Today we present various algebraic models of computation, and discover a few lower bounds.

1 Algebraic models of computation

1.1 Considered problems
Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a function that maps \(n \) elements of a ring \(\mathbb{R} \) into \(m \) elements of the same ring. Given \(x_1, x_2, \ldots, x_n \in \mathbb{R} \), compute \(f(x_1, x_2, \ldots, x_n) \).

Alternatively, for a function \(f : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R} \), given \(x_1, x_2, \ldots, x_n \in \mathbb{R} \), determine \(y_1, y_2, \ldots, y_m \in \mathbb{R} \) such that \(f(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_m) = 0 \).

1.2 Uniform model of computation
In the late 1980’s Blum, Shub and Smale came up with a uniform model of computation. It was a “Turing machine” over a ring. In this lecture we consider only non-uniform models of computation.

1.3 Algebraic circuits (Straight line programs)
An algebraic circuit is an acyclic network of gates with the following properties:

- the circuit has \(n \) inputs accepting \(x_1, x_2, \ldots, x_n \in \mathbb{R} \) and an arbitrary number of constants \(\alpha_i \) in \(\mathbb{R} \),
- the circuit has \(m \) outputs, \(y_1, y_2, \ldots, y_m \in \mathbb{R} \), and computes a function \(f \), i.e. \(f(x_1, \ldots, x_n) = (y_1, \ldots, y_m) \),
- each gate has two inputs and one output, and computes either the sum or product of input values (if \(\mathbb{R} \) is a field, we allow as well division).

The number of gates is a complexity measure of algebraic circuits.

Note that every algebraic circuit is equivalent to a straight line program in which every instruction corresponds to a single gate and has the form “\(v_i \leftarrow v_j \odot v_k \)”, where \(\odot \) is one of allowed operations.
1.4 Algebraic decision trees

An algebraic decision tree is a decision tree of the following properties:

- at each internal node we evaluate a polynomial of input elements x_1, x_2, \ldots, x_n, and branch, depending on whether the computed value of the polynomial equals 0 or not,
- each leaf contains a polynomial of the input elements which is the required values which we want to compute.

\[
\begin{align*}
& f_1(x_1, \ldots, x_n) = 0? \\
& f_2(x_1, \ldots, x_n) = 0? \\
& f_3(x_1, \ldots, x_n) = 0? \\
& \ldots \\
& p_1(x_1, \ldots, x_n) \\
& \ldots \\
& p_l(x_1, \ldots, x_n)
\end{align*}
\]

There are two complexity measures:

1. The depth of a tree.
2. The degree of polynomials at internal nodes.

1.5 Algebraic computation trees

An algebraic computation tree is a tree in which at each internal node we perform a single instruction of the form “$v_i \leftarrow v_j \diamond v_k$”, where \diamond is one of basic operations allowed over R, and branch, depending on whether the computed value equals 0 or not.

\[
\begin{align*}
v_i \leftarrow v_j \diamond v_k & \\
\diamond & \in \{+, -, \times, /\}
\end{align*}
\]
2 Ostrowski’s conjecture

2.1 The problem: univariate polynomial evaluation

Given \(a_0, a_1, \ldots, a_n \in R \) and \(x \in R \), compute
\[
\sum_{i=0}^{n} a_i x^i.
\]

2.2 Horner’s rule

Horner’s rule enables us to evaluate a polynomial by \(n \) additions and \(n \) multiplications in the following way:

\[
\begin{align*}
 v_1 &\leftarrow a_n \cdot x + a_{n-1} \\
v_2 &\leftarrow v_1 \cdot x + a_{n-2} \\
&\vdots \\
v_i &\leftarrow v_{i-1} \cdot x + a_{n-i} \\
&\vdots \\
v_n &\leftarrow v_{n-1} \cdot x + a_0
\end{align*}
\]

2.3 The conjecture

Ostrowski came up in 1954 with the conjecture that Horner’s rule is optimal, i.e. one needs \(n \) additions and \(n \) multiplications (in the algebraic circuit model). He managed to prove that \(n \) additions are necessary, and in 1966 Pan proved that so are \(n \) multiplications.

2.4 Ostrowski’s lower bound

To show that we need \(n \) additions, we substitute \(x = 1 \), and the problem of evaluation of the polynomial reduces to the problem of computing the sum of coefficients.

Claim 1 To evaluate the sum of \(a_0 \) to \(a_n \) over a ring at least \(n \) additions are necessary in the algebraic circuit model.

Proof The proof goes by induction on \(n \). For \(n = 1 \), all that we can compute, not using additions, is \(ca_0 \cdot a_1 \), where \(c \in R \), which definitely differs from \(a_0 + a_1 \). For \(n > 1 \), the first addition in any straight line program looks like
\[
c_1 \prod_{i=1}^{n} a_i^{d_i} + c_2 \prod_{i=1}^{n} a_i^{e_i},
\]
and since it does not make sense to add constants as they can be hardcoded, we can assume that one of \(d_i \)'s or \(e_i \)'s is nonzero. Without loss of generality \(d_n \neq 0 \), for \(a_n = 0 \) the first addend disappears, and by the induction assumption we still need to spend \(n-1 \) additions to compute \(a_0 + a_1 + \cdots + a_{n-1} \).

2.5 Pan’s lower bound

This time we substitute \(a_0 = 0 \). Note first that any algebraic circuit computes some polynomial in \(R[a_1, a_2, \ldots, a_n, x] \). A multiplication \(v_j \cdot v_k \) is insignificant if one of the following holds:

1. Both \(v_j \) and \(v_k \) belong to \(R[x] \).
2. One of v_j and v_k belongs to R.

Certainly, a multiplication that is not insignificant is significant. We will show that the number of significant multiplications is large enough in some more general case.

Claim 2 Let $f : R^{n+1} \to R$ be a function of the form

$$f(a_1, a_2, \ldots, a_n, x) = \sum_{i=1}^{k} l_i(a_1, \ldots, a_n)x^i + r(x) + l_0(a_1, a_2, \ldots, a_n),$$

where each l_i is a linear function, and R is a field. An algebraic circuit computing f has at least $\text{rank}\{l_1, l_2, \ldots, l_k\}$ significant multiplications.

Proof Look at the first significant multiplication. It has the following form:

$$\left(\sum_i c_i a_i + c_0(x)\right) \cdot \left(\sum_i d_i a_i + d_0(x)\right).$$

Without loss of generality $c_1 \neq 0$, and we restrict (a_1, \ldots, a_n, x) so that the first term equals $c \in R$, achieving

$$c = \sum_i c_i a_i + c_0(x),$$

$$a_1 = \frac{c - c_0(x) - \sum_{i=2}^{k} c_i a_i}{c_1} = l(a_2, \ldots, a_n) + p(x)$$

for some linear function l and polynomial p. Now we have a circuit that using one fewer significant multiplication computes

$$\sum_{i=1}^{k} l_i(l(a_2, \ldots, a_n) + p(x), a_2, \ldots, a_n) x^i + r(x) + l_0(l(a_2, \ldots, a_n) + p(x), a_2, \ldots, a_n)$$

$$= \sum_{i=1}^{k} l'_i(a_2, \ldots, a_n)x^i + r'(x) + l'_0(a_2, \ldots, a_n),$$

where $l'_i(a_2, \ldots, a_n) = l_i(l(a_2, \ldots, a_n), a_2, \ldots, a_n)$, and by basic linear algebra

$$\text{rank}\{l'_1, l'_2, \ldots, l'_n\} \geq \text{rank}\{l_1, l_2, \ldots, l_n\} - 1.$$

This implies by induction on the number of a_i's that we need at least $\text{rank}\{l_1, l_2, \ldots, l_n\}$ significant multiplications.

3 Fixed coefficients

If coefficients of the polynomial are fixed, that is we compute a function $f_{a_0 \ldots a_n} : R \to R$ such that

$$f_{a_0 \ldots a_n}(x) = \sum a_i x^i,$$

it turns out that we need at most $n/2 + 1$ multiplications, and that for most choices of coefficients this number of multiplications is necessary. The main idea is that we can express f as

$$f(x) = q_1(x)(x^2 - b_1) + r_1(x),$$

there exists b_1 so that r_1 is of degree 0, and both b_1 and r_1 can be hardwired into a circuit. To show the lower bound we take a_0, a_1, \ldots, a_n transcendental over R, and prove that if a program computes $\sum a_i x^i$ with k multiplications, then (a_1, \ldots, a_n) lie in a $2k$-dimensional extension of R.

22-4
4 Evaluation in n points

Given $a_0, \ldots, a_n, x_0, \ldots, x_n$ in a field K, our goal is to compute z_1 to z_n such that $z_i = \sum a_j x_j^i$. Using fast Fourier transform, we can achieve this in $O(n \log^{O(1)} n)$ time, and Strassen has proven that we need $\Omega(n \log n)$ operations in any algebraic computation tree. We will cover this topic in the next lecture.