
6.841/18.405J: Advanced Complexity Monday, March 31st, 2003

Lecture 13
Instructor: Madhu Sudan Scribe: Chun-Yun Hsiao

Today:

• #P ⊆ IP

• PSPACE = IP

In this lecture, we will show that PSPACE ⊆ IP; together with PSPACE ⊇ IP, proved in last
lecture, we conclude that PSPACE = IP. We proceed by first showing #P ⊆ IP, and then
generalize the proof to showing PSPACE ⊆ IP.

1 #P is in IP

Let’s begin by recalling what #P and IP are:

• #P: class of functions that count the number of accepting paths of a poly-time NTM. It suffices
to consider a #P-complete problem. For practical purposes that will become clear later, we
choose the problem #SAT . That is, given a 3CNF, determine the number of satisfying truth
assignments it has.

• IP: class of languages L, where “x ∈ L” has an interactive proof verifiable by a probabilistic
poly-time TM.

Self-Reducibility Our goal is to show that #SAT has an interactive proof. More precisely, given
a 3CNF formula φ and a number A, the all-powerful prover wants to convince the poly-time verifier
that φ has exact A satisfying truth assignments. The idea is to exploit the self-reducibility of SAT .
Let φ0 be the formula φ with its first variable set to 0, i.e., φ0 , φ(x1 = 0); similarly φ1 , φ(x1 = 1).
Suppose that we (the verifier) are convinced that the number of truth assignments of φ0 and φ1 are
A0 and A1 respectively, then all we need to do is to check if A = A0 + A1. To make sure that A0

and A1 are the alleged numbers, we need to check that A0 = A00 + A01 and A1 = A10 + A11,1 and
recursively until all the variables are assigned with a Boolean value so that we can evaluate the A’s
ourselves.

Expanding the Tree? The problem is that every time we reduce one variable, we double the
number of equations to be verified. To get around with this exponential growth, the prover, instead
of giving A0 and A1, will provide us a function Q1 such that Q1(0) and Q1(1) (are supposed to)
represent the number of satisfying truth assignments of φ0 and φ1, respectively. Then the prover will
provide another function Q2 to convince us that Q1 is the “right” function, and Q3 for the validity
of Q2 and so on. The protocol proceeds until finally we can verify the validity of Qn by ourselves.
More precisely, we know that2

A =
∑

(x1,...,xn)∈{0,1}n
φ(x1, x2, . . . , xn)

=
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

φ(x1, x2, . . . , xn).

1Ast is defined analogously when the first two variables are assigned to s and t.
2Here the output of φ is viewed as an integer.

1

Let’s define functions Q’s without worrying how to represent them (efficiently) first. Naturally,

Q1(x1) ,
∑

x2∈{0,1}

∑
x3∈{0,1}

· · ·
∑

xn∈{0,1}

φ(x1, x2, . . . , xn),

since this way Q1(0) +Q1(1) is equal to A. We can generalize the definition to Qi, for each i,

Qi(x1, x2, . . . , xi) ,
∑

xi+1∈{0,1}

∑
xi+2∈{0,1}

· · ·
∑

xn∈{0,1}

φ(x1, x2, . . . , xn).

An ideal way of representing the Q’s is by polynomials. For the polynomial representation to be
meaningful, we require that they agree with our definition on binary inputs. To this end, we need
an arithmetic way of looking at #SAT .

Arithmetization Consider the following transformation from Boolean formulae to arithmetic
polynomials.

Boolean Arithmetic
x̄1 → 1− x1

Cj = (x1 ∨ x̄2 ∨ x3) → Pj = 1− (1− x1)x2(1− x3)
φ(x1, x2, . . . , xn) = C1 ∧ C2 ∧ · · · ∧ Cm → P (x1, x2, . . . , xn) =

∏m
j=1 Pj(x1, x2, . . . , xn)

It is easy to see that the polynomial P agrees with the formula φ on binary inputs {0, 1}n. And
we can “redefine” the function Qi in terms of P , namely for each i,

Qi(x1, x2, . . . , xi) ,
∑

xi+1∈{0,1}

∑
xi+2∈{0,1}

· · ·
∑

xn∈{0,1}

P (x1, x2, . . . , xn).

Note that now each Qi is indeed a polynomial. Furthermore, they are all of degree at most 3m;
“efficient” representation exists. The question is how do we verify these Qi are derived honestly
from P (x1, x2, . . . , xn)? Recall, from the definition, that the polynomial Qi(x1, x2, . . . , xi) should
be identical to Qi+1(x1, x2, . . . , xi, 0) + Qi+1(x1, x2, . . . , xi, 1). If we can verify their equality on a
random input, they are identical with good probability. For our purposes, all arithemic operations
will be done modulo some large prime p. Here is the protocol.

↙ (φ,A) ↘
Verifier Prover

REJECT if p not prime
p←− pick prime p ∈ {0, 1}n+1

REJECT if h1(0) + h1(1) 6= A
h1(·)←− send coefficients of Q1(·)

wonder “h1(·) ?= Q1(·)”
challenge α1 ∈R Zp

α1−→ show “A1 , h1(α1) = Q1(α1)”

REJECT if h2(0) + h2(1) 6= A1
h2(·)←− send coefficients of Q2(α1, ·)

wonder “h2(·) ?= Q2(α1, ·)”
challenge α2 ∈R Zp

α2−→ show “A2 , h2(α2) = Q2(α1, α2)”

REJECT if hi(0) + hi(1) 6= Ai−1
hi(·)←− send Qi(α1, . . . , αi−1, ·)

wonder “hi(·)
?= Qi(α1, . . . , αi−1, ·)”

challenge αi ∈R Zp
αi−→ show “Ai , hi(αi) = Qi(α1, . . . , αi)”

REJECT if hn(0) + hn(1) 6= An−1
hn(·)←− send Qn(α1, . . . , αn−1, ·)

αn ∈R Zp

REJECT if hn(αn) 6= Qn(α1, α2, . . . , αn)
ACCEPT

Note that Qn(α1, α2, . . . , αn) = P (α1, α2, . . . , αn) can be computed by ourselves.

2

Completeness If indeed φ has A satisfying truth assignments, the honest prover just follows
the protocol and sends the correct hi, which is Qi(α1, . . . , αi−1, ·). The verifier will accept with
probability one.

Soundness Suppose that φ hasA′ 6= A satisfying truth assignments. Inductively, ifQi−1(α1, . . . , αi−1) 6=
Ai−1, then

hi(0) + hi(1) = Ai−1 6= Qi−1(α1, . . . , αi−1) = Qi(α1, . . . , αi−1, 0) +Qi(α1, . . . , αi−1, 1).

The first equality is assured by verifier’s check, otherwise it would reject immediately. The last
equality is by the definition of Q and the inequality is the inductive assumption. So we know that
hi(·) 6= Qi(α1, . . . , αi−1, ·); with probability 1− 3m

p , αi is not a rooot of hi(·)−Qi(α1, . . . , αi − 1, ·).
Thus hi(αi) 6= Qi(α1, . . . , αi). By union bound, the soundness is at least 1− 3mn

p .

Remark Notice that the verifier only tosses public coins. This is another “indication” that IP is
no more powerful than Athur-Merlin game.

2 PSPACE = IP

This result is somewhat surprising, in the following sense.

• We don’t know (expect) that IP is closed under complement.

• There exists an oracle O such that IPO
+ (ΣP

i)O.

Abstract of the Proof Note that in last section the proof didn’t use any specific feature of #P.
The key idea is only the downward self-reducibility. Let’s look at the proof abstractly and see if it
could lead us to showing PSPACE ⊆ IP.3

1. Q0, Q1, . . . , Qn is a sequence of low-degree polynomials.

2. Q0() = A.

3. Qn is a polynomial we can evaluate on any input by ourselves.

4. Qi can be computed in poly-time, give non-adaptive oracle queries to Qi+1.

• For example, Qi(α1, . . . , αi) = Qi+1(α1, . . . , αi, 0) +Qi+1(α1, . . . , αi, 1).

• In general, Qi(y) can be computed from Qi+1(y1), Qi+1(y2), . . . , Qi+1(y`), where yj can
be computed from y.

Condition 4 is the most important one that saves us from exponential fan-out. Indeed, if we are only
concerned about Qi+1 on y1, . . . ,y`, we may focus on Qi+1|C , where C is a curve passing through
y1, . . . ,y` ∈ Znp .

Let us formalize the above discussion. A curve C is a function (polynomial) from Zp to Znp .

C = (C1, C2, . . . , Cn), where each Ci : Zp → Zp is a polynomial.

The degree of C is the maximum degree of Ci, i.e., maxi{deg(Ci)}. Here are some useful factoids.

• Given y1,y2, . . . ,y` ∈ Znp , there exists degree `−1 curve C such that C(i) = yi, ∀i = 1, 2, . . . , `.
3In fact every self-reducible language is in PSPACE and as we shall see in next lecture that every language in

PSPACE is self-reducible.

3

• Let Q : Znp → Zp be degree d polynomial, and C : Zp → Z
n
p be degree ` polynomial. Then

Q|C : Zp → Zp is a polynomial of degree at most d`. We can write Q|C(t) = Q(C(t)).

In general at the ith round, we want to verify the validity of hi(·), which is received in the previous
round. We pick a random y ∈ Znp , compute the curve C and send it to the prover. The prover
respond with hi+1 which is supposed to be Qi+1|C . Since C passes through y1,y2, . . . ,y`, we are
able to compute hi(y) and notice any inconsistency so far, with good probability.

It turns that the curve C doesn’t need to be complicated at all; straight lines will suffice for our
purposes to show PSPACE ⊆ IP. We will elaborate more in the next lecture.

References

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic Methods
for Interactive Proof Systems. FOCS 1990: 2-10.

[Sha90] Adi Shamir. IP=PSPACE. FOCS 1990: 11-15.

[Sud02] Madhu Sudan. 6.841/18.405J: Advanced Complexity Theory, Lecture 14, 2002.
http://theory.lcs.mit.edu/~madhu/ST02/scribe/lect14.ps.

4

