Today

- Applications of Codes in Computer Science: Randomness Extractors

Randomness and Computation

- Randomness useful in design of algorithms.
- In reasonable number of cases - only efficient algorithms known are randomized algorithms.
- What happens in practice?

Randomness in nature

- One hope: Computational pseudo-randomness. Universal algorithm that given t, m produces $\text{poly}(t)$ strings of length m that look “random” for any algorithm A running in time t.

- Other hope: Randomness inherent in physics. But, even then:
 - Algorithms assume m unbiased independent bits.
 - Sources of randomness produce dependent bits.
 - How to “extract” pure randomness?

Notions of imperfect randomness

- Good imperfectness: statistically close to uniform.
 - Prob. distribution is a vector of ℓ_1 norm 1.
 - Statistical distance between π and σ is $\frac{1}{2}||\pi - \sigma||_1$.
 - Statistical distance between π and σ at most ϵ implies $\Pr_{x \in \sigma}[A(x) = 1] - \Pr_{x \in \pi}[A(x) = 1] \leq \epsilon$.
 - While would be ideal to convert imperfect randomness into m independent uniform bits, it is good enough to generate distribution that is ϵ-close to U_m the uniform distribution on m bits.
Notions of imperfect randomness (contd.)

- Bad imperfectness: \(k \) bits of min-entropy.
- Distribution \(\pi \) on \(\{0,1\}^n \) has \(k \) bits of min-entropy if no string \(x \in \pi \) has probability more than \(2^{-kn} \).
- Example: Some \(k \) bits random, others fixed in advance.
- Worse example: Uniform on some \(2^k \) strings.
- How to use such “randomness”?
- Non-trivial!

\[\text{Ex} \text{tractors} \]

- \(\text{Ext} : \{0,1\}^n \times \{0,1\}^\ell \rightarrow \{0,1\}^m \) is a \((k, \epsilon)\)-extractor if for every distribution \(D \) of min-entropy \(k \), the distribution \(\{\text{Ext}(x, y)\}_{x \in D, y \in U_1} \) is \(\epsilon \)-close to uniform.
- Usage: Given \(n \) bit string \(x \in D \) and algorithm \(A \) using \(m \) bit random strings, run \(A \) on \(\{D(x, y)\}_y \).
- W.p. \(1 - \sqrt{\epsilon} \), \(x \) is such that \(E_y[A(\text{Ext}(x, y))] \) is \(\sqrt{\epsilon} \) close to its expectation on uniform.

\[\text{Trevisan Extractors} \]

- Ingredients:
 - \([N, n, *]_2\) code \(E \) list-decodable upto \(1/2 + \delta \) fraction error with \(\text{poly}(1/\delta) \) codewords. Will let \(N = 2^\ell \).
 - \((t, \ell, a)\)-block design \(B \) with \(|B| = m \):
 i.e., \(B = \{s_i\}_{i \in [m]} \), where \(s_i \subset [\ell] \) and \(|s_i| = \ell \) and \(|s_i \cap s_j| \leq a \).
- \(y \in \{0,1\}^\ell \) defines projection \(\pi_y : \{0,1\}^N \rightarrow \{0,1\}^m \) as follows: \(\pi_y(z) = z_{y|s_1} \cdots z_{y|s_m} \).
- \(\text{Ext}(x, y) = \pi_y(E(x)) \) !

\[\text{Analysis} \]

- Consider \(x \)’s such that \(A \) not fooled by \(\text{Ext}(x, y) \).
- Then \(A \) can predict many next bits of \(\text{Ext}(x, y) \).
- Step 1: Show by careful argument that this gives a succinct description of some \(r \) close to \(E(x) \) (for fixed \(A \)).
- Step 2: this implies that \(x \) has small description.
- By PHP, can’t have too many \(x \)’s with small description (even with fixed \(A \)).
• For us Step 2 is trivial: If E is $((\frac{1}{2} - \epsilon)N, L)$-error-correcting, then $\log L$ additional bits specify x provided $\Delta(E(x), r) \leq (\frac{1}{2} - \epsilon)N$.

• So we can focus on Step 1.

Details of Step 1

• Fix A, x. Let $w(y) = \text{Ext}(x, y)$ and $z = E(x)$.

• Step 1.1: Suppose A has different acceptance probability on $\text{Ext}(x, y)$ than on uniform, then there exists $i \in [m]$ and function f such that $f(w(y_1), \ldots, w(y_{i-1}))$ equals $w(y_i)$ with high probability for random y.

• Step 1.2: There exist y_1, \ldots, y_n such that $w(y_j) = z_j$; the string $\{w(y_j)\}_{i < j, j \in [n]}$ can be specified with much less than n bits (specifically $m2^n$ bits); and f retains its advantage on y_1, \ldots, y_n.

• Step 1.3: Put two & two together.

Details of Step 1.1

• Disclaimer 1: Standard argument. Goes back to [[Yao,unpublished]].

• Let D_0, \ldots, D_m be distributions moving from extractor to uniform: Pick random w from extractor, and u uniformly. $D_i =$ last i bits from u, and first $m - i$ bits from w.

• Triangle inequality implies A has different biases on D_{i-1} and D_i for some i.

• f follows somehow ...
Details of Step 1.2

- Natural choice for \(y_1, \ldots, y_n \) when we think about it.
 - Fix \(y_\ast \) on all but \(S_i \) to fixed random values and on \(S_i \) let is vary over all \(n \) possibilities.
 - \(f \) should retain its bias on this set to, by averaging.
 - How many possibilities for \(y_j|S_i \)? All \(n! \)
 - How many possibilities for \(y_j|S_{i'} \)? At most \(2^a \), since \(|S_i \cap S_{i'}| \leq a \).
 - Can specify \(x_{y_j|S_{i'}} \) for all \(i' \) by specifying \(m \cdot 2^a \) values.
 - Obtain properties needed.