Today

Multi-prover interactive proofs.

Oracle interactive proofs.

Probabilistically checkable proofs.

NP C PCP[O(logn), poly(logn)].

Madhu Sudan, : 1

e Introduced by Ben-Or, Goldwasser, Kilian,
& Wigderson.

e Motivation: Get “zero-knowledge” proofs
without cryptographic assumptions.

Madhu Sudan, : 3

Stronger models of proofs?

e Suppose we have two provers P; and Ps.

e Provers attempting to convince verifier that
w € L.

e Can develop common strategy after seeing
w.

e But once interaction with verifier starts,
they can’t communicate with each other.

e Like interrogating two convicts on a
common crime!

e Can we prove more this way?

Madhu Sudan, : 2

Multi-prover interactive proofs (MIP)

L € 2IP if there exists a polynomial time
bounded verifier V interacting with two
provers satisfying the following properties:

Completeness w € L implies there exist
P,,P, such that Pr[P, & V
P, accepts] = 1.

Soundness w ¢ L implies for every Pi, P»
Pr[P, <+ V <> P» accepts| < 1/3.

Madhu Sudan, : 4

Multi(!)-prover interactive proofs (MIP)

e Above definition restricts to two provers.

e Robust w.r.t. error, one-sided vs. two-sided
etc.

e What about more provers? three? four?
poly?

e Can extend definition easily. Power?

Madhu Sudan, : 5

OIP vs. MIP

e Oracle can simulate any number of provers!
(Questions to prover P; can be simulated
by a query of the form (i,h), where h is
the entire history of questions to P; so far.)

e Proposition [FRS]: Oracle can be simulated
by two provers.

e Proof idea: If verifier is non-adaptive, then
the following simulates the conversation.
Say verifier wishes to query f for
qi,--- ;qm. Send (qi,...,qm) to P, and
g; (for random j) to P,. P; expects to
respond with f(q1), ..., f(¢m) and P, with
f(g;). Say they respond with ay,... ,an

Madhu Sudan, : 7

Oracle interactive proofs (OIP)

e Prover fixes a function f: Q — A (Q is
question space, i.e., {0,1}P°Y; and A is
answer space).

e Verifier interacts with the “oracle” for
function f.

e Model introduced by Fortnow, Rompel &
Sipser.

Madhu Sudan, : 6

and b. MIP V accepts if OIP verifier
accepts ai,... ,a,, and a; = b.

e Completeness, soundness = exercise.

e Adaptive verifier case = exercise.

Madhu Sudan, : 8

Power of MIP, OIP =7

e We know 2IP has same power as OIP. But
is this more than IP?

Theorem [Babai, Fortnow, Lund]: MIP =
NEXPTIME.

So, given our current state of knowledge, MIP
seems more powerful.

Will see some version of theorem in the next
few lectures.

Madhu Sudan, : 9

Scaling MIP down to NP

e Does MIP=NEXP phenomenon have
analog for NP?

e Not if we track verifier's running time. It is
polynomial for NP, and needs to be linear
to do anything interesting.

e But other features interesting.
e Randomness is small in proof size.

e Number of queries to proof is small (poly
logarithmic in proof size).

e No reason why this aspect can not scale
down to NP.

Madhu Sudan, : 11

Digesting MIP=NEXPTIME

e NEXPTIME is just proving theorems, where
the proofs are exponentially long in the
theorem. (So if we pad the theorem, this
just looks like NP.)

e MIP = OIP. What does OIP look like?
The oracle is just another big proof, also
exponential sized in the theorem. Only
now the verifier is probabilistic; runs in
polynomial time; and errs when w & L.

e Can simulate verifier on all random strings
and the new one runs in exponential time.
So OIP is really just a restriction of
NEXPTIME; but BFL theorem says it is

equally powerful.

Madhu Sudan, : 10

Probabilistically checkable proofs (PCPs)

e PCP verifier = OIP verifier.

— Runs in prob. poly time.
— Tosses coins.
— Makes few queries.

e Quantifying resources: (r,q)-restricted
PCP verifier is an OIP verifier that tosses
r(n) coins and queries proof oracle at most
q(n) times.

e PCP_[r,q]: Class of all languages
with (r,q) restricted PCP verifier, with
completeness ¢ and soundness s.

Madhu Sudan, : 12

Optimal prover & Hardness of Max SAT

Show that determining optimal prover for a
given PCP reduces to a satisfiability problem.

Since approximating acceptance probability of
optimal prover suffices to distinguish complete
cases from sound cases, it follows that
approximating MAX SAT is NP-hard.

Madhu Sudan, : 13

