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1 Quantified Statements

Let φ : Kn → {T, F} be a Boolean function defined as follows:

φ(x1) = ∃x1∀x2∃x3 · · ·Qwxw,

Q a quantifier, such that
fi(x0, . . . ,xw) = 0

and
gj(x0, . . . ,xw) 6= 0

for i, j = 1, . . . , m, where the fi and gj are polynomials of degree at most d. The goal of this lecture
is to show how we can generate polynomaisl P1, . . . , Pm such that φ(x0) = T if and only if Pi(x0) = 0
for all i. We will assume throughout that the ground field k is algebraically closed (and thus infinite)
so, in particular, we will be able to use Hilbert’s Nullstellensatz. Note, however, that the result is
fairly trivial if k is a finite field since all functions on a finite field are polynomial functions.

We begin with the simple case in which w = 1, gj = 1 for all j, and x0 = 0. Then φ(x0) = T
iff there exists an x1 such that fi(x1) = 0 for i = 1, . . . ,m (where x0 has been abosrbed into the
polynomials fi). By the Nullstellensatz, this happens if and only if there do not exist polynomials
q1, . . . , qm ∈ k[x1] such that

∑
qifi = 1. There are several results concerning the bounds of these qi:

• Mayr and Meyer showed that if such qi’s exist, then qi′’s with the same property exist and
have degrees bounded by dn2

, which puts the “Hilbert Nullstellensatz Problem” in EXPSPACE
(since we can find the coefficients of the qi by solving a linear system in logarithmic space in
the size of the linear system).

• Brownawell (87) showed, using complex analysis, that if such qi’s exist, then qi′’s with the
same property exist and have degree at most O(md)n, putting the problem in PSPACE.

• Kollár (88) and Dubé (92) proved Brownawell’s bound using cohomology and elementary
commutative algebra (respectively).

Now instead of fixing x0 to be 0, suppose it is an arbitrary vector ᾱ in Kn. For that specific vector
ᾱ, we can formulate the question as to whether polynomials qi as above exist as a linear system:
namely, we seek a vector q, whose entries are the coefficients of the polynomials qi, satisfying
Mαq = e1, where e1 is the standard basis vector with a 1 in the first entry and zeroes everywhere
else. The length of q and the dimension of Mᾱ will depend on our bounds for the degrees of the
qi—from what we saw above, the linear system will have dimension (md)n2

.
We obtained the matrix Mᾱ from the coefficients of the polynomials fi (after α had been absorbed

into those coefficients), but we can instead produce a similar matrix M with the formal variable x1

instead of the constant vector ᾱ. Observe now that the new system Mq = e1 will have a solution if
there is a nonsingular (square) submatrix S extending from the first row. For each such submatrix
S, we have a polynomial PS(x0) = det(S), and thus we can say that there exist qi’s such that∑

qifi = 1 if and only if PS(x0) 6= 0 for some S. Negating this, we have the following:
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For a given x0, there exists an x1 such that fi(x0,x1) = 0 for all i iff for all square
submatrices S of M as above, PS(x0) = det(S) = 0.

Now the number of polynomial constraints will be bounded by 2Dn

, where D is the degree of the
polynomials qi. By the bounds above, this means that the number of constraints is around 2dn2

,
which is quite large. We can reduce the number of constraints by finding a set of generators for the
radical of the ideal generated by the PS , and we can do this by finding vector space generators for
that radical. Now the PS have degree at most d ·Dn, so there are at most dn2+1 linearly independent
polynomials in the radical ideal, whence we can take the number of polynomial constraints to be
less than dn2+1.

Now that we know how to address the special case above, we can generalize to get a solution for
the problem we originally stated. First, if we want to know if there is an x1 such that fj(x0,x1) = 0
and gj(x0,x1) 6= 0 for all j, where the gj ’s are no longer trivial, we need only determine if there
exist x1 and y such that fj(x0,x1) = 0 for all j and

1− y
∏

gj(x0,x1) = 0.

Second, given the quantified statement

∃x1∀x2∃x3 · · ·Qwxw,

we can produce an equivalent statement with only existential quantifiers by writing the statement
above as

∃x1¬(∃x2¬(· · ·)).
We can then work our way from the inside out inductively, using the solution for the w = 1 case at
each step. If v, c, and d denote the original number of variables, the original number of constraints,
and the original degree of the polynomials, and the primed v, c, and d the new values after one
iteration, we have

• v′ ≤ v + 1

• d′ ≤ dv

• c′ ≤ (cd)v.

The only complication arises in how we can (algebraically) express the condition that the polynomials
Pi are not all zero: the negation of P1(x) = 0, . . . , PM (x) = 0 holds if and only if there exists a y
such that ∑

pj(x)yj 6= 0,

which itself holds if and only if there exists a z such that

1− z
(∑

pj(x)yj
)

= 0.

After these manipulations, the final collection of polynomials we obtain P1, . . . , PM , satisfying
the original goals set-forth at the beginning of the lecture, are such that both M and the degrees of
the Pi are bounded by dnw

(with big-O’s suppressed).

2 Computation over the reals

We briefly state some results on real root-finding:

• There is a nice algorithm for finding the number of roots of a polynomial in an interval [a, b]
that uses only field arithmetic (the ”Sturm sequence”).
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• Distinct roots are well-separated (try to show this as an exercise).

The existential theory of the reals consists of questions of the following sort: do there exist
x1, . . . , xn such that Pi(x1, . . . , xn) ≥ 0? Tarski (1950) showed that the existential theory is de-
cidable, and Collins (70), Conway (87), Kozen and Reit (87), and Renegar (92) showed that the
existential theory is in PSPACE and that the theory for a constant number of variables is in P.
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