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Lecture 17

Lecturer: Madhu Sudan Scribe: Abhinav Kumar

1 Topics today

1. Spielman codes + decoding

2. Correcting random error in linear time

3. Expander Codes (Type II)

References : Guruswami, Survey on Error-Correcting codes etc., SIG ACT News 2004

2 Spielman codes

Recall the definition of Spielman codes.
We have a reducer code Rk for each k which has a message length of k bits and a parity check of

k/2 bits. The code is obtained from a low degree bipartite with k left vertices (message) and k/2 right
vertices. The parity of each vetex on the right is computed as the sum of all its neighbors on the left.
Then we take the collection of these parity bits as the total parity check. We will need some expander
properties for the graph in order for Rk to be a good code, but these will be specified later.

Now, the Spielman coding procedure can be described thus: Ck : k message bits and 3k parity check
bits.

m
Rk7→ [m, c]

c
Ck/2

7→ d
[c, d]

R2k7→ d

Overall, the encoding is m 7→ [m, c, d, e] where the lengths of m, c, d, e are k, k/2, 3k/2, k respectively.
Assume that ∃ε > 0, and a decoding algorithm A for Rk such that if [m, c] is the output of Rk on

m, and [x, y] are such that δ(x, m) ≤ ε and δ(y, c) ≤ ε then A(x, y) = m′ satisfies δ(m, m′) ≤ δ(y, c)/4.
That is, the relative error of A is only dependent on the relative error introduced on the parity check.
We will show the existence of such an algorithm later in this lecture.

3 Decoding algorithm

The decoding algorithm for the code Ck runs as follows: On input [m′, c′, d′, e′],

1. [c′′, d′′]← A([c′, d′], e′)

2. c′′′ ← Dk/2([c
′′, d′′])

3. m′′ ← A([m′, c′′′])

4. Output m′′

We hope to correct a constant fraction τ of errors. We can determine τ as below, assuming the
existence of Rk, A as given for now.

If less than fraction τ errors happen, then ∆([m, c, d, e], [m′, c′, d′, e′]) ≤ 4τk. So we have

∆(m, m′) ≤ 4τk, ∆([c, d], [c′, d′]) ≤ 4τk, ∆(e, e′) ≤ 4τk
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.
Now the inequalities ∆([c, d], [c′, d′]) ≤ ε(2k) and ∆(e, e′) ≤ εk hold as long as 4τ ≤ ε. This will

imply by the above condition on A that

∆([c, d], [c′′, d′′]) ≤ 2k ·
∆(e, e′)

4k
≤ 2τk

Now this implies c = c′′′ in the Step 2 of decoding, by induction, since the fraction of errors is at most
2τk/(2k) = τ .

Finally, in step 3, we have that ∆(m, m′) ≤ 4τk ≤ εk, as well as ∆(c, c′′′) = 0. Therefore the decoding
algorithm for Rk gives δ(m, m′′) ≤ δ(c, c′′′)/4 = 0. Therefore m = m′′ as required.

To conclude, we see that we can correct τ = ε/4 fraction of errors.

4 The reducer code Rk

For the reducer Rk, we pick a bipartite graph Gk with k left vertices, k/2 right vertices, which is (c, 2c)
regular, and a γ, δ expander with γ = 7c/8. Recall that the parity check consists of the collection of the
values assigned to each of the right vertices, which is the parity of all its left neighbors.

For the decoding algorithm, we use the Sipser-Spielman Flip algorithm : while there exists a left
vertex with more unsatisfied right neigbours than satisfied ones, flip that vertex.

Suppose that the codeword [m, c] gets mutated to [m′, c′] where the subset of bits where m and m′

differ is the set S of left vertices, and the subset where c and c′ differ is T .

Lemma 1 Let c > 8 and ε ≤ δ/(3/2 + c). Suppose |S| ≤ εk, |T | ≤ ε(k/2). When the Flip algorithm

stops, the number of incorrect bits on the left is ≤ |T |/2.

Proof : Initially, we have
# unsat right vertices ≤ c|S|+ T

and since the number of unsatisfied right vertices decreases through any iteration of Flip, we see that
there can be at most c|S|+T iterations. This ensures that at any stage, if the vertices on the left encode
m′ and m is the original message, we have

∆(m, m′) ≤ ∆(m, m′

init) + #iterations ≤ εk + c|S|+ |T | ≤ εk(1 + c + 1/2) ≤ δ

Now, at the end, let S′ be the set of incorrect left vertices. The number of unsatisfied neighbors on
the right is at least

|Γunique(S
′)| − |T | ≥

3

4
c|S′| − |T |

but also at most c|S′|/2 since the algorithm stopped. So we have

(
3c

4
−

c

2
)|S′| ≤ |T |

so that |S′| ≤ 4|T |/c < |T |/2.

5 Correcting random errors

The rate vs. distance relationship is not so great for this code, but we can use it to correct random
errors as follows.

Take a message of size k, then encode by a Spielman code to get a codeword of size (1 + ε)k. Break
up the codeword into pieces of c bits each (c some large but fixed integer), and then use a good Shannon
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code of message size c to encode each of these pieces. The Shannon code maps c bits to a length of
c

1−H(p) bits, where p is the probability of error on a binary symmetric channel, for instance. For each

of the c-sized blocks, we can decode the received message correctly with probability 1− exp(−c). Sp if
the Spielman code is designed to tolerate δ fraction of errors, then we can expect that we will decode
correctly overall, as long as 1− exp(−c) < δ. the rate of the code is worse off from the Shannon code by
a factor of 1/(1 + ε), but the gain is that we can tolerate a fractional error in the whole message. Note
that if we had just broken up the original message into chunks of c bits, and encoded each of them, then
the cumulative probability of decoding correctly would be (1 − exp(−c))(k/c), where k is the length of
the original message. If we choose c constant, this becomes really small as n gets large.

Finally, a few words on how to reduce the parity check of the Spielman code to εk from 3k. We just
use an appropriate bipartite graph to get a reducer code Rk,ε of parity check length kε/4. Then use
Cεk/4 on the parity check, where Cr is the code described above. This gives a total parity check length
of εk.

6 ABNNR

Can we build a large distance code over a large alphabet using a smaller alphabet code?
Say we have a alphabet of size q = 2a, whose letters can be represented by a bits (for concreteness,

take the alphabet to be Fq. One could try the following idea: take a (n, k, εn) code over {0, 1} and just
break up a codeword into n/a codewords over Fq, choosing the first consecutive a bits, the next a bits
and so on. This would give us a (n/a, k/a, εn/a)q code. The distance bound is also reduced by a factor
of a because two codewords may differ in as many as a places which get combined into one codeword
over Fq. So far, this process hasn’t bought us any mileage even though the field size went up.

One can visualize breaking up the n bit codeword into blocks of size a as follows: consider a bipartite
with n vertices on the left, n/a vertices on the right. There’s an edge from vertices 1, . . . , a on the left to
vertex 1 on the right, vertices a + 1, . . . , 2a to vertex 2 on the right, and so on. the problem with taking
such a restricted graph is that any change of a bit on vertex 1 on the left only shows up as a change in
one vertex on the right! So Alon, Bruck, Naor, Naor, and Roth (’92) had the idea that maybe we should
consider more general bipartite graphs with expansion properties.

Consider the following definition of expander graph: It’s a bipartite graph with left vertices L, right
vertices R, with |L| = |R| = n, such that ∀S ⊂ L, |S| = δn, we have |Γ(s)| ≥ (1− ε)n. So this expands a
set of small size δn on the left to almost the entire right vertex set. We can expect to find ε = δ = 1/d
and d-regular graphs with these properties (more on this later). Now the ABNNR code consists of the
following: take a message of length k over {0, 1}, encode it to n bits using our given code, then for each
vertex on the right write down the value of its d left neighbors to get a d-bit string. The n elements of
a 2d-bit alphabet so obtained give the desired codeword. This will be, in fact, an additive code.

ABNNR didn’t give a decoding algorithm for this procedure. Recently, Guruswami and Indyk came
up with a decoding algorithm. Using this construction, we can construct codes whose rates is O(ε),
alphabet size is a function of (1/ε), which corrects 1− ε errors, and has a polytime decoding algorithm
(though the dependence on ε of the decoding algorithm is probably nasty).
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