
6.885 Algebra and Computation October 5, 2005

Lecture 8

Lecturer: Madhu Sudan Scribe: Guy Rothblum

Today we will complete the description of Berlekump’s deterministic algorithm for
efficiently factorizing polynomials over Fq (where q = pt for a prime p) in time polyno-
mial in deg(f), t, p.

We will then begin laying the groundwork for algorithms that factor polynomials
over Z[x] and for factoring bivariate polynomials. We will see these two problems are
related and introduce Hensel’s Lifting, a useful tool for solving them.

1 A deterministic Algorithm—Continued

Recall that we saw in the last lecture that for any reducible polynomial f(x) ∈ Fq of degree
2d, there exists a polynomial g(x) ∈ Fq s.t. f(x)|g(x)p − g(x) and the degree of g(x) is at
most 2d − 1. We also saw that if we could find this g(x) efficiently then we could factor
efficiently. We will proceed to show how to find g efficiently.
Recall also that the field Fq is isomorphic to the t-dimentional (additive) vector space Ft

p,
where the isomorphism maps every element α ∈ Fq to a vector vα ∈ Ft

p.

Claim 1 The map A : vα ½ vαp is a linear map.

Proof
We only need to verify that:

1. A(vα+β) = v(α+β)p = vαp+βp(mod p) = vαp + vβp = A(vα) + A(vβ)

2. A(va·α) = a ·A(vα)

Since A is a linear map, it can be represented by a t× t matrix A ∈ Ft×t
p

Fact 2 Given one of the “nice” representations of Fq (e.g. Fq represented as a vector space
or using an irreducible polynomial), the matrix A can be computed efficiently.

How does this fact help us? We want to find g(x) s.t. f(x)|g(x)p − g(x), where f(x) is
known but g(x) is unknown. We will use the linear map A to find g(x)! We view g(x) as
g(x) =

∑2d−1
i=0 ci · xi, where the ci’s are unknowns, and get that:

g(x)p = (
2d−1∑

i=0

ci · xi)p =
2d−1∑

i=0

cp
i · xi·p

To find g(x) we will construct a system of linear equations. Towards this end we define two
new polynomials h(x), a(x) where h(x) = g(x)p and a(x) ·f(x) = g(x)p−g(x) = h(x)−g(x).

8-1



Let {ei}p·(2d−1)
i=0 and {ai}p·(2d−1)−2d

i=0 be the coefficients of h(x) and a(x) respectively. We get
that:

h(x) =
p·(2d−1)∑

j=0

ej · xj =
2d−1∑

i=0

cp
i · xi·p = g(x)p

1. The first system of constraints will reflect the equality h(x) = g(x)p:

(a) For any integer j that is not a multiple of p: ej = 0.

(b) For any integer i: ei·p = cp
i = A× ci.

2. The second constraint specifies that f(x) · a(x) = h(x) − g(x). Looking at the coef-
ficients on both sides and at f(x) as

∑2d
i=0 fi · xi, for the j-th coefficient we get the

constraint:

ej − cj =
j∑

i=0

fi · aj−i =
j∑

i=0

Mfi · aj−i

Where Mfi is the matrix representation of fi (recall this matrix representation sup-
ports multiplication).

3. Finally, we would like for the solution to be non-trivial, and thus we add the constraint
(c1, . . . c2d−1) 6= (0, . . . 0). Note that while this is not a linear equation per se, it can
be incorporated into the algorithm for solving the other linear equations, so that the
algroithm returns a non-zero solution when one exists.

Now, to find g(x) all that remains is to solve this system of (linear) equations! Note that this
is not a proof of existence of a non-trivial g(x), we proved g(x)’s existence in the previous
lecture, this is simply an efficient procedure for finding g(x).

2 Framework for the Next Talks

In the next talks we see how to factor bivariate polynomials and polynomials over the
rational numbers Q[x]. We begin by laying out the framework that we will follow in these
(surprisingly) related results.

Factoring Bivariate Polynomials We will see how to go from factoring polynomials to
factoring bivariate polynomials, we will go from factoring R[x] to factoring R[x, y]. Given
f(x, y) ∈ R[x, y], we will factor it using an algorithm for factoring in R[x]. We proceed in
several steps:

1. Somehow (the details will follow) “perturb” f(x, y) into f̃(x, y).

2. Begin by factoring f̃(x, y)(mod y) using the algorithm for factoring in R[x].

3. Proceed in Hensel iterations, and progressively go from factoring f̃(x, y)(mod yi) to
factoring f̃(x, y)(mod y2i).

4. From factoring over R[x, y](mod yt), go to factoring over R[x, y].

8-2



Factoring over Q[x]: To factor polynomials over integers Z[x], we actually factor over
Q[x] (we couldn’t really expect to factor over Z[x], since the polynomials of degree 0 there
are integers...). We proceed similarly to the bivariate case:

1. Somehow pick a “nice” prime p.

2. Begin by factoring f(x)(mod p).

3. Proceed in Hensel iterations, and progressively go from factoring f(x)(mod pi) to
factoring f(x)(mod p2i).

4. From factors over Z[x](mod pt), go to factoring over Z[x].

As can be seen, the two seemingly unrelated problems of factoring integers and bivariate
polynomials, are actually closely tied together by our plan of action and its use of Hensel
iterations.

3 Hensel’s Lifting Lemma

We want to go from a factorization f(x) = g(x)·h(x) (mod p) to f(x) = g̃(x)·h̃(x) (mod p2).
One appealing idea is to take g̃(x) = g(x) (mod p) and h̃(x) = h(x) (mod p). Unfortunately,
this natural idea fails, as can be seen in the simple case:

f(x) = x2 − 2x + 6 = (x− 1) · (x− 1) (mod 5)

We want g̃(x) = (x− 1) + 5 · a(x) and h̃(x) = (x− 1) + 5 · b(x), which implies that modulo
25 we should get: f(x) = (x− 1)2 + 5 · (x− 1) · (a(x) + b(x)) + 25a(x) · b(x). Unfortunately,
f(x) isn’t of this form modulo 25!
To overcome this obstacle, we observe that our natural idea may have failed in the example
above simply because the factors g(x), h(x) were not relatively prime. Before stating the
Lemma itself, note that by J2 we refer to the collection of linear combinations of products
of pairs of items in J .

Lemma 3 Hensel’s Lifing Lemma:
For a ring R and an ideal J ⊆ R:
If there exist f, g, h, a, b ∈ R such that:

1. f − g · h ∈ J (f = g · h (mod J)).

2. a · g + b · h = 1 (mod J) (f and g are relatively prime).

Then there exists a lifting: there exist g̃, h̃ ∈ R such that:

1. g̃ = g (mod J).

2. h̃ = h (mod J).

3. f = g̃ · h̃ (mod J2).

8-3



We refer to the set of conditions satisfied by g̃ and h̃ as (∗).
The lift is unique: for any g∗, h∗ satisfying (∗), there exists u ∈ J , such that g∗ = g̃ ·(1+u)
and h∗ = h̃ · (1− u).
Furthermore, for any g̃, h̃ that satisfy (∗), there exist ã, b̃ ∈ R, such that ã · g̃ + b̃ · h̃ =
1 (mod J2). Thus the new factors are also relatively prime and we can continue to activate
Hensel’s Lemma.

Proof
We prove each of the guaranteed properties separately:

The existence of a lifting: We proceed as before (but with relatively prime factors!).
f = g · h + q for some q ∈ J , g̃ = g + g1, h̃ = h + h1, where g1, h1 ∈ J .
We get that: g̃ · h̃ = g · h + g1 · h + h1 · g + h1 · g1.
Since h1 · g1 ∈ J2, it remains to show that q = g1 · h + h1 · g + h1.
We still haven’t specified g1, h1, so to satisfy this condition we take g1 = b · q, h1 = a · q,
and get that g1 · h + h1 · g + h1 = q · (b · h + a · g) = q, as required!

g̃ and h̃ are relatively prime: Observe that: a · g̃ + b · h̃ = a · g + b · h + r′ = 1 + r, for
some r′, r ∈ J . Now we can take ã = a · (1− r) and b̃ = b · (1− r), and get that:

ã · g̃ + b̃ · h̃ = (1− r) · (a · g̃ + b · h̃) = (1− r)(1 + r) = 1− r2 = 1 (mod J2)

Uniqueness: Let g∗ = g̃ + g2 and h∗ = h̃ + h2 for some g2, h2 ∈ J (because, modulo
J , we know that g∗ = g = g̃ and h∗ = h = h̃). Furthermore, modulo J2, we know that
g∗ · h∗ = f = g̃ · h̃.
Now we get that: g∗ ·h∗ = g̃ · h̃+ g2 · h̃+h2 · g̃ + g2 ·h2. This implies that g2 · h̃+h2 · g̃ ∈ J2

(because g2 · h2 ∈ J2 and g∗ · h∗ = g̃ · h̃ (mod J2)).

Claim 4 The only way to get that g2 · h̃+h2 · g̃ ∈ J2 is by setting g2 = u · g̃ and h2 = −u · h̃
for some u ∈ J .

Note that in class it was pointed out that these are existence results. We did not reach a
definitive conclusion about whether there is a problem in actually finding r, q etc.
In the next talk we will complete the procedure for factorizing bivariate polynomials.

8-4


