
6.885 Algebra and Computation November 7, 2005

Lecture 16
Lecturer: Madhu Sudan Scribe: Sergey Yekhanin

1 Today

• Decoding of Reed-Solomon (RS) codes.

• Decoding of Chinese Remainder (CR) codes.

2 Error-correcting codes

The theory of error-correcting codes studies the ways one should add redundancy to data, in order to
allow reliable transmission over noisy channels. The theory was founded by Claude Shannon in the
1940-s. Shannon proposed the following architecture:

m ∈ Σk → ENCODER → E(m) ∈ Σn → NOISY CHANNEL → y ≈ E(m) → DECODER →
m′ = E(m).

Here

• m is the message one wants to transmit.

• E(m) is the encoding of m. I.e. m plus some extra redundant bits.

• y is the corrupted version of E(m). I.e. y agrees with E(m) in most of the locations except those
that got flipped in the channel during the transmission.

• m′ is the corrected version of of E(m). For a good and appropriately used error-correcting code
m′ should (most of the time) be equal to E(m).

3 Reed-Solomon code

In this section we consider a classical error-correcting code known as a Reed-Solomon code.
Assume we have a bijection between our message alphabet Σ and some finite field Fq. Fix some

subset M ⊆ Fq. Let M = {α1, . . . , αn}.
We represent messages m = (m0, . . . , mk−1) ∈ Σk by univariate polynomials

m(x) =
k−1∑

i=0

mix
i ∈ Fq[x].

We define the encoding of m to be the evaluation of the corresponding polynomial at every point of
the set M. I.e.

Enc(m) = {m(α1), . . . , m(αn)}.
After some bits of {m(α1), . . . , m(αn)} are flipped in the channel decoder gets the sequence {y1, . . . , yn}

as an input. Assuming that the number of errors in the channel is upper bounded by (n − t), the goal
of the decoder is to find a polynomial (or better - all polynomials) m ∈ Fq[x] such that m(αi) = yi for
al least t values of i ∈ [1, n].

It is convenient to think of pairs (αi, yi) as points in the plane F 2
q . Our goal is to find all curves of

the form y −m(x) = 0, (where m(x) is of degree ≤ k − 1) that pass through at least t points of the set
S = {(αi, yi)}i∈[1,n].

16-1



Instead of trying to find the curves of the form y− f(x) directly, we will first fit all the points of the
set S to some low-degree curve (with no other restriction on the form of the equation defining the curve).
It is easy to see that there exists a bivariate polynomial Q(x, y) where degx Q ≤ √

n and degx Q ≤ √
n

such that Q(αi, yi) = 0 for all (αi, yi) ∈ S. Moreover one can compute the polynomial Q(x, y) efficiently
in time O(n3) by solving a system of n homogeneous linear equations in the coefficients of Q.

Given the polynomial Q(x, y) we want to claim that for every polynomial m(x) such that y −m(x)
contains sufficiently many points from S, y −m(x)|Q(x, y). Formally,

Claim 1: Assume the following hold:

• degx Q ≤ D, degy Q ≤ D,

• deg m(x) ≤ k − 1,

• Q(αi, yi) = yi −m(αi) = 0 for at least t values of i ∈ [1, n],

• t > 2(D + 1)k;

then y −m(x)|Q(x, y).
Proof: It is clear that the polynomial y−m(x) is irreducible. Assume y−m(x) 6 |Q(x, y); then there

exist polynomials A(x, y), B(x, y) ∈ Fq[x, y] such that

R(x) = A(x, y)Q(x, y) + B(x, y)(y −m(x)).

is non-zero. Namely, R(x) is a resultant of Q and y − m(x) computed with respect to y. From the
degree bound for the resultant we conclude that deg R(x) ≤ 2(D + 1)k. However R(αi) = 0 for all αi

such that Q(αi, yi) = yi −m(αi) = 0. Therefore R(x) has at least 2(D + 1)k + 1 roots. Thus we arrive
at a contradiction. Proof complete.

Given the claim above we are ready to formulate the (list) decoding algorithm for Reed-Solomon
codes:

Algorithm 1:

1. Input: k, n, {(αi, yi)}i∈[1,n].

2. Find Q(x, y) such that degx Q ≤ √
n, degy Q ≤ √

n, Q(αi, yi) = 0, and Q(x, y) 6= 0.

3. Find all factors of Q(x, y) of the form y −m(x).

4. Output: A list of polynomials m(x) such that y −m(x)|Q(x, y) and y −m(x) passes through at
least t points (αi, yi).

Claim 1 implies that our algorithm successfully decodes RS code from up to 2
√

nk agreement.
Exercise 1: Improve the decoding algorithm to decode successfully from t > min{(n− k)/2, 2

√
kn}

agreement.

We conclude our discussion of decoding algorithm for RS codes with a historical overview:

• The first decoding algorithm for RS codes was developed by Peterson in the sixties. The algorithm
runs in time O(n3). Petersen claimed his algorithm to be efficient as it avoided the brute-force
search. Note that this work precedes the work of Edmonds!

• Later the running time was brought down to O(n2) by Berlekamp. Berlekamp’s algorithm relies
on efficient randomized factorization of univariate polynomials. (Which is also due to Berlekamp.)

• The algorithm that we have just seen was developed by Sudan in 1996. It allows to correct a larger
number of errors than previously known algorithms. The algorithm relies on efficient factorization
of multivariate polynomials.

16-2



4 Chinese Remainder code

We use pi to denote the i-th prime. Let K =
k∏

i=1

pi. Assume our message m is a sequence of log K bits.

We can think of it as an integer 0 ≤ m ≤ K − 1. Let n be an integer such that k ≤ n. the Chinese
Remainder encoding of m is:

Enc(m) = {(m mod p1), . . . , (m mod pn)}.

Clearly, any k coordinates of the Enc(m) suffice to reconstruct the message m. This follows from the
standard CRT ”interpolation”.

The decoding problem for the CR code is the following. Given integers {r1, . . . , rn} find some integer
m ∈ [0,K − 1] (or better - all such integers), such that m mod pi = ri for at least t values of i. In what
follows we will sketch the solution of this problem assuming t ≥ 2k

√
n log pn/ log p1.

Our approach is to extend the technique we have for decoding of RS codes. We start by building
some informal dictionary between Z and Fq[x].

Z Fq[x]
small integer ↔ low degree polynomial

Z[y] ↔ Fq[x, y]
Q(ri) = 0 mod pi ↔ Q(αi, yi) = 0.

Using the dictionary above we ”translate” the algorithm for decoding of RS codes into an algorithm
for decoding of CR codes.

Algorithm 2:

1. Input: k, n, {(pi, ri)}i∈[1,n].

2. Find Q(y) ∈ Z[y] such that deg Q ≤ √
n, Q(ri) = 0 mod pi, Q(y) 6= 0, and all coefficients of Q(y)

are small. (The particular meaning of small that we need here is ≤ p
√

n
n /2 in the absolute value.)

3. Find all linear factors of Q(y). They are of the form y −m.

4. Output: A list of integers m such that y −m|Q(y) and m = ri mod pi for at least t values of i.

There is a simple counting argument that allows one to conclude that a polynomial Q(y) that we
want to find in step 1 really exists. One needs to look at the number of polynomails of degree ≤ √

n

with coefficients in the range [−p
√

n
n /2, p

√
n

n /2], and compare this number to
n∏

i=1

pi. However, finding such

a Q(y) is no longer a linear algebra problem. Luckily it can be reduced to finding short vector in the
lattice and thus be (approximately) resolved using the LLL algorithm.

Exercise 2: Prove the correctness of step 2 of the decoding algorithm for CR codes.

16-3


