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1 Introduction

Today we will cover polynomial rings and look at the Division Algorithm and Gauss’s Lemma.
Then we will introduce finite fields.

2 Polynomial Rings

We first note the division algorithm for polynomials.

Fact 1 Given a(x), b(x) ∈ F [x] for some field F , there exists polynomials q(x), r(x) ∈ F [x]
with degree of r less than the degree of b, such that a(x) = q(x)b(x) + r(x).

This motivates the concept of evaluation of polynomials. Formally, let R be a ring. Then
define Eval : R[x] × R 7−→ R, where (p(x), α) 7−→ p(α) =

∑
ciα

i, where p(x) =
∑

cix
i. From

this, we can record the following useful corollary.

Corollary 2 1. If b(x) = x− α, then the polynomial r(x) is simply a(α).
2. a(α) = 0 iff (x− α)|a(x).

Proof 1. Note that r(x) has degree less than 1 and so is constant. Evaluate a(x) at α.
2. Write a(x) = q(x)(x− α) + a(α).

Last time we mentioned Gauss’s Lemma, which asserts that R[x] is a UFD iff R is a UFD.
We first show this when R is a field.

Lemma 3 If F is a field, then F [x] is a UFD.

Sketch of Proof Let p(x) ∈ F [x]. Then it factors into finitely many irreducibles. Suppose
p(x) = p1(x) . . . pl(x) = q1(x) . . . qk(x), with each pi, qj being irreducible. We want to show that
k = l, and that for each i, there exists some j such that pi(x) = qj(x). To prove this, we need to
show that pi|qj and qj |pi. To do this, we need the notion of GCD. The idea is that since p1 divides
q1(x) . . . qk(x), p1 divides either q1 or q2(x) . . . qk(x). (Else, gcd(p1, q1) = gcd(p1, q2 . . . qk) = 1
would imply gcd(p1, q1(x) . . . qk(x) = 1.) Repeating this will show that p1 divides qj for some
j.

Lemma 4 Let F be a field. Then F [x, y] is a UFD.

Proof Note that F [x, y] = (F [x])[y]. The field of fraction of F [x] is

F (x) = F̃ [x] = {a(x)/b(x)|a(x), b(x) ∈ F [x]}.
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Claim: If a polynomial p(y) ∈ R[y] factors in R̃[y], then it also factors over R[y].
Proof of Claim: Write p(y) = a0 + . . . ajy

j . Suppose p(y) = p1(y)p2(y) over R̃[y]. Let the
coefficients of p1(y) be b0, . . . , bl ∈ R̃, and let the coefficients of p2(y) be c0, . . . , cl ∈ R̃. Note
that we can write bi = ei/fi, where ei, fi ∈ R. Let F = lcm(f0, . . . , fl). Thus we can write
p1(y) = 1

F p′1(y), where pi ∈ R[y]. Similarly, we can write p2(y) = 1
Gp′2(y) for some G ∈ R. So

p(y) = 1
FGp′1(y)p′2(y). If FG is a unit, then we are done. Else, with a little more work, we can

conclude that F divides every coefficient of p′2, and G divides every coefficient of p′1.
From the previous lemma, F [x] is a UFD. Let R = F [x]. Then the claim implies that F [x, y]

is a UFD.

More generally, we have Gauss’s Lemma:

Lemma 5 Let R be a UFD. Then R[x] is a UFD.

Sketch of Proof Again we work over the field of fraction R̃[x]. Start with p(x) ∈ R[x].
Suppose p(x) = p1 . . . pl = q1 . . . ql.

Claim: If pi is irreducible in R[x], then it is also irreducible in R̃[x].
Note that this Claim is the same one in the previous lemma. Hence, p1 . . . pl = q1 . . . ql are still
irreducible over R̃[x]. Since R̃[x] is a UFD, the two factorizations are unique up to permutations
and units.

This motivates the following algorithmic question. If we can factor over R, can we factor
over R[x]? Suppose we work over a field F . There is the issue of finite precision when dealing
with reals, so we will work with finite fields and rationals. In later lectures, we will investigate
how to factor over polynomials over finite fields and rationals. For now, we will give a quick
introduction to finite field in the next section.

3 Finite Fields

Lemma 6 Let F be a finite field. Then |F | = pt for some prime p and integer t. Furthermore,
for every prime p, integer t ≥ 0, there exists a finite field Fpt of size pt.

Before proving this, we make some observations. First consider t = 1. Observe that Zp is a
field. To see this, note that this is an integral domain (Suppose ab = 0. Then p|ab, implying
p|a or p|b, implying a = 0 or b = 0.) Since Zp is a finite integral domain, it is a field. Note that
inverses can be found efficiently in Zp by using the Extended Euclidean Algorithm.

Suppose h(x) ∈ F [x] is irreducible. Then K = F [x]/h(x) is a field. To see this, let a(x), b(x)
be polynomials in K with degree less than h such that a(x)b(x) = 0. Then a(x)b(x) = h(x)p(x)
in F [x] for some polynomial p(x). Then we have h|a or h|b (irreducibles are primes in UFD),
implying a = 0 or b = 0. Hence F is a finite domain and thus a field. To find the inverse of
a(x) ∈ K, one can again run the Extended Euclidean Algorithm on a(x) and h(x).

Definition 7 Suppose h(x) ∈ F [x] is irreducible. Then K = F [x]/h(x) is called an algebraic
extension of F . If F has no algebraic extension, then it is called algebraically closed.

Definition 8 The splitting field of h(x) ∈ F [x] is the field K such that h decomposes into
linear factors over K.
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Fact 9 Every polynomial h(x) ∈ F [x] has a splitting field.

Sketch of Proof Suppose h is irreducible. Then consider K = F [z]/h(z). Note h(x) ∈ K[x].
h(z) = 0 ∈ K implies that (x − z)|h(x). Factoring out x − z, we can repeat this process until
h factors completely in a much larger field. If h is not irreducible, then it factors into finitely
many. Repeat this for each irreducible factors.

Proof (of Lemma) Let K be the splitting field of Xpt −X over Zp. Consider S = {α ∈ K :
αpt −α = 0}, the roots of the polynomial. Since K is the splitting field of Xpt −X, K contains
all the roots of Xpt −X. Furthermore, it can be shown that all the roots are distinct. (To show
that all roots of a polynomial are distinct over the reals, it suffices to compute the GCD of the
polynomial and its derivative and check if it is 1. Over a finite field, one can define derivative
formally, and the same technique will work.) This implies that |S| = pt. To show that S is
a field, it suffices to show that it is closed under addition and multiplication, and inverses for
both operations exist. To check that the sum of two elements remain in S, one would apply
the Binomial Theorem; the other properties are also easy to verify.

Alternatively, one can use a counting argument to show that for every prime p and integer
t, there exists a monic irreducible polynomial h of degree t over Zp[x]. Then by our previous
discussion, Zp[x]/h(x) is a field of size pt.

4 Group representation

Given a group G and an object x, how can one determine is x in G? To do this, we must
how are G and x specified? Here is one approach using the free group relation. Let Σ =
{x1, . . . , xk, x

−1
1 , . . . , x−k

k } be the alphabet. The elements of G are specified by sequences of let-
ters from the alphabet, modulo some set of relations, e.g., x1x2x3x

−1
4 = 1, where 1 is the empty

string. However, it is undecidable to determine if a group is finite using this setting (related to
the Post Correspondence Problem). Even though every finite group can be represented in this
way, we do not consider such representation useful.

Here is another approach. Recall from group theory that every finite group of order n is
isomorphic to a subgroup (permutation group) of the symmetric group Sn, which consists of
all permutations on [n]. So given a finite group G generated by {π1, . . . , πk}, and x ∈ Sn, we
can ask if x ∈ G.

We will later see that every finite group has a nice representation that allows us to solve
this question in polynomial time. The question also has an interesting interpretation. Consider
a Rubik’s cube. Then x represents the finished configuration of the cube. The question then
becomes how to go from an initial configuration, through a series of operations on the cube,
that would lead to the final configuration.
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