
6.895 Essential Coding Theory September 15, 2004

Lecture 3

Lecturer: Madhu Sudan Scribe: Adi Akavia

Today’s Plan

• Converse coding theorem

• Shannon vs. Hamming theories

• Goals for the rest of the course

• Tools we use in this course

Shannon’s Converse Theorem

We complete our exposition of Shannon’s theory from last lesson in proving Shannon’s Converse Theorem.
Namely, we show that there exists no encryption and decryption algorithms (not necessarily efficient)
such that transmit messages in rate exceeding H(p).

Let us denote by BSCp,n the Binary Symmetric channel that transmits n bits in each time step,
where each bit of the message is flipped w.p. p ≤ 1

2 .

Theorem 1 (Shannon’s Converse Theorem). ∀BSCp,n, n ≥ n0, ε > 0, R > 1 − H(p) + εn, and

for all encoding and decoding E : {0, 1}
Rn

→ {0, 1}
n

and D : {0, 1}
n
→ {0, 1}

Rn
,

Pr
m∈{0,1}Rn,η∈BSCp,n

[D(E(m) + η) = m] ≤ exp(−n)

Proof. Informally speaking, the proof is based on two facts: On the one hand, there are roughly
V olume(Ball(p± ε), n)) ≈ 2H(p)n received words are likely to be a corrupted version of m, since w.h.p
np ± ε errors falls in any transmitted message m. On the other hand, the average number of received
words that decode to m is 2n−k, since D : {0, 1}

n
→ {0, 1}

k
, for k = Rn. Now, since 2H(p)n >> 2n−k,

then each corrupted word is mapped back to its original with only a very small probability.
More formally, fix some encoding and decoding mappings E, D. Let Im,η be a correct decoding

indicator, namely, Im,η = 1 if D(E(m) + η) = m, and Im,η = 0 o/w. We are interested in the sum
1
2k

∑

m,η Im,η. To compute this sum, note that when we fix some received vector r = E(m) + η, we
can write the summation as

∑

r

∑

m Im,r−E(m). Now, since there is a unique mr s.t. D(r) = mr, then
Im,r−E(m) = 1 iff m = mr, and Im,r−E(m) = 0 otherwise. Therefore,

∑

m,η

Im,η = 2n

To compute the probability of correct decoding, fix p′ = p−ε (note that p′ still satisfies R > 1−H(p′)).
We consider two types of error vectors η: (a) η has at most p′n non-zero entries, and (b) η has more
than p′n non-zero entries. By Chernoff Bound, event (a) happens with very small probability exp(−n).
Therefore,

Pr[correct decoding] ≤ exp(−n) + Pr[correct decoding|η has more than p′n non-zero entries]

= exp(−n) +
∑

η/∈B(p′n,n)

∑

m

Pr[message m, error η, Im,η = 1]

3-1

As the choices of message, error and decoding algorithm are independent, and Pr[m] = 2−k, Pr[η|η /∈
B(p′n, n)] ≤ 1

(n
p′n)

≈ 2−H(p′)n, we have: Pr[message m, error η, Im,η = 1] ≤ 2−k · 2−H(p′)n. Therefore,

Pr[correct decoding] ≤ exp(−n) +
∑

η/∈B(p′n,n),m

2−k · 2−H(p′)n · Imη

≤ exp(−n) + 2−(k+H(p′)n−n) = exp(−n)

�

Generalizations of Shannon’s Theorems

Shannon’s paper profoundly influenced both theory and practice of communication, as well as other fields.
The theorems we stated and proved so far cover only a small part of the paper. A few generalization
we’d like to mention follows.

Shannon not only considers the Binary Symmetric channel but also channels where the input and
output are taken from arbitrary alphabets Σ and Γ. E.g, Σ = {±1}, Γ = R. Shannon shows that as
long as the error has some finite variance, then we might as well think of the channel as having some
finite capacity (even when the alphabet in infinite as in R!).

Shannon also considers more general probability distributions on the error of the channel. In particu-
lar, Shannon considers Markovian error model. Markovian models can capture situations where there are
bursts of huge amounts of error, by considering a finite set of correlated states. This models influenced
not only communication and coding theory but also other area such as Natural Language Processing,
where it lead to the n-gram model.

Shannon vs. Hamming

We now contrast the works of Shannon and Hamming

• Both state formal mathematical models, and prove both feasibility and infeasibility.

• Constructive vs. Non-constructions. Shanon work deals with constructive settings of encoding
and decoding algorithms, while Hamming consider codes as combinatorial objects {E(x)}x. Yet,
Hamming’s proves constructive results (yielding the Hamming code), while the technique of the
probabilistic method used by Shannon is very un-constructive.

• Worst-case vs. Probabilistic/Average case theory. Hamming deals with adversarial situations,
namely, he analyzes worst-case scenarios; in contrast, Shanon analyzes average-case scenarios with
a predefined error model of the channel, or message generation model for the source. Shannon
average-case theory gives is far more complete than Hamming’s worst-case theory, where there are
still many open questions.

Course Goals

In this course we explore questions arising both from Hamming’s and from Shannon’s works.

Targets arising from Shannon’s Theory

The main target arising from Shannon’s theory is to explicitly find efficient encoding and decoding
function. In particular, for Binary Symmetric channel, BSCp, can we come up with polynomial-time
encoding and decoding functions? Or, better yet, linear-time functions?

3-2

Shannon tells us that for any rate R < 1 − H(p) we can encode/decode. However, wjem we are
guaranteed 1 − H(p) − R = ε, we are also interested in studying the complexity as a function of ε. In
fact, a lot of the current research is concentrated on this type of questions.

Targets arising from Hamming’s Theory Targets

To find efficient encoding and decoding algorithms we naturally require good codes. This leads us
to targets of Hamming Theory of constructing ”good codes”, and associating with them efficient en-
coding/decoding functions. Let us remark that in the analysis of this codes we might consider both
adversarial and probabilistic models.

To be more accurate, we must specify what are ”Good Codes”. Let us list the the interesting
parameters and whether we want them to be maximized or minimized.
Parameter of Error-Correcting Codes n, k, d, q

• n is the block length, namely, the code is a subset Σn. We’d like to minimize n.

• k is the information length, that is the length of the messages. Note that the size of the code is
|Code| =

∣

∣Σk
∣

∣. We’d like to maximize k.

• d is the minimum distance of code d = minx6=y ∆Hamming(x, y). We’d like to maximize d.

• q is the alphabet size |Σ|. It is not clear whether want q to be minimized of maximized. Nonetheless,
we general assume that we want to minimize q, as empirical observation indicate that it’s easier
to design good codes with smaller alphabet.

To simplify the parameters, we usually consider normalized parameters: R = k
n (to be maximized),

δ = d
n (to be minimized), and study R vs. δ. To further simplify the parameters, we also often restrict

ourselves to q = 2.

Tools

The tools we use in this class usually comes from either Probability Theory or Algebra of Finite Fields.
A summary of those tools follows.

Probability Theory

• Linearity of expectation

• Union bound

• Probability of product of independence variables is the product of their individual probabilities

• Tail bounds (i.e., the probability that a random variable deviates from its mean):

– Markov’s Inequality: If X > 0, then Pr[X > kE[X]] ≤ 1/k

– Checyshev’s Bound: Mardov’s inequality applied to (X − E[X])2)

– Chernoff Bound: if X1...Xn ∈ [0, 1] are independent random variables with expectations

E[Xi] = p, then Pr[
∣

∣

∣

P

i Xi

n − p
∣

∣

∣
> ε] ≤ e−ε2n/2

3-3

Algebra of Finite Fields

Fields and Vector Spaces

Definition 2 (Field). A Field (F, +, ·, 0, 1) is a set F with addition and multiplication operations +, ·
(respectively) and special elements 0, 1 such that:

• addition forms a commutative group on the elements of F,

• multiplication forms a commutative group on the elements of F \ {0}, and

• there is a distribution-law of multiplication over addition.

The important thing for us is that finite fields exists.

Theorem 3. For any prime p, and m ∈ Z+, there exists a field Fpm of size pm.

Where m = 1 the field of p elements is Fp = {0, ..., p− 1} with addition and multiplication modulo
p. For m > 1, the field Fpm is defined by an irreducible polynomial1 f(x) of degree m with coefficients
from Fp, and the operations are taken modulo p as well as modulo f(x). The set of all polynomials over
Fp modulo p and f(x) has precisely pm elements and it fulfills the requirements of a field. For example,

F18 =
{

polynomials of deg ≤ 17 with 0/1 coefficients, + and · are mod 2 and mod x18 + x9 + 1
}

Definition 4 (Vector Space). A Vector Space V over a field F is a quadruple (F, V, +, ·), where
V = F

n, + is vector addition (i.e., (v1, ..., vn) + (u1, ..., un) = (v1 + u1, ..., vn + un)), and · is a scalar
product (i.e., α(v1, ..., vn) = (αv1, ..., αvn)).

Linear Codes

We’d like the codes we construct to have nice properties such as succinct representation, efficient encod-
ing, and efficient decoding. Linear codes (as defined below) is a family of codes that has two of these
properties: succinct representation, efficient encoding.

Let us first define what is a linear subspace.

Definition 5 (Linear Subspace). Let V be a vector space over a field F. A subspace L ⊆ V is a linear
subspace if every v1, v2 ∈ L and α ∈ F satisfy: v1 + v2 ∈ L and αv1 ∈ L.

Now we define linear codes.

Definition 6 (Linear Codes). For Σ a field F, C ⊆ Σn is a linear code iff C is a linear subspace of
F

n.

Linear codes have the two desirable properties of succinct representation and efficient encoding.
Succinct representation: a linear codes is defined by a basis (i.e., a set b1, ..., bk ∈ C s.t. ∀α1, αk ∈ F,
∑

αibi = 0 implies α1, .., αk = 0).
Efficient encoding: the basis representing the linear code also defines the generator matrix G by
having bi as the ith row of G. This yields an efficient encoding of each x by Gx.

An alternate specification of Linear subspace is by its null space:

C⊥ {y | 〈y, v〉 = 0∀v ∈ C}

(where the inner product 〈x, y〉 =
∑

xiyi for any x, y ∈ F). For linear codes C, the null space C⊥ is also
linear, and dim(C⊥) + dim(C) = n.

Empirically, there seem to be no harm in restricting ourselves to linear code. Therefore the study of
linear codes will be a big emphasis of this course. In particular we’ll consider codes based on polynomials
over finite fields.

1Irreducible polynomial over Fp is one that can’t be factored over Fp

3-4

Polynomials over finite fields

F[X] denotes the ring of polynomials over F. The elements of F[X] are vectors (c0, ..., ck) which are

associated with the formal polynomial
∑k

i=0 cix
i with addition and multiplication defined the standard

way.
The following theorem proves to be incredibly useful. The proof is not hard.

Theorem 7 (Evaluation of polynomials). Let C(x) =
∑k

i=0 cix
i, and let C(α1),, C(αq) be evalu-

ate of C(x) over fields’ elements α1, ..., αq. If q > k, then these evaluations specify the polynomial C(x)
uniquely.

See more details in the algebra notes on web.

3-5

