Today

• Power of the prover: \(\text{IP} \subseteq \text{PSPACE} \).
• \(\text{IP}[\text{poly}] \subseteq \text{AM}[\text{poly}] \).
• \(\text{IP}[k] \subseteq \text{AM}[k] \).
• Start \(\text{IP} = \text{PSPACE} \).

The optimal prover

• Given a fixed verifier, what should a prover do?
• Can figure out what to do, optimally, by computing the following quantity:
• Given a history of interactions so far, what is the highest probability, over all provers, of the verifier accepting.
• Can compute this by induction on number of remaining rounds.
• Prover that does this is the optimal prover.

\[\text{IP} \subseteq \text{PSPACE} \]

Simple consequence of the explicit form of the optimal prover:

Proposition: \(\text{IP} \subseteq \text{PSPACE} \).

Proof: Can compute “probability of acceptance by optimal responses” in PSPACE.

\[\text{IP}[\text{poly}] = \text{AM}[\text{poly}] \]

• Lets draw the interaction tree:
 – Nodes correspond to history so far: questions asked and optimal answers.
 – Edges between history and its immediate successor.
• Assume w.l.o.g. that questions are all binary, and given a path to leaf, there is a unique random string leading to this path (achieved by verifier announcing its random string after the protocol).
• Label leaves as accept/reject.
• Label node with \(\# \) accepting leaves.
• Verifier’s goal: Verify label of root is at least $2/3 \times \# \text{random strings}$.

\[\text{IP}[\text{poly}] = \text{AM}[\text{poly}] \]

Starting with root, and going down some path in the tree, Arthur repeats the following:

• Inductively, Arthur has a lower bound L_u on label of current node u. Arthur asks prover for optimal answers to two children, and labels L_v and L_w of corresponding nodes v and w.

• Arthur verifies $L_w + L_v \geq L_u$. Verifies v with probability $L_u/(L_v + L_w)$ and w otherwise.

• At root $L_{\text{root}} = 2/3 \times \# \text{random strings}$. At leaf, verify verdict is accepting.

Let N_u denote actual $\# \text{accepting leaves}$ in subtree.

• Claim: Prob. verifier given at u accepts $\leq N_u / L_u$.

• Claim: If $N_{\text{root}} \geq 2/3 \times \# \text{random strings}$, then setting $L_u = N_u$ for every u, gives proof that is accepted with probability 1.

• Thm: IP[\text{poly}] = AM[\text{poly}]-one-sided.

(Theorem above due to [Goldwasser-Sipser] + [Furer-Goldreich-Mansour-Sipser-Zachos]. Proof due to [Kilian].)

\[\text{AM proof for approximate set size} \]

Suppose $S \subseteq \{0,1\}^n$ has size either $|S| \geq \text{BIG} = 2^m$ or at most $\text{SMALL} = 2^m/100$, where e.g., $m = \sqrt{n}$. Further $x \in S$? can be determined by Arthur on its own.

Can Merlin convince Arthur that S is BIG?

[Goldwasser-Sipser] give AM protocol for above.
Goldwasser-Sipser protocol

Protocol: (reminiscent of Sipser-Lautemann)

- Merlin picks (random) hash function $h : \{0, 1\}^n \rightarrow \{0, 1\}^{m-4}$ and sends to verifier.
- Arthur picks $y \in \{0, 1\}^{m-4}$ at random and sends to Merlin.
- Merlin responds with $x \in S$ such that $h(x) = y$.

Claim: If h is chosen from a nice p.w.i. family of hash functions, and $|S| \geq 2^m$, then for $2/3$ of y’s, there exists $x \in S$ such that $h(x) = y$.

Claim: If $|S| \leq 2^m / 100$, then no matter which h we pick, at most $16 / 100 \leq 1/6$ for the y’s have $x \in S$ such that $h(x) = y$.

\[\text{IP}[k] \subseteq \text{AM}[k] \]

Will only prove $\text{IP}[1] \subseteq \text{AM}[O(1)]$. Extension to general k similar.

- Fix verifier with completeness $2/3$, and soundness $1/\text{poly}$.
- Let Q be set of possible questions.
- For $q \in Q$, let S_q be set of random strings that lead to question q being asked, where optimal prover leads to acceptance.
- Let r be length of random strings.
- So either $\sum_{q \in Q} |S_q| \geq (2/3)2^r$, $\sum_{q \in Q} |S_q| \leq 1/\text{poly}(r)$.

- For simplicity assume $|S_q| = 0$ or 2^t for every q.
- Will run two G-S protocols back to back.
- Will ask Merlin to prove $\#q$ such that $|S_q| = 2^t$ is at least $(2/3)2^{r-t}$.
- To do so, Merlin send h, Arthur queries with y and Merlin sends $q \in Q$ such that $h(q) = y$.
- Arthur still needs to verify $|S_q| \geq 2^t$. Does this with another G-S protocol.
- Working out details get theorem.
One-sided error?

Can get one-sided error protocols using more ideas from Lautemann-Sipser. (Pick many hash functions; one of them always has a pre-image.)

Corollary: Can prove graph non-isomorphism without error or private coins! Can you come up with elementary protocol?

#P ⊆ PSPACE

Still don’t have a way for Merlin to convince Arthur that there’s so seating for the round-table!

Will work towards that today.

Not so far from Kilian’s proof Just one more trick!

Arithmetizing SAT

Literal polynomials: $x \mapsto x$, $\overline{x} \mapsto (1-x)$.

Clause polynomial: $C(x, y, z)$ converted to $P(x, y, z); x \lor y \lor z \mapsto 1-(1-x)(1-y)(1-z)$.

SAT polynomial: $\phi(x_1, \ldots, x_n) \rightarrow Q(x_1, \ldots, x_n)$ where $Q(x) = \prod_{i=1}^{m} P_i(x)$ if $\phi = \land_{i=1}^{m} C_i$.

Property $Q(x_1, \ldots, x_n)$: for $a \in \{0, 1\}^n$, $Q(a) = 1$ if a satisfies ϕ and 0 otherwise.

Q a polynomial of degree m in each variable.

$\#\phi = \sum_{a \in \{0, 1\}^n} Q(a)$.

#SAT tree & Q-tree

Draw tree of Q-values:

Root = value of $\sum_{a \in \{0, 1\}^n} Q(a)$.

Node = value of sum on suffix, with prefix set to some fixed value.

$Q_b = \sum_{c \in \{0, 1\}^n} Q(b, c)$.

Verifier verifies $Q_b = Q_{b0} + Q_{b1}$.

Now need to to verify Q_{b0} and Q_{b1}.

Can’t afford to do this!
Will arbitrarily consider Q_b for every $b \in \mathbb{Z}_p^*$ for some prime p.

What meaning does it have? None seemingly, but Q_b is well defined!

Suppose prover claims $Q_\lambda = \#\phi = N$. Will ask prover to prove $Q_\lambda = N \mod p$.

Recursively Arthur is verifying: $Q_b = K \mod p$.

Consider the function $p_b(x) = \sum_{c \in \{0,1\}}^? Q(b, x, c)$ p_b is a univariate polynomial of degree m.

Arthur asks Merlin for $p_b(x)$.

Merlin responds with $h(x)$.

Arthur verifies $h(0) + h(1) = K$.

Arthur picks random $\alpha \in \mathbb{Z}_p$ and sends to Merlin,

Now recursively verify $Q_{b\alpha} = h(\alpha)$.

At end Arthur can compute verify $Q_b = K$, since $Q_b = Q(b)$.

Soundness

Completeness obvious.

For soundness, will claim:

Claim: If $Q_b \neq K$, then $\Pr_{\alpha}[Q_{b\alpha} = h(\alpha) \& h(0) + h(1) = K] \leq m/p$.

Theorem follows (modulo details).