6.841/18.405J: Advanced Complexity Wednesday, Feburary 5th, 2003
Lecture 1
Instructor: Madhu Sudan Scribe: Steve Weis

1 Administrivia

The course instructor is Madhu Sudan, madhu@mit.edu. E-mail him if you have not received a class
e-mail. The TA is Prahladh Harsha, whose e-mail is prahladh@theory.lcs.mit.edu . The course
web page is htpp://theory.lcs.mit.edu/ madhu/ST03. Each student is responsible for scribing one
lecture. E-mail Prof. Sudan to sign up.

The first homework has been posted on the web page and is due in one week on February 12th.
There will be 4-5 problem sets over the course. They will typically be due two weeks after they are
assigned.

2 Course Contents

This course examines what kind of computational resources are interesting and how they affect our
ability to solve mathematical problems. The 6.840 course dealt with classical concepts of resource:
time, space and nondeterminism. This course will consider resources including alternation, non-
uniformity, randomness and quantum physics. We will also explore notions of what are proofs, how
interaction affects a computation and how knowledge affects computation.

3 Classical Computational Complexity

Traditionally, complexity theory has involved identifying a particular resource, such as time, space
or nondeterminism, and quantifying how much of that resource a particular problem requires. By
representing a problem as a point on a plane, we can depict its hardness. To indicate that a problem,
A, is no harder than another, B, we draw an arrow from A to B. So, A — B would indicate that the
problem A is easier than B, i.e. A < B. If paths exist in both directions between two problems, then
those problems are equivalent difficulty. Clustering sets of equivalent problems yields phenomena
such as complexity classes, which we are familiar with. This is depicted below:

O Halting Problem O O
TQBF T
O O O

HARDNESS

T
o i/j ;

Sorting
(never mention this again)

4 Complexity Classes

There are many time complexity classes and we would like to be able to find which ones are “inter-
esting” by ruling out as many arrows between them as possible. To start with, we can define classes
by applying crude boundaries on resources. These will be logarithmic, polynomial and exponential
boundaries on time and space with or without nondeterminism:

| | L | NL | P | NP | PSPACE | EXP |
Restriction Space Space | Time Time | Space Time
Boundary Log Log Poly Poly | Poly Exp
Nondeterminism | N Y N Y N N
Example Addition | Path | Primes | SAT | TQBF Chess

Each one of these classes is contained in the class to its right,ie. LC NLCPC...,C EXP.
Note that PSPACE = NPSPACE, an important result from 6.840. In fact by Savitch’s Theorem,
NSPACE(s(n)) C SPACE(s?(n)) for any s(n) > logn. See Section 8.

5 Reductions

Reductions allow for a formal definition of relative hardness between problems. Recall the definition
of a language, L C {0,1}*. We are concerned with the computation problem of when given z €
{0,1}*, deciding whether z € L. There turn out to be two useful definitions of a reduction:

e Karp Reduction: L < Lo if there exists an efficient function f such that z € Ly < f(z) €
Ls. This is also called a many-to-one reduction.

e Turing Reduction : L; < Lo if given access to an oracle deciding Lo, we can decide L,
efficiently. This is also called many-to-many reduction.

Turing reductions are clearly more general since Karp reductions work only between languages
while Turing reductions are well-defined for any computational problem. Moreover, a Karp reduction
implies a Turing reduction. However, Karp reductions are generally easier to find than Turing
reductions. Clearly, a Karp reduction implies a Turing reduction. However, for some problems there
are known Turing reductions, but no known Karp reductions. Also, we believe that Karp reductions
allow for a finer distinction between classes than what Turing reductions provide us. For example,
consider the computational problem 3SAT determining whether a 3-CNF formula ¢ is unsatisfiable.
Clearly, there exists a Turing reduction 3SAT < 3SAT, that simply negates the output of the oracle.
Thus, if we had just Turing reductions, we would be let to believe that 3SAT is “no harder” than
3SAT and this would imply that NP = coNP. However Karp reductions allow us to distinguish
between NP and coNP as unfortunately, no one has constructed a Karp reduction 3SAT < 3SAT.

6 Hierarchy Theorems

The Time and Space Hierarchy Theories define strict partitions between complexity classes. The
theories are analogous to each other, except that the space bound is tighter:

Theorem 1 For any time constructible function t, TIME(t(n)) C TIME (w(t(n) logt(n))).

Theorem 2 For any space constructible function s, SPACE(s(n)) C SPACE (w(s(n))).

Both of these theorems apply to deterministic classes and are proved through diagonalization
arguments covered in 6.840. The basic idea is as follows: Suppose we want to show some language

L is decidable in time t2(n) but not in time #; (n). We do this by defining a language L that is
decidable in time t2(n) but different from all languages decidable in ¢;(n). L is made to differ from
every language in TIME(¢;(n)) by simulating all the machines that run in time ¢;(n) and flipping
the answer on some input. Thus, there cannot be any equivalent language in TIME(¢; (n)), since L
explicitly differs from each of them on some input.

Finally, Blum’s Speedup Theorem says that any problem solvable in time c¢n can be solved in
time ¢'n where 0 < ¢ < ¢, i.e.:

Theorem 3 L € TIME(¢(n)) = L € TIME (@)
This tells us that the actual constant hidden in the running time of a problem is irrelevant.

7 Open Questions

One of the biggest complexity class questions is whether P=NP. Suppose that P# NP, then is it
true that we can decide the exact complexity of every problem? For instance, if a language L is
described by a non-deterministic Turing machine, then can we decide if L €P? Unfortunately, this
problem is undecidable. In fact, under our assumption P# NP, there is an infinite chain of problems
between P and NP.

Other open problems are whether coNP = NP, L = P or P = PSPACE. Because a turning
machine cannot use more space than it has time, TIME(¢(n)) C SPACE(¢(n)) implying that P C
PSPACE. Similarly, SPACE(s(n)) C TIME (20(¢(")) which implies that L C P. However, by the
Space Hierarchy theorem, L C PSPACE. Thus, we know that one of the containments LCP, P C
PSPACE, must be tight.

8 Savitch’s Theorem

Savitch’s theorem states that something computable in s(n) non-deterministic space is computable
in s(n)? deterministic space. We’ll now give a different proof (rather sketch) of this theorem from
what is commonly seen in textbooks.

We first use the following claim

Claim 1 If L < L in SPACE(S:) and Ly € SPACE(S?), then Ly is decidable in SPACE(2S1+55).

Proof Sketch: This misleadingly appears intuitive. One could first compute the reduction
Ly < Ly and then call the decider for Ls. Unfortunately, we are operating under a three-tape
Turing machine model: one tape is read-only, one is read/write and the third is write-only. The
space restrictions apply only to the read/write tape. The write-only tape, hence the output of the
reduction may be of any size. To get around this, we will run the decider for Ls and then perform
the reduction each time the decider needs to read a particular bit of its input. Note that the only
space needed for this is 257 +S5: S1, S2 for the reduction and the decider respectively, while another
S is required to indicate which bit is needed.

Now on to Savitch’s theorem:

Theorem 4 For any s(n) > logn, NSPACE(s(n)) C SPACE(s%(n))
Proof Sketch: We did not reach this in class, however, we’ll provide a brief sketch below.
We'll use Claim 1 repeatedly to prove this Theorem. Let N = 25("). Consider the language

PATHy,; = {(G,s,t) : |[V(G)| = N, there exists a path of length at most ¢ from s to ¢.}

Since PATH v, is a complete problem for NSPACE(s(n)), it is sufficient if we show that PATHy n €
SPACE(s?(n)). For this, we reduce PATHy ; to PATHy ;/» in the following manner and then use

Claim 1. From an instance (G, s,t) of PATHy ;, we construct the new graph G' which has exactly
the same set of vertices in G but two vertices in G' are connected if there is a path of length at
most 2 in the original graph G. Thus, (G,s,t) € PATHy; <= (G',s,t) € PATHy /5. Clearly
this reduction takes space O(log N). Suppose, S; is the space required to decide PATHy ;, then by
Claim 1, we have that recurrence S; < S;/» + O(log N). Also, we note that S; = O(1). Solving the
recurrence we have S; = (logi)(log N). Hence, Sy = (log N)? = s5?(n), which is what we wanted to
prove.

