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Although there were some randomized polynomial-time algorithms for testing primality, the first de-
terministic polynomial-time algorithm for testing primality was published in 2002 by Manindra Agrawal,
Neeraj Kayal and Nitin Saxena. In the previous lecture, we understood its basic idea and studied some
notions and concepts to understand its correctness. Today, we will finish the proof of its correctness.

1 Notations

For fixed n, define a nice r.

Definition 1 r is nice for n if
- r - n and r is a prime number
- ordr(n) > 4log2n (ordr(n) is the smallest number k such that nk = 1 (mod r))

Then a small nice r always exists.

Proposition 2 There exist a prime number less than 32 log6 n which is a divisor of n or nice for n.

Proof Let τ be [4log2n], and N be
∏τ

i=0(n
i− 1) (≤ nτ2

). Suppose ordr(n) ≤ τ and r is not a divisor
of n. Then r | ni − 1 for some i ∈ {1, ..., τ}, so r | N.

The number of prime divisors of N ≤ log N ≤ τ2 log n

If we try the first k(= τ2 log n + 1 ≤ 16 log5 n + 1) primes as a candidate for r, one of them is nice or
a divisor of n. From the well-known weak theorem about the number of primes(The k th prime is less
than 2k log k),

The k th prime < 2k log k ≤ 2(16 log5 n + 1) log(16 log5 n + 1) ≤ 32 log6 n

Now define ’intorospectiveness’, the most useful concept in our algorithm and its proof of correctness.

Definition 3 For polynomial f(x), the positive integer m, and ring R, we say that m is intospective
for f(X) if

[f(X)]m = f(Xm) in R

Then we can get the following facts as proved in the previous lecture.

Fact 4

1. If m is introspective for f(X) and g(X) in R, it is also introspective for f(X) · g(X) in R.

2. If m1 and m2 is introspective for f(X) in R (= Z[X]/(n,Xr − 1)), then so is m1 ·m2.

3. If m is introspective for f(X) in R, then m is also introspective for f(X) in R′,the subring of R.
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2 Preliminaries

In this section, introduce and summarize some constants and sets will be used in this note. (There are
many variables in the proof of correctness of our algorithm. So I am supposed to summarize them before
entering the main section.)

- n : our fixed number to test.
- r : r is nice for n and less than 32 log6 n.
- p : the prime divisor of n (if exists) and greater than r.
- l : l can be any number between r and t.
- T , t : T = {nipj |i, j ≥ 0}, t = |{m (mod r)|m ∈ T}|.
- S, St : S = {∏l

a=1(X + a)da |da ≥ 0}, St = {f ∈ S|deg f < t}.
- h(X) : h(X) is an irreducible polynomial that divides Xr−1

X−1 .
- R, K : R = Z[X]/(n, Xr − 1), K = Z[X]/(p, h(X)).

We can check some properties of them which will play crucial roles in the proof of correctness of our
algorithm.

Observation 5

1. t < l < r < p

2. |St| =
(
l+t−1

l

) ≥ 2t (l > t)

3. If n is not a power of p, then t > ordr(n).

4. If n is introspective for X + a (∀a ∈ {1, ..., l}) in R, every element of T is introspective for every
element of S in both R and K. (From the Fact 4)

The existences of T ,t,S,St,K are dependent on the existence of p. So they will appear only in the proof
of correctness, not the algorithm itself.

3 Algorithm

Our algorithm for testing primality of n like this.

TEST(n) :

1. if n = mk for some integer m and k, OUTPUT COMPOSITE.

2. if ∃ r ∈ {1, ..., [32 log6 n]} such that r | n, OUTPUT COMPOSITE

3. Find a nice r for n in {1, ..., [32 log6 n]}
4. (MAIN STEP) for a = 1 to l,

if (X + a)n 6= Xn + a (mod n, Xr − 1), OUTPUT COMPOSITE.

5. OUTPUT PRIME

The step 1, step 2 and step 3 run obviously in O(poly(n)). The step 4 also runs in O(poly(n)) because
the size of r and l(l < r) must be O(poly(n)) from step 3. So our algorithm runs in O(poly(n)). The
remaining work is to prove correctness of our algorithm. The following theorem tells its correctness.
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Theorem 6 Suppose r is nice for n. If there is no factor of n less than r and n is introspective for
X + a (∀a ∈ {1, ..., l}) in R(= Z[X]/(n,Xr − 1)), then n is a power of a prime p greater than r.

Prove this theorem in the next section.

4 Correctness

To prove our theorem, suppose the following assumption for contradiction.

Assumption 7

1. r is nice for n

2. n is introspective for X + a (∀a ∈ {1, ..., l}) in R

3. n is not a power of p.

Remember the facts proved in the previous lecture.

1. There exist two distinct numbers m1 and m2 in T such that m1 = m2 (mod r) and m1,m2 ≤ n2
√

t.

2. Let P (Y ) = Y m1 − Y m2 in K[Y ], then every element in S is a root of P in K.

From these facts, we can conclude the following.

Fact 8 There are at most n2
√

t elements of S in K.

With this fact and the following lemma, we can prove our main theorem.

Lemma 9 Under the Assumption 7, two distinct elements f and g in St are also distinct in K.

Proof Suppose f(X) = g(X) in K. Because f and g are distinct in Zp[X] (p > l), f(X) =
g(X) (mod h(X)). Let e(Y ) be f(Y ) − g(Y ) in K. Then the degree of e is less than t and X
is a root of e. Because any m in T is introspective for f and g in K(from the Observation 5-4),
e(Xm) = f(Xm)− g(Xm) = f(X)m − g(X)m = 0 in K, so Xm is a root of e. Now show the following
claim.

Claim : If m1 6= m2 (mod r), then Xm1 6= Xm2 (mod h(X))

If h(X) divides Xm1 − Xm2 , h(X) divides Xm1−m2 − 1(Suppose m1 > m2). Because h(X) divides
Xr − 1, h(X) divides Xgcd(m1−m2,r) − 1. If m1 6= m2 (mod r), Xgcd(m1−m2,r) − 1 = X − 1 and hence
h(X)|X − 1. This contradiction shows the claim.

Because there are t distinct (in mod r) elements in T , the number of roots of e(Y ) is at least t. This is
contradiction because the degree of e is less than t.

Prove our theorem which gives correctness of our algorithm.

Proof of the main theorem Suppose the Assumption 7 is true. Then the Lemma 9 and the Fact
8 tell St ≤ n2

√
t. Because 2t ≤ St(from the Observation 5-2), it is sufficient to show 2t > n2

√
t for

contradiction.
t > ordr(n) (n is not a power of p)

→ t > ordr(n) > 4 log2 n (r is nice for n)

→
√

t > 2 log n

→ 2t > n2
√

t
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