Recall \(\text{PCP}_{c,s}[r,q] \)
- Verifier tosses \(r(n) \) coins.
- Queries the proof oracle with \(q(n) \) bits.
- Completeness \(c(n) \). Omit if \(c = 1 \).
- Soundness \(s(n) \). Zero subscripts means \(c = 1 \) and \(s = \frac{1}{2} \).

Last time \(\text{NP} = \text{PCP}_{\frac{1}{4}+\epsilon} \langle O(\log n), 3 \rangle \) \ [Håstad]

Proposition 1 \(\text{NP} = \text{PCP}_{\frac{1}{4}+\epsilon} \langle O(\log n), 3 \rangle \implies \text{MaxSAT} \text{ is hard to approximate to within } \frac{15}{16} + \epsilon' \).

MaxSAT is the problem of satisfying as many clauses as possible.

Today A weaker statement: \(\text{NP} \subseteq \text{PCP}_{\frac{1}{4} \pm \epsilon} \langle \text{poly log, poly log} \rangle \)

1. Set up an algebraic promise problem \(\text{GapPCS} \).
2. Show it is NP-hard (similar to IP=PSpace proof).
3. Give a PCP verifier for this problem.

Constraint Satisfaction Problems
\(x_1, \ldots, x_n \) (variables)
\(c_1, \ldots, c_l \) (constraints)
Find an assignment to the \(n \) variables such that all (or many) of the constraints are satisfied.

Examples:
1. \(3\text{SAT} \). \(x_i \) boolean. \(c_j = x_i \lor x_i \lor \overline{x_i} \).
2. \(3\text{COL} \). \(x_i \) tertiary (colors). \(c_j = \overline{x_i} \neq x_i^{n} \)

Polynomial Constraint Satisfaction Problems
\(F \) is a field and \(|F|^m = n \). Also, have a degree parameter \(d \) and \(|F| \gg d \).
In \(3\text{SAT} \), an assignment \(A : [n] \rightarrow \{0,1\} \).
Here, assignments will be functions \(f : F^m \rightarrow F \). Variables will be vectors in \(F^m \).
Constraints will be \(c_j = (A_j, x_1^{(j)}, x_2^{(j)}, \ldots, x_k^{(j)}) \). \(A_j \) is an algebraic circuit \(F^k \rightarrow F \).
A constraint \(c_j \) is satisfied by \(f \) if \(A_j(f(x_1^{(j)}), f(x_2^{(j)}), \ldots, f(x_k^{(j)})) = 0 \).

GapPCS
We define a promise problem based on the polynomial constraint satisfaction problem.
- YES instances: \(\exists f : F^m \rightarrow F \) that satisfies all constraints and \(f \) is a degree \(d \) polynomial.
- NO instances: \(\forall f : F^m \rightarrow F \) that are of degree \(d \), at least 90% of constraints are unsatisfied by \(f \).
Hardness of GapPCS
To show that GapPCS is NP-hard, we reduce SAT on N variables to GapPCS in time $|F|^m$ with:

- $k, d = (\log N)^3$
- $m \geq \frac{\log N}{\log \log N}$
- $|F| \approx (\log N)^{10}$
- $t \approx |F|^m$

Then the reduction is done in polynomial time in N:

$$|F|^m = (\log N)^{10} \cdot \frac{\log N}{\log \log N} = 2^{\frac{10 \log N \log \log N}{\log \log N}} = 2^{10 \log N} = N^{10}$$

PCP Verifier for GapPCS
1. Expect to be given a proof oracle $f : F^m \rightarrow F$.
2. Verifier tests that f is close to some degree d polynomial $p : F^m \rightarrow F$ (low degree testing).
3. Build an oracle computing $p : F^m \rightarrow F$ from oracle for $f : F^m \rightarrow F$ (self correction).
4. Pick random j and verify c_j is satisfied by p (not f).

We note that

- Self correction can be done in time $\text{poly}(m, d)$
- (Contrast with the number of coefficients of p: $(\frac{m^d}{d!})^m \leq \# \text{ coeffs } \leq d^m$)
- Low degree testing can also be done in time $\text{poly}(m, d)$.
- To verify c_j, the verifier needs to make $\text{poly} \log N$ queries.
- We need $\log t$ random bits to select j, for low degree testing, we need $O(m \log |F|) = O(\log n)$ bits, and for self correction, we need $m \log |F|$ bits. This shows that the verifier uses $O(\log N)$ random bits.

Self Correction

- Given oracle $f : F^m \rightarrow F$ such that there exists a polynomial $p : F^m \rightarrow F$ of degree d and

$$\Pr_x[f(x) \neq p(x)] \leq \delta$$

- Also given $a \in F^m$
- Compute $p(a)$. For all a, should be computing $p(a)$ correctly with high probability over internal randomness. We cannot just use $f(a)$ as for some fraction of a, $f(a)$ may be incorrect.

Algorithm
1. Pick $r \in_R F^m$.
2. Take the line $l(t) = (1 - t)a + tr$ and we’ll look at p along this line.
3. Let $\tau_1, \tau_2, \ldots, \tau_{d+1}$ be distinct and non-zero elements from F. These do not need to be random.
4. Compute coefficients of $h : F \rightarrow F$ of degree d such that $h(\tau_i) = f(l(\tau_i))$.
5. Output $h(0)$.

Claim 2 Self correction outputs $p(a)$ with probability $\geq 1 - (d + 1)\delta$.

Proof $l(\tau_i)$ is a random point in F^m over random choice of r for all non-zero τ_i.

$$\Pr_r[f(l(\tau_i)) \neq p(l(\tau_i))] \leq \delta$$

By the union bound,

$$\Pr_r[\exists i \in \{1, \ldots, d + 1\} f(l(\tau_i)) \neq p(l(\tau_i))] \leq (d + 1)\delta$$

If the above event does not occur, then for all i, $h(\tau_i) = f(l(\tau_i)) = p(l(\tau_i))$. So with probability $1 - (d + 1)\delta$, $h = p|_l$ and $h(0) = p(l(0)) = p(a)$. ■

The above is due to [Beaver, Feigenbaum] and [Lipton]. They were interested in how to compute a function $f(a)$ without revealing a.

Low Degree Testing

- Given oracle $f : F^m \rightarrow F$
- Completeness: if $f = p$ of degree d, then must accept with probability 1.
- Soundness: if $\forall p$ of degree d,

\[
\Pr_x[f(x) \neq p(x)] > \delta \implies \text{must reject with high probability}
\]

Algorithm

1. Repeat many times
 (a) Pick $a \in_R F^m$ at random.
 (b) Use the self correction algorithm to find $p(a)$ and verify $p(a) = f(a)$.

Theorem 3 (Rubinfeld-Sudan, ALMSS) Soundness of above algorithm. $\exists \delta_0$ such that if f is δ-far from any polynomial p then f is rejected with probability $\min\{\frac{\delta}{2}, \delta_0\}$.

[Rubinfeld, Sudan] showed $\delta_0 = O(\frac{1}{d})$ and [ALMSS] showed that $\delta_0 = 10^{-3}$.

16-3