
6.841/18.405J Advanced Complexity Theory February 26, 2003

Lecture 6: Randomized Algorithms, Properties of BPP
Instructor: Prof. Madhu Sudan Scribe: Shien Jin Ong

Recap: In the previous lecture, we defined ZPP,RP, co-RP,BPP. The following relationships
between complexity classes are known.

1. P ⊆ ZPP ⊆ RP ⊆ NP

2. P ⊆ ZPP ⊆ co-RP ⊆ co-NP.

3. RP ∪ co-RP ⊆ BPP.

4. ZPP = RP ∩ co-RP.

The relationship between BPP and NP is still unknown. We, however, can prove that P = BPP
under some reasonable assumptions. Therefore, our belief is that P = BPP ⊆ NP.

1 Examples of Randomized Algorithms

We give randomized algorithms for the following problems.

1. Polynomial Identity Testing.

2. Undirected Path.

1.1 Polynomial Identity Testing

We study the polynomial identity testing in the oracle model. That is given two multivariate
polynomial p(x1, . . . , xn) and q(x1, . . . , xn) over a field F, can we determine that p = q? This
problem is equivalent to determining whether h def= p − q = 0. We assume that the polynomial h is
not given to us explicitly, but as an oracle Oh (black box). Given inputs α1, . . . , αn ∈ F, oracle Oh
will output the value of h(α1, . . . , αn).

Next, we define the total degree of a polynomial. Let p be a polynomial such that

p(x1, . . . , xn) =
∑

ci1···inx
i1
1 · · ·xinn .

Then,

total degree of p = max
ci1···in 6=0

{i1 + · · ·+ in}.

Problem (Polynomial Identity Testing): Given oracle Oh which computes the polynomial h of total
degree d in n variables over a finite field F. Does there exist α1, . . . , αn ∈ F such that h(α1, . . . , αn) 6=
0, i.e., is h(x1, . . . , xn) 6= 0?

Trivially, polynomial identity testing (PIT) can be done in NPA (nondeterministic polynomial
time in n, d, and |F |). However, PIT is not in PA (exercise). We show that PIT is in RPA. Our
randomized algorithm takes a sufficiently large subset, S, of F and then choose α1, . . . , αn uniformly
at random from S and test whether h(α1, . . . , αn) = 0.

Lemma 1 If p(x1, . . . , xn) 6= 0 is a polynomial of total degree d over a field F and S ⊆ F, then

Pr
(α1,...,αn)←Sn

[p(α1, . . . , αn) = 0] ≤ d

|S|
.

1

The proof of Lemma 1 is left as an exercise. If we choose a set S ⊆ F such that |S| = 2d,
our algorithm makes an error on instances h(x1, . . . , xn) 6= 0 with probability at most 1/2. When
h(x1, . . . , xn) = 0, our algorithm never errs.

Let us do an example to illustrate the appplicability of Lemma 1.
Problem 1: What is the probability (over x1, . . . , xn) that x1 ⊕ x3 ⊕ xn = 0?
Answer: Since the operation ⊕ is just addition modulo 2, the probability is at most 1/2 (in

fact, exactly 1/2).
Problem 2: Suppose we are given a n × n matrix M whose entries are linear equations of

x1, . . . , xk. Can we decide whether det(M) ≡ 0?
Answer: Since det(M) can be evaluate efficiently when we plug in values for x1, . . . , xk, this

problem is in RP.

1.2 Undirected Path

Analogous with the randomized time complexity classes, we have the following randomized log-space
complexity classes – ZPL,RP, co-RL,BPL. There are two major differences between a randomized
log-space machine and a randomized polynomial-time machine.

1. For randomized log-space computations, we require that the machine has only one-way access
to the random tape. This means that the log-space machine cannot see the previous random
bits unless it has stored the random bits on its work tape tape.

2. The randomized log-space machine must halt in polynomial-time. If this requirement were to
be waived, directed path can be solved in randomized log-space.

Define the undirected path problem as follows.

UndirectedPath = {〈G, s, t〉 : G is an undirected graph and there exists a path from s to t.}

Is UndirectedPath ∈ L? While this problem is still open, we know that UndirectedPath ∈
NL ⊆ L2. Aleliunas, Karp, Lipton, Lovasz, and Rackoff showed that UndirectedPath ∈ RL.
The randomized logspace algorithm is just the algorithm which does a random walk on the graph
G.

Randomized Logspace Algorithm for UndirectedPath

On input (G, s, t), do the following.

1. current ← s.

2. for i = 1 to O(V (G)3)

(a) Pick a random neighbor v of the current vertex and set current ← v.

(b) If current = t, halt and accept.

3. If we have not reached t after O(V (G)3) steps, reject.

The correctness of the above algorithm is based on the following lemma.

Lemma 2 Let G be a connected, undirected graph on n = V (G) vertices. Then, we have that

Pr[walk of length O(n3) does not visit all vertices] ≤ 1
2

Considering that UndirectedPath ∈ RL, can UndirectedPath be solved in less than (log n)2

space? Thus far, we know that UndirectedPath ∈ L4/3 and RL ⊆ L3/2.

2

2 BPP has polynomial-sized circuits

Recall that P/poly is the class of languages decidable by polynomial-sized circuits. Previously, we
defined the class BPP as follows.

A language L ∈ BPP if there exist a probabilistic polynomial-time algorithm M such that

x ∈ L =⇒ Pr
r

[M(x, r) = 1] ≥ 2/3.

x /∈ L =⇒ Pr
r

[M(x, r) = 1] ≤ 1/3.

The error bound in such BPP-algorithm is 1/3. To prove that BPP ⊂ P/poly, we need to
amplify the confidence (make the error bound exponentially small).

We achieve this by repeating our BPP-algorithm poly(|x|) times and taking majority vote. Using
the Chernoff bound analysis, our error is reduced to 2−2|x|. Hence, an alternative formulation of
BPP follows.

A language L ∈ BPP if there exist a probabilistic polynomial-time algorithm M such that

x ∈ L =⇒ Pr
r

[M(x, r) = 1] ≥ 1− 2−2|x|.

x /∈ L =⇒ Pr
r

[M(x, r) = 1] ≤ 2−2|x|.

Theorem 3 (Adelman) BPP ⊂ P/poly.

Proof: Fix a language L ∈ BPP and let M be a BPP-algorithm for L with error bound 2−2|x|.
Let χL be the characteristic function for L, i.e., χL(x) = 1 if x ∈ L, and χL(x) = 0 if x /∈ L. For
each x of length n, define r to be bad for x if M(x, r) 6= χL(x).

We know that for any x ∈ {0, 1}n,

Pr
r

[r is bad for x] ≤ 2−2n.

By the union bound, we have

Pr
r

[r is bad for any x ∈ {0, 1}n] ≤ 2n2−2n = 2−n.

Hence, there exists an r∗ that is good for all x ∈ {0, 1}n. This means that M(x, r∗) = χL(x) for all
x ∈ {0, 1}n. In addition, |r∗| = poly(n). The string r∗ will be the nonuniform advice for deciding
the language L. This shows that L ∈ P/poly. �

3

