1 Overview

In this lecture we will introduce and examine some topics of Pseudo-randomness and we will see some applications of coding theory to them. Especially we will define l-wise independent random number generator function G and construct it. And then we will define and examine δ-almost l-wise independent G, and ϵ-biased G. And finally we will give a construction of a ϵ-biased space G using some results of coding theory.

2 Use of randomness

Usually a randomized algorithm A takes (x, y) as input where x is “real” input and y is a random string independent from x. And we hope that for some desired function $f(x)$, $\Pr[A(x, y) = f(x)]$ is higher than some criteria, where probability is taken over the distribution of $y \in \{0, 1\}^n$. Usually we assume that each bit of y is uniformly and independently distributed. Then how can we obtain such random string y? We may obtain y by physical sources of randomness, for example, "Zener Diode". But in many situations generating randomness by physical source may be very expensive. So computer scientists try to design algorithm that use a few random inputs and generates ‘Pseudo-random’ string that is pretty longer in size than its input.

3 Pseudo-randomness

Suppose that we are given a randomized algorithm A that satisfies

$$\Pr_{y \in \{0, 1\}^n}[A(x, y) = f(x)] \geq \frac{3}{2}$$

(1)

One may hope to find a $G : \{0, 1\}^t \to \{0, 1\}^n$ satisfying

$$\Pr_{s \in \{0, 1\}^t}[A(x, G(s)) = f(x)] \geq \frac{2}{3} - \epsilon.$$

(2)

For small ϵ. Here, We assume that $s \in \{0, 1\}^t$ has uniform distribution.

- Question: For sufficiently small $\epsilon > 0$, does there exist G satisfying (2) for every A?

- The answer is No.

(Fix $G : \{0, 1\}^{n-1} \to \{0, 1\}^n$. Then $\exists S \in \{0, 1\}^n$ such that $|S| = 2^{n-2}$ and

$$\Pr_{s \in \{0, 1\}^{n-1}}[G(s) \in S] \geq \frac{1}{2}.$$

(3)

Let $x = \emptyset$ and Let $A(x, y) = 1$ if $y \in S$, and $A(x, y) = 0$ otherwise.

Then $\Pr_{y \in \{0, 1\}^n}[A(y) = 0] = \frac{3}{4}$ but $\Pr_{s \in \{0, 1\}^t}[A(G(s)) = 0] \leq \frac{1}{2}$.)
So we may try to pick a broad class of Algorithms W and have G work for every $A \in W$. If we can do that for $W = \{\text{all polynomial time algorithms}\}$ or $W = \{\text{all polynomial sized circuits}\}$, it would be nice. But we don’t know whether they have such G. For next W’s it is known that they have such G’s.

- $C = \{\text{algorithms that depend on limited independence}\}$
- $C = \{\text{algorithms that perform “linear tests”}\}$

In this lecture, we will deal with the first case.

4 l-wise independence

Definition 1 We say $G : \{0,1\}^l \rightarrow \{0,1\}^n$ is l-wise independent if $\forall T \subseteq [n], |T| = l, \forall b_1, b_2, \ldots, b_l \in \{0,1\}$,

$$Pr_{s \in \{0,1\}^l}[G(s)|_T = (b_1, b_2, \ldots, b_l)] = 2^{-l}. \quad (4)$$

When $W = \{\text{algorithms that depend on less than or equal to } l \text{ independence}\}$, l-wise independent G works for every $A \in W$.

To construct G that is l-wise independent, let C be a $[n, t, \ell]_2$ linear code. s.t. C^{\perp} is a $[n, n-t, \ell+1]_2$ linear code.

Claim 2 $x \mapsto C(x)$ is a l-wise independent generator.

(For the proof of claim 2, See problem set 1, problem 4.)

Let C^{\perp} be a BCH code with distance $(\ell + 1)$. Then, C^{\perp} is a $[n, n-\lfloor \frac{\ell}{2} \rfloor \log n, \ell + 1]$ code. So C is a $[n, \lfloor \frac{\ell}{2} \rfloor \log n, \ell]$ code. And we obtain l-wise independent G s.t.

$$G : \{0,1\}^{\lfloor \frac{\ell}{2} \rfloor \log n} \rightarrow \{0,1\}^n \quad (5)$$

For a fixed $t, \ell = \lfloor \frac{\ell}{2} \rfloor \log n$ is polynomial over n. So it gives a polynomial sized sample space $\{0,1\}^l$ for all constant l.

5 δ-almost l-wise independence & ϵ-biased space

Sometimes l-wise independence is “stronger” than what we need. Let δ be a positive real number.

Definition 3 $G : \{0,1\}^l \rightarrow \{0,1\}^n$ is δ-almost l-wise independent if the following holds $\forall T \subseteq [n], |T| = l$ and $\forall A : \{0,1\}^l \rightarrow \{0,1\}$,

$$|Pr_{s \in \{0,1\}^l}[A(G(s)|_T) = 1] - Pr_{y \in \{0,1\}^l}[A(y) = 1]| \leq \delta \quad (6)$$

Definition 4 G is ϵ-biased if for every non-trivial linear function $A : \{0,1\}^n \rightarrow \{0,1\}$, if is the case that

$$|Pr_{y \in \{0,1\}^n}[A(y) = 1] - Pr_{s \in \{0,1\}^l}[A(G(s)) = 1]| \leq \epsilon. \quad (7)$$

Note that for every non-trivial linear A, $Pr_{y \in \{0,1\}^n}[A(y) = 1] = \frac{1}{2}$, and there exist $T_A \subseteq [n]$ s.t. $A(y) = \bigoplus_{i \in T_A} y_i$. So, (7) becomes

$$\frac{1}{2} - \epsilon \leq Pr_{s \in \{0,1\}^l}[A(G(s)) = 1] \leq \frac{1}{2} + \epsilon \quad (8)$$

Proposition 5 Every ϵ-biased generator also yields a $2^l\epsilon$-almost l-wise independent generator for all l.

We will not prove this proposition here. Now suppose that we want a $\frac{1}{n^\epsilon}$-almost log n -wise independent family. For $\epsilon = \frac{1}{n^e}$, if we are given ϵ-biased G, by setting $l=\log n$, G is a $\frac{1}{n^e}$-almost log n-wise independent generator as we desired. So now we need to construct a $\epsilon = \frac{1}{n^e}$-biased space G.

19-2
6 construction of ϵ-biased space G

Let $N = 2^t$ and suppose that we are given $[N, n, (\frac{1}{2} - \epsilon)N_2]$ linear code C with condition that its maximum weight (number of 1’s) codeword has weight at most $\left(\frac{1}{2} + \epsilon\right)N$. Suppose further that $N = \frac{n^3}{2}$. Let $n \times N$ matrix F be the generator matrix of C. Let $j : \{0, 1\}^t \rightarrow [N]$ be a 1-1 correspondence. For $s \in \{0, 1\}^t, 0 \leq i \leq n$, define

$$G(s)_i = F_{j(s), i}.$$ \hfill (9)

Then by the property of C, for any nonempty $T \subseteq [n],$

$$\frac{1}{2} - \epsilon \leq Pr_{s \in \{0, 1\}^t}[\bigoplus_{i \in T} G(s)_i = 1] \leq \frac{1}{2} + \epsilon.$$ \hfill (10)

So, G is an ϵ-biased space.

For $\epsilon = \frac{1}{n^r}, N = \frac{n^3}{r^2} = n^{10}$ So, if $t = \log N = 10 \log n$ then we can obtain $\frac{1}{n^r}$-almost log n-wise independent family.

On the contrary to the Pseudo-random generator, random number extractor extracts “pure” random strings from “contaminated” random sources. Here contaminated means that it is far from uniform distribution. It takes (x, y) as input where x is contaminated random string and y is pure but short random string. Using x and y, extractor tries to get its output z near to uniform distribution. Generally z is a rather shorter string than x. In the next lecture, we will talk about random number extractor.