Today

- PH collapse hypothesis.
- Circuit complexity
- Karp-Lipton Theorem

PH collapse hypothesis

Jargon: Hierarchy “collapses” if \(\Sigma_i^P = \Pi_i^P \).

Hypothesis: Hierarchy does not “collapse”, i.e., for every \(i \), \(\Sigma_i^P \neq \Pi_i^P \).

Why “collapse”? Next proposition explains.

Collapse of the PH

Proposition: For \(i \leq j \),
\[\Sigma_i^P = \Pi_i^P \Rightarrow \Sigma_j^P = \Pi_j^P = \Sigma_i^P = \Pi_i^P. \]

Proof:
- By induction on \(j \). True for \(j = i \). Let \(j > i \) and assume true for \(j - 1 \).
- Let \(A \in \Sigma_j^P \) and let \(B \in \Pi_{j-1}^P \) s.t. \(x \in A \Leftrightarrow \exists y \) s.t. \((x, y) \in B \).
- By induction \(B \in \Sigma_{j-1}^P \) and so \(\exists C \in \Pi_{j-1}^P \) s.t. \((x, y) \in B \Leftrightarrow \exists z \) s.t. \((x, y, z) \in C \).
- So \(x \in A \) iff \(\exists y, z \) s.t. \((x, y, z) \in C \). Thus \(A \in \Sigma_i^P \).

PH collapse hypothesis

Why do we like it?
- Can’t prove it false!
- It implies many other things we believe.
- Examples:
 - NP has randomized polynomial time algorithms implies hierarchy collapses.
 - NP has sparse complete language implies hierarchy collapses.
- Today’s example: NP has small circuits implies hierarchy collapses.
Circuit complexity/Non-uniform computation

- Does solving a problem become much easier if we only have to design an algorithm to work for one fixed n at a time?

- Certainly, if the language is unary!

- But not necessarily if languages are binary!

- How do we measure running time in this case?

 - Design a family of “algorithms”: one for each n and study runtime as function of n.

 - Equivalently: design a family of “circuits”, one for each n and study circuit size as function of n.

 - To meaningfully study questions such as “Is $\text{NP}=\text{P}$?”, restrict circuit size to be polynomial in n.

Boolean circuits

- Circuit is a DAG (directed acyclic graph).

- Node categories:
 - Input gates: Distinct labels 1 to n.
 - Output gates: Distinct labels 1 to m.
 - Computation gates: AND, OR, NOT.

- Wires: Run between gates.
 - Input gates have no wires coming in.
 - Computation gates have one (if NOT), or two (if OR/AND), wires coming in.
 - Output gates have no wires going out.

- Size = # of gates. (Sometimes allow unbounded fan-in OR/AND gates: in such case size = # wires.)

- Circuit computes a function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$.

- Our interest: E.g. smallest circuit deciding SAT ($m = 1$).
Turing machines with advice

- Alternate interpretation of non-uniform computation: Give “advice” to a Turing machine.

- Fix a polynomial p. Let a_1,a_2,\ldots with $a_n \in \{0,1\}^{p(n)}$ be advice strings. Given $x \in \{0,1\}^n$, an advice Turing machine M uses the advice a_n to determine if $x \in L$ or not.

Defn: $L \in P_{/\text{poly}}$ if there exists a polynomial time bounded Turing machine M, polynomial p and advice strings a_1,\ldots,a_n,\ldots with $|a_n| \leq p(n)$ such that for every $x \in \{0,1\}^*$,

$$x \in L \iff M(x,a_{|x|}) = 1.$$

Circuit complexity

- Given Boolean function family $\{f_n\}_n$ with $f_n : \{0,1\}^n \to \{0,1\}$ show lower bounds on smallest circuit computing f_n.

- Hope: Can show $\text{NP} \neq \text{P}$ by showing $\text{NP} \nsubseteq P_{/\text{poly}}$.

- Wait - what?

- $P_{/\text{poly}}$ includes undecidable languages!

- Why should it not just contain NP, if it is so powerful!

- Karp-Lipton: Non-uniformity is not too powerful in deciding uniform languages. Specifically:

Can think of a_n as describing circuit, and $M(x,a)$ computes value of circuit a on input x. Conversely, given any advice a and poly-time TM M, can build poly-sized circuit that determines value of M on input x and advice a. Thus $P_{/\text{poly}}$ is the class of languages with polynomial sized circuit family.

Thm: If $\text{NP} \subseteq P_{/\text{poly}}$ then PH collapses.
Assume M is an advice TM deciding SAT.

Defn: a_n is GOOD if $M(\phi, a_n)$ decides $\phi \in \text{SAT}$.

Karp-Lipton Lemmas:

Lemma 1: GOOD is in Π_2^P.

(Wonderful: we have shown NP is in PH!)

Lemma 2: If $\text{NP} \subseteq \text{P/poly}$ and GOOD is in Π_i^P, then $\Sigma_{i+2}^P = \Sigma_{i+1}^P$.

Note: deliberately ignoring the fact that we know GOOD is very low. We don’t need it to collapse the hierarchy.

Proof of Lemma 2

Lemma 2: If $\text{NP} \subseteq \text{P/poly}$ and GOOD is in Π_i^P, then $\Sigma_{i+2}^P = \Sigma_{i+1}^P$.

Proof: Will show $(i+2)$-QBF in Σ_{i+1}^P.

Assume for simplicity that i is odd.

Basic idea: Given formula ϕ where we wish to decide if

$$\exists x_1 \forall x_2 \ldots \exists x_i \phi(x_1, \ldots, x_i) = 1,$$

we’ll quantify over x_1 to x_{i-1} and let $\psi(x_i) = \phi(x_1, \ldots, x_i)$ be the remaining formula. We’ll then use a GOOD string a_n and determine if $M(\psi, a_n) = 1$.

How do we find a GOOD string? We guess it along with x_1 and in parallel to the computation determing if ϕ is a YES instance, we’ll check if a_n is GOOD.

Proof of Lemma 1

Lemma 1: GOOD is in Π_2^P.

Proof: a_n is GOOD, if

$$\forall \psi, \ M(\psi, a_n) = 1 \Rightarrow \exists \alpha \text{ s.t. } \psi(\alpha) = 1$$

$$M(\psi, a_n) = 0 \Rightarrow \forall \beta \psi(\beta) = 0.$$
Formal Proof

Σ_{i+1}^P computation for ϕ:

- GUESS x_1, a_n
- FORALL Verify a_n is GOOD
 Verify $\forall x_2, \exists x_3, \ldots, \forall x_{i-1}$
 $M(\psi, a_n) = 1$ where $\psi(\cdot) = \phi(x_1, \ldots, x_{i-1})$.

Non-uniform complexity

Why would it be easier to show $\text{NP} \not\subseteq \text{P/poly}$ than to show $\text{NP} \neq \text{P}$:

- Circuit lower bounds more combinatorial.
- Can show circuit lower bounds by counting.
- Other sophisticated techniques available.
- Unfortunately: No explicit functions (in NP) with superlinear lower bound.
- Better lower bounds exist for high complexity; but based on diagonalization.