1 Today

- Decoding of Reed-Solomon (RS) codes.
- Decoding of Chinese Remainder (CR) codes.

2 Error-correcting codes

The theory of error-correcting codes studies the ways one should add redundancy to data, in order to allow reliable transmission over noisy channels. The theory was founded by Claude Shannon in the 1940-s. Shannon proposed the following architecture:

\[
m \in \Sigma^k \to \text{ENCODER} \to E(m) \in \Sigma^n \to \text{NOISY CHANNEL} \to y \approx E(m) \to \text{DECODER} \to m' = E(m).
\]

Here

- \(m \) is the message one wants to transmit.
- \(E(m) \) is the encoding of \(m \). I.e. \(m \) plus some extra redundant bits.
- \(y \) is the corrupted version of \(E(m) \). I.e. \(y \) agrees with \(E(m) \) in most of the locations except those that got flipped in the channel during the transmission.
- \(m' \) is the corrected version of of \(E(m) \). For a good and appropriately used error-correcting code \(m' \) should (most of the time) be equal to \(E(m) \).

3 Reed-Solomon code

In this section we consider a classical error-correcting code known as a Reed-Solomon code.

Assume we have a bijection between our message alphabet \(\Sigma \) and some finite field \(\mathbb{F}_q \). Fix some subset \(M \subseteq \mathbb{F}_q \). Let \(M = \{\alpha_1, \ldots, \alpha_n\} \).

We represent messages \(m = (m_0, \ldots, m_{k-1}) \in \Sigma^k \) by univariate polynomials

\[
m(x) = \sum_{i=0}^{k-1} m_i x^i \in \mathbb{F}_q[x].
\]

We define the encoding of \(m \) to be the evaluation of the corresponding polynomial at every point of the set \(M \). I.e.

\[
\text{Enc}(m) = \{m(\alpha_1), \ldots, m(\alpha_n)\}.
\]

After some bits of \(\{m(\alpha_1), \ldots, m(\alpha_n)\} \) are flipped in the channel decoder gets the sequence \(\{y_1, \ldots, y_n\} \) as an input. Assuming that the number of errors in the channel is upper bounded by \((n - t) \), the goal of the decoder is to find a polynomial (or better - all polynomials) \(m \in \mathbb{F}_q[x] \) such that \(m(\alpha_i) = y_i \) for at least \(t \) values of \(i \in \{1, n\} \).

It is convenient to think of pairs \((\alpha_i, y_i)\) as points in the plane \(\mathbb{F}_q^2 \). Our goal is to find all curves of the form \(y - m(x) = 0 \), (where \(m(x) \) is of degree \(\leq k - 1 \) that pass through at least \(t \) points of the set \(S = \{ (\alpha_i, y_i) \}_{i \in [1,n]} \).
Instead of trying to find the curves of the form \(y = f(x) \) directly, we will first fit all the points of the set \(S \) to some low-degree curve (with no other restriction on the form of the equation defining the curve). It is easy to see that there exists a bivariate polynomial \(Q(x, y) \) where \(\deg_x Q \leq \sqrt{n} \) and \(\deg_y Q \leq \sqrt{n} \) such that \(Q(\alpha_i, y_i) = 0 \) for all \((\alpha_i, y_i) \in S\). Moreover one can compute the polynomial \(Q(x, y) \) efficiently in time \(O(n^3) \) by solving a system of \(n \) homogeneous linear equations in the coefficients of \(Q \).

Given the polynomial \(Q(x, y) \) we want to claim that for every polynomial \(m(x) \) such that \(y - m(x) \) contains sufficiently many points from \(S, y - m(x)|Q(x, y) \). Formally,

Claim 1: Assume the following hold:

- \(\deg_x Q \leq D, \deg_y Q \leq D, \)
- \(\deg m(x) \leq k - 1, \)
- \(\deg m(x) \leq k - 1, \)
- \(Q(\alpha_i, y_i) = y_i - m(\alpha_i) = 0 \) for at least \(t \) values of \(i \in [1, n], \)
- \(t > 2(D + 1)k; \)

then \(y - m(x)|Q(x, y). \)

Proof: It is clear that the polynomial \(y - m(x) \) is irreducible. Assume \(y - m(x) \not|Q(x, y) \); then there exist polynomials \(A(x, y), B(x, y) \in \mathbb{F}_q[x, y] \) such that

\[
R(x) = A(x, y)Q(x, y) + B(x, y)(y - m(x)).
\]

is non-zero. Namely, \(R(x) \) is a resultant of \(Q \) and \(y - m(x) \) computed with respect to \(y \). From the degree bound for the resultant we conclude that \(\deg R(x) \leq 2(D + 1)k. \) However \(R(\alpha_i) = 0 \) for all \(\alpha_i \) such that \(Q(\alpha_i, y_i) = y_i - m(\alpha_i) = 0 \). Therefore \(R(x) \) has at least \(2(D + 1)k + 1 \) roots. Thus we arrive at a contradiction. Proof complete.

Given the claim above we are ready to formulate the (list) decoding algorithm for Reed-Solomon codes:

Algorithm 1:

1. Input: \(k, n, \{ (\alpha_i, y_i) \}_{i \in [1, n]} \).
2. Find \(Q(x, y) \) such that \(\deg_x Q \leq \sqrt{n}, \deg_y Q \leq \sqrt{n}, Q(\alpha_i, y_i) = 0, \) and \(Q(x, y) \neq 0. \)
3. Find all factors of \(Q(x, y) \) of the form \(y - m(x). \)
4. Output: A list of polynomials \(m(x) \) such that \(y - m(x)|Q(x, y) \) and \(y - m(x) \) passes through at least \(t \) points \((\alpha_i, y_i). \)

Claim 1 implies that our algorithm successfully decodes RS code from up to \(2\sqrt{n}k \) agreement.

Exercise 1: Improve the decoding algorithm to decode successfully from \(t > \min\{(n - k)/2, 2\sqrt{k}n\} \) agreement.

We conclude our discussion of decoding algorithm for RS codes with a historical overview:

- The first decoding algorithm for RS codes was developed by Peterson in the sixties. The algorithm runs in time \(O(n^3) \). Petersen claimed his algorithm to be *efficient* as it avoided the brute-force search. Note that this work precedes the work of Edmonds!
- Later the running time was brought down to \(O(n^2) \) by Berlekamp. Berlekamp’s algorithm relies on efficient randomized factorization of univariate polynomials. (Which is also due to Berlekamp.)
- The algorithm that we have just seen was developed by Sudan in 1996. It allows to correct a larger number of errors than previously known algorithms. The algorithm relies on efficient factorization of multivariate polynomials.

16-2
4 Chinese Remainder code

We use p_i to denote the i-th prime. Let $K = \prod_{i=1}^k p_i$. Assume our message m is a sequence of $\log K$ bits. We can think of it as an integer $0 \leq m \leq K - 1$. Let n be an integer such that $k \leq n$. the Chinese Remainder encoding of m is:

$$\text{Enc}(m) = \{(m \mod p_1), \ldots, (m \mod p_n)\}.$$

Clearly, any k coordinates of the $\text{Enc}(m)$ suffice to reconstruct the message m. This follows from the standard CRT “interpolation”.

The decoding problem for the CR code is the following. Given integers $\{r_1, \ldots, r_n\}$ find some integer $m \in [0, K - 1]$ (or better - all such integers), such that $m \mod p_i = r_i$ for at least t values of i. In what follows we will sketch the solution of this problem assuming $t \geq 2k \sqrt{n} \log p_n / \log p_1$.

Our approach is to extend the technique we have for decoding of RS codes. We start by building some informal dictionary between \mathbb{Z} and $\mathbb{F}_q[x]$.

$$\begin{align*}
\mathbb{Z} & \leftrightarrow \text{low degree polynomial} \\
\mathbb{Z}[y] & \leftrightarrow \mathbb{F}_q[x, y] \\
Q(r_i) = 0 \mod p_i & \leftrightarrow Q(\alpha_i, y_i) = 0.
\end{align*}$$

Using the dictionary above we “translate” the algorithm for decoding of RS codes into an algorithm for decoding of CR codes.

Algorithm 2:

1. Input: $k, n, \{(p_i, r_i)\}_{i \in [1,n]}$.

2. Find $Q(y) \in \mathbb{Z}[y]$ such that $\deg Q \leq \sqrt{n}$, $Q(r_i) = 0 \mod p_i$, $Q(y) \neq 0$, and all coefficients of $Q(y)$ are small. (The particular meaning of small that we need here is $\leq p^{\sqrt{n}/2}$ in the absolute value.)

3. Find all linear factors of $Q(y)$. They are of the form $y - m$.

4. Output: A list of integers m such that $y - m | Q(y)$ and $m = r_i \mod p_i$ for at least t values of i.

There is a simple counting argument that allows one to conclude that a polynomial $Q(y)$ that we want to find in step 1 really exists. One needs to look at the number of polynomials of degree $\leq \sqrt{n}$ with coefficients in the range $[-p^{\sqrt{n}}/2, p^{\sqrt{n}}/2]$, and compare this number to $\prod_{i=1}^k p_i$. However, finding such a $Q(y)$ is no longer a linear algebra problem. Luckily it can be reduced to finding short vector in the lattice and thus be (approximately) resolved using the LLL algorithm.

Exercise 2: Prove the correctness of step 2 of the decoding algorithm for CR codes.