Today

- Multi-prover interactive proofs.
- Oracle interactive proofs.
- Probabilistically checkable proofs.
- \(\text{NP} \subseteq \text{PCP}[O(\log n), \text{poly}(\log n)] \).

Stronger models of proofs?

- Suppose we have two provers \(P_1 \) and \(P_2 \).
- Provers attempting to convince verifier that \(w \in L \).
- Can develop common strategy after seeing \(w \).
- But once interaction with verifier starts, they can’t communicate with each other.
- Like interrogating two convicts on a common crime!
- Can we prove more this way?

Multi-prover interactive proofs (MIP)

\(L \in \text{2IP} \) if there exists a polynomial time bounded verifier \(V \) interacting with two provers satisfying the following properties:

Completeness \(w \in L \) implies there exist \(P_1, P_2 \) such that \(\Pr[P_1 \leftrightarrow V \leftrightarrow P_2 \text{ accepts}] = 1 \).

Soundness \(w \notin L \) implies for every \(P_1, P_2 \)
\(\Pr[P_1 \leftrightarrow V \leftrightarrow P_2 \text{ accepts}] \leq 1/3 \).

Introduced by Ben-Or, Goldwasser, Kilian, & Wigderson.

Motivation: Get “zero-knowledge” proofs without cryptographic assumptions.
Multi(1)-prover interactive proofs (MIP)

- Above definition restricts to two provers.
- Robust w.r.t. error, one-sided vs. two-sided etc.
- What about more provers? three? four? poly?
- Can extend definition easily. Power?

Oracle interactive proofs (OIP)

- Prover fixes a function $f : Q \rightarrow A$ (Q is question space, i.e., $\{0,1\}^{\text{poly}}$; and A is answer space).
- Verifier interacts with the “oracle” for function f.
- Model introduced by Fortnow, Rompel & Sipser.

OIP vs. MIP

- Oracle can simulate any number of provers! (Questions to prover P_i can be simulated by a query of the form (i, h), where h is the entire history of questions to P_i so far.)
- Proposition [FRS]: Oracle can be simulated by two provers.
- Proof idea: If verifier is non-adaptive, then the following simulates the conversation. Say verifier wishes to query f for q_1, \ldots, q_m. Send $\langle q_1, \ldots, q_m \rangle$ to P_1 and q_j (for random j) to P_2. P_1 expects to respond with $f(q_1), \ldots, f(q_m)$ and P_2 with $f(q_j)$. Say they respond with a_1, \ldots, a_m and b. MIP V accepts if OIP verifier accepts a_1, \ldots, a_m and $a_j = b$.
- Completeness, soundness = exercise.
- Adaptive verifier case = exercise.
Power of MIP, OIP = ?

• We know 2IP has same power as OIP. But is this more than IP?

Theorem [Babai, Fortnow, Lund]: MIP = NEXPTIME.

So, given our current state of knowledge, MIP seems more powerful.

Will see some version of theorem in the next few lectures.

Digested MIP = NEXPTIME

• NEXPTIME is just proving theorems, where the proofs are exponentially long in the theorem. (So if we pad the theorem, this just looks like NP.)

• MIP = OIP. What does OIP look like? The oracle is just another big proof, also exponential sized in the theorem. Only now the verifier is probabilistic; runs in polynomial time; and errs when \(w \notin L \).

• Can simulate verifier on all random strings and the new one runs in exponential time. So OIP is really just a restriction of NEXPTIME; but BFL theorem says it is equally powerful.

Scaling MIP down to NP

• Does MIP = NEXP phenomenon have analog for NP?

• Not if we track verifier’s running time. It is polynomial for NP, and needs to be linear to do anything interesting.

• But other features interesting.

• Randomness is small in proof size.

• Number of queries to proof is small (poly logarithmic in proof size).

• No reason why this aspect can not scale down to NP.

Probabilistically checkable proofs (PCPs)

• PCP verifier = OIP verifier.

 – Runs in prob. poly time.
 – Tosses coins.
 – Makes few queries.

• Quantifying resources: \((r,q)\)-restricted PCP verifier is an OIP verifier that tosses \(r(n) \) coins and queries proof oracle at most \(q(n) \) times.

• \(\text{PCP}_{c,s}[r,q] \): Class of all languages with \((r,q)\) restricted PCP verifier, with completeness \(c \) and soundness \(s \).
Optimal prover & Hardness of Max SAT

Show that determining optimal prover for a given PCP reduces to a satisfiability problem.

Since approximating acceptance probability of optimal prover suffices to distinguish complete cases from sound cases, it follows that approximating MAX SAT is NP-hard.