Today

- Circuit lower bounds
- Parity does not have constant depth circuits

Big goal

- Would like to show exponential lower bounds on circuit size for functions in NP.
- Best we’ve been able to show is exponential lower bounds on constant depth circuits.
- References:
 - Furst, Saxe, Sipser ’83.
 - Yao ’85.
 - Hastad ’87.
 - Smolensky ’88.
- Today: Smolensky’s proof.

Circuit depth

- Depth of a circuit is the length of the longest path from input to output.
- Today we consider AC_0: the class of circuits with unbounded fan-in OR, and AND gates, and constant depth.
- Depth represents parallel time. Unbounded fan-in represents concurrent writing on shared memory cells.
- “Lowest level of complexity”.

Parity function

For every n, $\oplus_n : \{0, 1\}^n \rightarrow \{0, 1\}$ represents the parity of n bits (or sum modulo two).

Goal for today:

Theorem: If \oplus_n has a circuit of depth d then it must have size $2^{n \Omega(1/d)}$.
Main tools

- Vector spaces over \mathbb{Z}_3^n.
- Polynomials over \mathbb{Z}_3^n.
- Randomness.

Parity and polynomials

- $\mathbb{Z}_3 = \{-1, 0, +1\}$ (Arithmetic mod 3, but think of 2 as -1.)
- Two representations of the Boolean world:
 $\{0, 1\}$ and $\{+1, -1\}$. ($0 \leftrightarrow 1$; $1 \leftrightarrow -1$.)
- $x \mapsto 1 - 2x$ and $(1 - y)/2 \leftrightarrow y$.
- Then $\Theta_n : (x_1, \ldots, x_n) \mapsto \prod_{i=1}^n x_i$.
- In general think of $f : \{0, 1\}^n \to \{0, 1\}$ and $f : \{+1, -1\}^n \to \{+1, -1\}$ as functions mapping $\mathbb{Z}_3^n \to \mathbb{Z}_3$.

Polynomials over \mathbb{Z}_3

Fact: For every $f : \{0, 1\}^n \to \{0, 1\}$, can find polynomial $q : \mathbb{Z}_3^n \to \mathbb{Z}_3$ such that q has degree 1 in each variable and agrees with f on $\{0, 1\}^n$.

Similar fact for $f : \{-1, 1\}^n \to \{-1, 1\}$.

Main Lemmas

Lemma 1: If $f : \{0, 1\}^n \to \{0, 1\}$ is computed by a depth d circuit of size s, then there exists a set $S \subseteq \{0, 1\}^n$ of size $|S| \geq 3/4 2^n$ such that $f : S \to \{0, 1\}$ computed by a polynomial over \mathbb{Z}_3 of degree $(\log s)^{O(d)}$.

Lemma 2: If there exists a degree polynomial $D p : \mathbb{Z}_3^n \to \mathbb{Z}_3$ such that $p(x) = \Theta(x)$ for all $x \in S$, then every Boolean function $f : S \to \{0, 1\}$ is computed by polynomials of degree $n/2 + D$.

Lemma 3: Any set of functions generating all $f : S \to \{0, 1\}$ must have at least $|S|$ members.
Using lemmas to prove theorem

- Assume parity has depth d, size s circuit.
- By Lemma 1, parity is computed by polynomial of degree $(\log s)^{O(d)}$ on set S of size $3/42^n$.
- By Lemma 2, every Boolean function on S is a polynomial of degree $n/2 + (\log s)^{O(d)}$. Thus this set of functions is contained in a vector space over \mathbb{Z}_3 of dimension at most $\sum_{i=0}^{n/2 + (\log s)^{O(d)}} \binom{n}{i} \leq 2^{n-1} + (\log s)^{O(d)}2^n/\sqrt{n} < 3/42^n$. (Provided $s \leq 2^{n^{\Omega(1/d)}}$.)
- By Lemma 3, this space of functions has dimension at least $|S| \geq 3/42^n$.

Proof of Lemma 3

- Let $\delta_x(y) = 1$ if $x = y$ and 0 o.w.
- The functions $\{\delta_x : S \to \{0, 1\} | x \in S\}$, are linearly independent.
- Simple linear algebra.

Proof of Lemma 2

- Will switch back and forth between 0/1 and ±1.
- Suppose $\oplus : S \to \{0, 1\}$ is represented by a polynomial $q : \mathbb{R}^n \to \mathbb{R}$. Let $T \subseteq \{+1, -1\}^n$ be the associated set. Then $\prod_{i=1}^n x_i = 1 - 2q((1-x_1)/2, \ldots, (1-x_n)/2)$ on the set T.
- Consider Boolean function $f : S \to \{0, 1\}$. Let $g : T \to \{+1, -1\}$ be associated function. Represent g by a polynomial in its arguments. $p(x) = \sum_i \alpha_i A_i + \sum_j \beta_j B_j$ where A_i are terms of degree less than $n/2$ and B_j’s are terms of degree greater than $n/2$. Let $C_j = \prod_{i=1}^n x_i/B_j$. Then $p'(x) =$
\[
\sum_i \alpha_i A_i + q(x) \sum_j \beta_j C_j \] also represents \(g \) and is a polynomial of degree at most \(n/2 + D \).

- The polynomial \(r(x) = (1 + p(1 - 2x))/2 \) represents \(f \).

\begin{center}
\textbf{Proof of Lemma 1}
\end{center}

- This is the hard lemma. (Though the linear algebra is also very novel.)

- But is seen again and again in complexity.

- Basic idea: Fix input \(x_1, \ldots, x_n \) and randomly replace every gate by a polynomial of low-degree. Show the resulting circuit still computes the original value with probability at least 3/4.

- Use the probabilistic method to conclude there exists a collection of polynomials which computes the original function on 3/4ths of the input.

\begin{center}
\textbf{Prob. polynomial for the OR function}
\end{center}

Naive answer: \(OR(y_1, \ldots, y_k) = 1 - \prod_{i=1}^k (1 - y_i) \). Answer is always right. But degree is \(k \) - too much.

Step 1: Get the answer right w.p. 1/2 with polynomials of degree 2.

Basic idea: pick \(a_1, \ldots, a_k \in \mathbb{Z}_3 \) at random.
\[p_a(y) = \sum_{i=1}^k a_i y_i. \]

Claim 1: \(p_a(0) = 0 \).

Claim 2: \(\Pr[a[p_a(y) = 0] \leq 1/3. \)

Proof: Let \(Q(z) = \sum_{i=1}^k y_i z_i \). \(Q \) is a non-zero polynomial of degree 1 in its argument. Evaluation at random \(z = a \) leaves it non-zero.

\begin{center}
\textbf{Prob. polynomial for the OR function (contd.)}
\end{center}

The polynomial \(p_a^2 \) is always 0 or 1 and computes the OR function on any fixed input w.p. 2/3.

Pick \(a_1, \ldots, a_{\ell} \), and take the OR of polynomials \(p_{a_i} \).

Gives degree \(2\ell \) polynomial that is right w.p. \(1 - (2/3)^\ell \).

What we gained? Will pick \(\ell = \log s \) to make degrees logarithmically smaller than fan-in.

What we lost? Not guaranteed to be right.
Prob. polynomial for circuit

- Replace every gate by degree 2ℓ poly randomly.
- Resulting circuit computes a polynomial of degree $(2\ell)^d$.
- Prob. it gets the output wrong (for fixed input) is at most $s(1/3)^\ell$.
- Lemma follows.

Conclusions

- Algebra, arithmetization, randomness very powerful tools.
- Work in situations where there’s no mention of them in problem statement.
- Many more examples in course.
- Unfortunately, know little else?