpha \geq 2$. Why? But as $\alpha \to 1$, $\alpha' \to 1$ also!)
Approximating NCP (contd.)

- Conclude: NCP hard to approximate to some $\alpha > 1$.

- Self-improving problem: Given G of length n can construct a “product” $G^{(2)}$ of length n^2 such that G has vector of weight $n - w$ iff G has vector of weight $n^2 - w^2$.

- Conclude α-approx. hard implies α^2 approximation is hard implies any constant approximation is hard.

- The actual product:
 - Codewords of $G^{(2)}$ have n blocks of length n.
 - Any codeword of $G^{(2)}$ labels blocks as 0/1. 0 blocks contain codewords of G, 1 blocks contain their complement.

$0/1$ labelling of blocks corresponds to codeword of G.
- Exercise: Show how to construct such a linear code.

First round of criticisms

- Code shouldn’t be part of input.
 - After all we should be given lots of time to devise decoding algorithm.

- But how is this code “error-correcting”.
 - To make sense, should be trying to correct less errors than minimum distance of code.

- What about Reed-Solomon codes (or substitute your favorite codes here)?
Decoding a fixed family of codes

Kuck-Naor: Can “inject” generator of code into received vector, while fixing code.

- Works whenever generator is a-sparse, i.e., has a 1s (even more general, actually).
- Basic idea: a-code C: Generator matrix has $2\binom{k}{a}$ columns, two for every column of a 1s.

Now suppose have code B and received vector r as instance of NCP. Construct new received vector r' as follows: if a twin-pair of columns of C not in B, then put a 0, 1 in corresponding coordinates of r'. If twin-pair is in B, then duplicate corresponding entry in r.

Addressing other complaint

Ko-Sudan: Can “boost” distance of code without altering the problem at hand (by much).

- Idea: Suppose finding nearest codeword to code generated by A is hard to approximate (to within factor of 100).
- Specifically, have A, r, d such that telling if $\tau > d$ or $\tau \leq d/100$ is hard.
- Attach to A, a matrix B which is generator of code of distance d.
- How to generate r'? Details skipped...

A related problem

- Can we even compute minimum distance?
- Hardness of RNC above implies NO!
- Suppose G generates code of distance d with (G, r, d) being hard instance of NCP. Then code $G' = G + r$ (with codewords being codewords of G translated by some multiple of r has distance $< d$ iff orig. instance is a YES instance.
- Implies Min Dist is hard to approximate to within some constant.
- Self-improvability (why?) implies hard to approximate to within any constant.
Open questions

• Solved problems raise more questions than resolve.

• Potentially polynomial-time solvable problems:
 — Exists a single decoding algorithm decoding all codes up to half the minimum distance.
 — Exists a minimum distance lower-bounding algorithm with guarantee that if rel. distance is \(1 - \frac{1}{q} - \epsilon\), its lower bound is at least \(1 - \frac{1}{q} - \sqrt{\epsilon}\).
 — NCP for Reed-Solomon (or your favorite) codes can be solved in polynomial time.

• Another general question: Decoding is a property of code? or the generator?