6.841/18.405J Advanced Complexity Theory February 26, 2003 Lecture 6: Randomized Algorithms, Properties of BPP Instructor: Prof. Madhu Sudan Scribe: Shien Jin Ong

Recap: In the previous lecture, we defined **ZPP**, **RP**, **co-RP**, **BPP**. The following relationships between complexity classes are known.

- 1. $\mathbf{P} \subseteq \mathbf{ZPP} \subseteq \mathbf{RP} \subseteq \mathbf{NP}$
- 2. $\mathbf{P} \subseteq \mathbf{ZPP} \subseteq \mathbf{co} \cdot \mathbf{RP} \subseteq \mathbf{co} \cdot \mathbf{NP}$.
- 3. $\mathbf{RP} \cup \mathbf{co} \cdot \mathbf{RP} \subseteq \mathbf{BPP}$.
- 4. $\mathbf{ZPP} = \mathbf{RP} \cap \mathbf{co} \cdot \mathbf{RP}$.

The relationship between **BPP** and **NP** is still unknown. We, however, can prove that $\mathbf{P} = \mathbf{BPP}$ under some reasonable assumptions. Therefore, our belief is that $\mathbf{P} = \mathbf{BPP} \subseteq \mathbf{NP}$.

1 Examples of Randomized Algorithms

We give randomized algorithms for the following problems.

- 1. Polynomial Identity Testing.
- 2. Undirected Path.

1.1 Polynomial Identity Testing

We study the polynomial identity testing in the oracle model. That is given two multivariate polynomial $p(x_1, \ldots, x_n)$ and $q(x_1, \ldots, x_n)$ over a field \mathbb{F} , can we determine that p = q? This problem is equivalent to determining whether $h \stackrel{\text{def}}{=} p - q = 0$. We assume that the polynomial h is not given to us explicitly, but as an oracle O_h (black box). Given inputs $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$, oracle O_h will output the value of $h(\alpha_1, \ldots, \alpha_n)$.

Next, we define the *total degree* of a polynomial. Let p be a polynomial such that

$$p(x_1,\ldots,x_n)=\sum c_{i_1\cdots i_n}x_1^{i_1}\cdots x_n^{i_n}.$$

Then,

total degree of
$$p = \max_{c_{i_1\cdots i_n} \neq 0} \{i_1 + \cdots + i_n\}.$$

Problem (Polynomial Identity Testing): Given oracle O_h which computes the polynomial h of total degree d in n variables over a finite field \mathbb{F} . Does there exist $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ such that $h(\alpha_1, \ldots, \alpha_n) \neq 0$, *i.e.*, is $h(x_1, \ldots, x_n) \neq 0$?

Trivially, polynomial identity testing (PIT) can be done in \mathbf{NP}^A (nondeterministic polynomial time in n, d, and |F|). However, PIT is not in \mathbf{P}^A (exercise). We show that PIT is in \mathbf{RP}^A . Our randomized algorithm takes a sufficiently large subset, S, of \mathbb{F} and then choose $\alpha_1, \ldots, \alpha_n$ uniformly at random from S and test whether $h(\alpha_1, \ldots, \alpha_n) = 0$.

Lemma 1 If $p(x_1, \ldots, x_n) \neq 0$ is a polynomial of total degree d over a field \mathbb{F} and $S \subseteq \mathbb{F}$, then

$$\Pr_{(\alpha_1,\ldots,\alpha_n)\leftarrow S^n}[p(\alpha_1,\ldots,\alpha_n)=0] \le \frac{d}{|S|}.$$

The proof of Lemma 1 is left as an exercise. If we choose a set $S \subseteq \mathbb{F}$ such that |S| = 2d, our algorithm makes an error on instances $h(x_1, \ldots, x_n) \neq 0$ with probability at most 1/2. When $h(x_1, \ldots, x_n) = 0$, our algorithm never errs.

Let us do an example to illustrate the appplicability of Lemma 1.

Problem 1: What is the probability (over x_1, \ldots, x_n) that $x_1 \oplus x_3 \oplus x_n = 0$?

Answer: Since the operation \oplus is just addition modulo 2, the probability is at most 1/2 (in fact, exactly 1/2).

Problem 2: Suppose we are given a $n \times n$ matrix M whose entries are linear equations of x_1, \ldots, x_k . Can we decide whether $\det(M) \equiv 0$?

Answer: Since det(M) can be evaluate efficiently when we plug in values for x_1, \ldots, x_k , this problem is in **RP**.

1.2 Undirected Path

Analogous with the randomized time complexity classes, we have the following randomized log-space complexity classes – **ZPL**, **RP**, **co-RL**, **BPL**. There are two major differences between a randomized log-space machine and a randomized polynomial-time machine.

- 1. For randomized log-space computations, we require that the machine has only one-way access to the random tape. This means that the log-space machine cannot see the previous random bits unless it has stored the random bits on its work tape tape.
- 2. The randomized log-space machine must halt in polynomial-time. If this requirement were to be waived, directed path can be solved in randomized log-space.

Define the undirected path problem as follows.

UNDIRECTEDPATH = {(G, s, t) : G is an undirected graph and there exists a path from s to t.}

Is UNDIRECTEDPATH $\in \mathbf{L}$? While this problem is still open, we know that UNDIRECTEDPATH $\in \mathbf{NL} \subseteq \mathbf{L}^2$. Aleliunas, Karp, Lipton, Lovasz, and Rackoff showed that UNDIRECTEDPATH $\in \mathbf{RL}$. The randomized logspace algorithm is just the algorithm which does a random walk on the graph G.

Randomized Logspace Algorithm for UNDIRECTEDPATH

On input (G, s, t), do the following.

- 1. current $\leftarrow s$.
- 2. for i = 1 to $O(V(G)^3)$
 - (a) Pick a random neighbor v of the current vertex and set current $\leftarrow v$.
 - (b) If current = t, halt and *accept*.
- 3. If we have not reached t after $O(V(G)^3)$ steps, reject.

The correctness of the above algorithm is based on the following lemma.

Lemma 2 Let G be a connected, undirected graph on n = V(G) vertices. Then, we have that

$$\Pr[walk \text{ of length } O(n^3) \text{ does not visit all vertices}] \leq \frac{1}{2}$$

Considering that UNDIRECTEDPATH $\in \mathbf{RL}$, can UNDIRECTEDPATH be solved in less than $(\log n)^2$ space? Thus far, we know that UNDIRECTEDPATH $\in \mathbf{L}^{4/3}$ and $\mathbf{RL} \subseteq \mathbf{L}^{3/2}$.

2 BPP has polynomial-sized circuits

Recall that \mathbf{P}/\mathbf{poly} is the class of languages decidable by polynomial-sized circuits. Previously, we defined the class **BPP** as follows.

A language $L \in \mathbf{BPP}$ if there exist a probabilistic polynomial-time algorithm M such that

$$\begin{array}{rcl} x \in L & \Longrightarrow & \Pr_r[M(x,r)=1] \geq 2/3. \\ x \notin L & \Longrightarrow & \Pr_r[M(x,r)=1] \leq 1/3. \end{array}$$

The error bound in such **BPP**-algorithm is 1/3. To prove that **BPP** \subset **P**/**poly**, we need to amplify the confidence (make the error bound exponentially small).

We achieve this by repeating our **BPP**-algorithm poly(|x|) times and taking majority vote. Using the Chernoff bound analysis, our error is reduced to $2^{-2|x|}$. Hence, an alternative formulation of **BPP** follows.

A language $L \in \mathbf{BPP}$ if there exist a probabilistic polynomial-time algorithm M such that

$$x \in L \implies \Pr_r[M(x,r)=1] \ge 1 - 2^{-2|x|}$$

$$x \notin L \implies \Pr_r[M(x,r)=1] \le 2^{-2|x|}.$$

Theorem 3 (Adelman) $BPP \subset P/poly$.

Proof: Fix a language $L \in \mathbf{BPP}$ and let M be a **BPP**-algorithm for L with error bound $2^{-2|x|}$. Let χ_L be the characteristic function for L, *i.e.*, $\chi_L(x) = 1$ if $x \in L$, and $\chi_L(x) = 0$ if $x \notin L$. For each x of length n, define r to be bad for x if $M(x, r) \neq \chi_L(x)$.

We know that for any $x \in \{0,1\}^n$,

$$\Pr_r[r \text{ is bad for } x] \le 2^{-2n}.$$

By the union bound, we have

$$\Pr_{r}[r \text{ is bad for any } x \in \{0,1\}^{n}] \le 2^{n} 2^{-2n} = 2^{-n}.$$

Hence, there exists an r^* that is good for all $x \in \{0,1\}^n$. This means that $M(x,r^*) = \chi_L(x)$ for all $x \in \{0,1\}^n$. In addition, $|r^*| = \text{poly}(n)$. The string r^* will be the nonuniform advice for deciding the language L. This shows that $L \in \mathbf{P}/\mathbf{poly}$.