
6.841/18.405J Advanced Complexity Theory March 12, 2003

Lecture 10: Toda’s Theorem
Instructor: Prof. Madhu Sudan Scribe: Max Goldman

1 P#P

1.1 Definition and Properties

#P is the class of functions expressible as the number of accepting paths of a nondeterministic
Turing machine. So

fM (x) = |{y | M(x, y) accepts}|, M poly-time two-input TM⇒ fM (x) ∈ #P

Thus P#P is the class of languages decidable in polynomial time with oracle access to some #P
function. We can note that

NP ⊆ P#P

coNP ⊆ P#P

BPP ⊆ P#P

PP ⊆ P#P, where PP requires only a strict majority to be correct, as opposed to 2
3 for BPP

P#P ⊆ PSPACE, but P#P ?= PSPACE is an open question

Complete functions for #P include:

• #SAT: φ→ number of satisfying assignments of φ

• #HAMCYCLE: G→ number of Hamiltonian cycles in G

• In fact, #CYCLE is #P-complete by reduction from #HAMCYCLE

• Computing the permanent of a matrix, roughly equivalent to the number of perfect matchings
in a bipartite graph; it is worth noting that the permanent computation is very similar to that
of the determinant, and the transformation can be done in the case of planar matrices, but this
result shows that if it could be done in general, many of our strong beliefs would be violated

Finally, we note that similar to BPP ⊆ ΣP
2 , we can show that approx-#P ⊆ ΣP

3 ∩ΠP
3 .

2 PH ⊆ P#P

2.1 Operators on Complexity Classes

An operator O transforms one complexity class into a new one, where O ∈ {BP,∃,∀, co,⊕}. We
define these operators for a language L = {x, y} as

⊕(L) = {x | number of y’s for which (x, y) ∈ L is odd}, ∃, ∀ similar

BP(L) =

x ∈ ΠYES ⇒ Pr

y
[(x, y) ∈ L] ≥ 1− 2−|x|

x ∈ ΠNO ⇒ Pr
y

[(x, y) ∈ L] ≤ 2−|x|

On a class C, we have O · C = {O(L) | L ∈ C}. Defining the BP operator in this strong manner
(exponentially small error as opposed to a constant fraction) will simply the results to follow.

1

2.2 Toda’s Theorem: Part 1 of n

Toda’s Theorem. PH ⊆ P#P

We prove this theorem by means of two essentially separate lemmas, from which the desired
result follows directly.

Lemma 1. PH ⊆ BP · ⊕ · P
Lemma 2. BP · ⊕ · P ⊆ P#P

In order to prove these two lemmas, we first note the following:

Claim 0. Operators BP and ⊕ preserve closure under complementation

Argument for Claim 0. The statement is that co·BP·C ⊆ BP·C, for C closed under complementation.
In the case of BP, BP(L) ∈ BP · C, and BP(L) = BP(L).
For ⊕, we see that, for example, if (φ, a) ∈ L,

⊕(L) = {φ | φ has an odd number of satisfying assignments}

We can find the complement with the mapping φ(x1, ..., xn)→ φ′(x0, x1, ..., xn), where φ′ is satisfied
if either x0 = 1 and x1 = ... = xn = 0 or x0 = 0 and φ(x1, ..., xn) = 1, which adds one to the number
of satisfying assignments.

Proof of Lemma 1. This proof is done in two parts:

Part 1.1. ∃ · C ⊆ BP · ⊕ · C, where C = BP · ⊕ · P
Part 1.2. BP · ⊕ · BP · ⊕ · P ⊆ BP · BP · ⊕ · ⊕ · P ⊆ BP · ⊕ · P

Part 1.1 also implies that ∀ · C ⊆ BP · ⊕ · C, so any level of the polynomial hierarchy can be
expressed as BP · ⊕ · BP · ⊕ · · ·BP · ⊕ · P. Applying Part 1.2 a finite number of times at each level
yields PH ⊆ BP · ⊕ · P to prove Lemma 1.

Proof of Part 1.1. We begin by showing NP ⊆ BP·⊕·P, by amplifying the 1
poly result used previously

to show USAT is NP-hard under randomized reductions. Recall the Valiant-Vazirani reduction:

φ
?
∈ SAT→ ψ

?
∈ USAT :

{
φ ∈ SAT→ ψ has one satisfying assignment w.p. 1

n

φ 6∈ SAT→ ψ has zero satisfying assignments

Applying this random reduction many times yields several formulas ψi:

φ ∈ SAT →
ψ1

...
ψm

 at least one has an odd number of
satisfying assignments w.h.p.

φ 6∈ SAT →
ψ1

...
ψm

 all have an even number

We then need to combine ψ1 . . . ψm into a single formula ψ̂ such that if all ψi are even, ψ̂ is even,
and if some ψi are odd, ψ̂ is odd w.h.p. Applying a parity flip makes this easier; we now need to
find a ψ̂ that is odd if all ψi are odd and is even otherwise. If we have each ψi(xi) operating on the
set of variables xi, then we simply use

ψ̂(x1 . . . xm) =
m∧
i=1

ψi(xi)

This gives NP ⊆ BP · ⊕ ·P. The same method works to show ∃ ·BP · ⊕ ·P ⊆ BP · ⊕BP · ⊕ ·P, which
proves Part 1.1 of the lemma.

2

2.3 Operators and Circuits

It can be useful to think of complexity class operators in terms of constructing a circuit, where each
operator is a gate with fan-in equal to the number of assignments it quantifies over. Operators ∀, ∃,
and co correspond to the usual AND, OR, and NOT gates, respectively, and ⊕ is of course a parity
gate. BP corresponds to an “approximate majority” gate, which passes on the majority of its inputs
with some error. The result of Part 1.1 above shows that any OR gate in the circuit can be replaced
by an approximate majority gate followed by parity gates. We use this understanding of operators
to begin the proof of Part 1.2 in the next section.

2.4 Toda’s Theorem: Part 2 of n

Proof of Part 1.2. Recall the claim of 1.2, that BP · ⊕ ·BP · ⊕ ·P ⊆ BP ·BP · ⊕ · ⊕ ·P ⊆ BP · ⊕ ·P.
This requires that the innermost operators be flipped, and then adjacent operators eliminated. In
circuit terms, the flip consists of taking a parity gate whose inputs are BP “approximate majority”
gates, and switching them to yield a single BP gate fed by several parity gates. This is done without
making any changes to the surrounding circuit.

If the original circuit has a parity gate quantifying over variable y with fan-in 2a and BP gates
over z each with fan-in 2b, the new circuit will have a BP gate and 2b parity gates each with fan-in
2a. These arrangements are shown in Figures 1 and 2. We let 2−c be the error of the original BP
gate.

Picking a random z, we see that the zth parity gate in the new circuit computes the incorrect
value if there exists a y such that the original BP gate for that y is incorrect. By simply counting
the error of each original BP gate, we see that

Pr[zth ⊕ in new circuit incorrect] ≤ Pr[∃y s.t. BP in original circuit incorrect]

≤ 2b · 2−c

Thus, by ensuring that c is larger than b, we can push the error rate arbitrarily low. This shows
that the quantifier switch is correct; the rest remains to be shown... in another lecture.

��
��
��
��
��
��
��
��

BP BP BP BP · · · ��
��

BP

2a��
��⊕

2b 2bz

y

�
�

�� �� DD
LL �� �� DD

LL �� �� DD
LL �� �� DD

LL �� �� DD
LL

����
��

�
�
�

�
�
B
B

HHHH
HH

Figure 1: Original circuit

��
��
��
��
��
��
��
��⊕ ⊕ ⊕ ⊕

· · · ��
��⊕

2b��
��

BP

2a 2ay

z

�
�

�� �� DD
LL �� �� DD

LL �� �� DD
LL �� �� DD

LL �� �� DD
LL

����
��

�
�
�

�
�
B
B

HHHH
HH

Figure 2: Circuit after transformation

3

