Today

- Diagonalization: Power & Problems
- Relativization
- Baker-Gill-Solovay
- Introduction to Alternation

Big picture in complexity

- E.g., Would like a complete map of complexity?
- Unfortunately: only one tool so far - Diagonalization.
- Diagonalization can prove:
 - Problems undecidable.
 - Space hierarchy, time hierarchy.
 - Ladner’s theorem (between any two classes is an infinitely dense hierarchy).
 - But can it resolve $\text{NP} \nsubseteq \text{P}$?

Preview of Ladner’s theorem

- Suppose $\text{P} \neq \text{NP}$.
- Let $L_1 \in \text{P}$ and L_2 be NP-complete.
- Let $n_1 = 1$ and $n_i = 2^{n_{i-1}}$.
- Let $L = L_1$ for strings of length $[n_{i-1}, n_i)$ for odd i, and $L = L_2$ for strings of length $[n_{i-1}, n_i)$ for even i.
- $L \in \text{P}$? Probably not.
- Is L NP-complete? Probably not.
- Ladner’s theorem picks a more careful choice of n_i’s (by “lazy diagonalization”), to eliminate the “Probably’s” above.

Won’t cover theorem in detail.
Power of diagonalization

- Can it resolve $\text{NP} \neq \text{P}$?
- Question raised in the seventies.
- Baker-Gill-Solovay: No!
- Err.... some caveats

Relativization

Defn: Let C be a complexity class of languages decidable with machines having a certain resource bound. Let A be any language. Then C^A is the set of languages accepted by oracle machines, with the same (similar?) resource bound as machines in C, having access to oracle for A.

Warning: Not really a definition!

Defn: P^A is the set of all languages accepted by deterministic polynomial time oracle Turing machines with access to oracle for A.

Defn: NP^A is the set of all languages accepted by non-deterministic polynomial time oracle Turing machines with access to oracle for A.

B-G-S Proposition

Prop: If diagonalization shows $C_1 \not\subset C_2$, then for every A, $C_1^A \not\subset C_2^A$.

Jargon: $C_1 \not\subset C_2$ relativizes.

Proof (of Prop/Jargon):

- Exists machine in C_1 that can simulate any machine in C_2. (Since diagonalization works.)
- Augment this machine into an oracle machine.
- Machine now shows that C_1^A diagonalizes C_2^A.

BGS Lemmas

Lemma 1 There exists an oracle A such that $\text{NP}^A = \text{P}^A$.

Proof: Take some language that is sufficiently powerful. Example: Let A be any PSPACE-complete language. Then $\text{NP}^A = \text{NPSPACE} = \text{PSPACE} = \text{P}^A$.
BGS Lemmas

Lemma 2 There exists an oracle B such that $\text{NP}^B \neq \text{P}^B$.

Proof:

- Insert proof here.

BGS Warnings

- Proof makes sense only when specialized (to say P vs. NP).
- Otherwise, it is pedagogy, not mathematics.
- Only rules out very specific proofs. Minor variations not accepted!
- Often misinterpreted, misrepresented, misrepresent etc.

Constructive use of relativization

- What happens when A is an interesting problem, and C an interesting class? C^A must be interesting too?
- Example - we considered $C = \text{NP}$ and $A = \text{PSPACE}$. What if $A = \text{NP}$? Is $\text{NP}^{\text{NP}} = \text{NP}$?
- No: actually get something new!

DNF Minimization

Defn: MINDNF is the language consisting of pairs (ϕ, k), such that ϕ is a DNF formula such that no DNF formula with fewer than k literals is equivalent to ϕ.

Prop: MINDNF is in NP^{NP}.

Proof: Below is an NP oracle machine M that accesses a SAT oracle:

- Guess a formula ψ with fewer than k literals.
- Ask SAT oracle if there exists an assignment x such that $\psi(x) \neq \phi(x)$.
- Accept if oracle says NO.
Note: we get the power to negate the oracles’ response (or do any other polynomial time computation on it).

Introduction to Polynomial Hierarchy

Defn: \(\Sigma_i^P = \text{NP} \). For \(i > 1 \), \(\Sigma_i^P = \bigcup_{A \in \Sigma_{i-1}^P} NP^A \). \(\Pi_i^P = \{ \overline{L} \mid L \in \Sigma_i^P \} \). \(\text{PH} = \bigcup_{i \geq 0} \Sigma_i^P = \bigcup_{i \geq 0} \Pi_i^P \).

Belief: For every \(i > 0 \) \(\Sigma_i^P \neq \Sigma_{i+1}^P \).

Jargon: The Polynomial Hierarchy does not collapse.

More on the hierarchy later.

Alternation

- The hierarchy gains its power by complementing responses of oracles.
- DeMorgan’s Law \(\exists \overline{\exists} \) instead of existential guesses, it can now make universal guesses.
- Suppose we built this into a Turing machine.
- Machine has two special states: \(\exists \) and \(\forall \), both with two arcs leading out.
 - \(\exists \) state accepts if one of the two paths leading out accepts.
 - \(\forall \) state accepts if both paths accept.
- Alternation = Resource: write down computation tree: Count max. \# times we alternate enter an \(\exists \) node and then a \(\forall \) node.
- This is a (valuable) resource!
Alternating complexity classes

• Three basic resources in ATM:
 – Time
 – Space
 – Alternations

• Classes:
 – \(\text{ATIME}[t] = \) Languages accepted by ATMs running in time \(t(n) \).
 – \(\text{ASPACE}[s] = \) Languages accepted by ATMs using space \(s(n) \).
 – (only of technical interest) \(\text{ATISP}[a, t, s] = \ldots a(n) \) alternations, \(t(n) \) time, and \(s(n) \) space.

• PH: \(\Sigma_i^P = \) languages accepted by polytime

Basic theorems about alternations

Thm 1: \(\text{ATIME}(f) \subseteq \text{SPACE}(f) \subseteq \text{ATIME}(f^2) \).

Thm 1: \(\text{ASPACE}(f) = \text{TIME}(2^{O(f)}) \).