Today

- Hardness of Uniquely satisfiable instances of SAT.
- Counting problems: $P \neq \overline{P}$.

Unique satisfiability

Motivation: Hard functions in cryptography.
Diffie-Hellman motivation for cryptography:
The map $(\phi, a) \mapsto \phi$, where a satisfies ϕ is easy to compute but hard to invert.
So maybe similarly the map $(p, q) \mapsto p \cdot q$ is also easy to compute but hard to invert.
Can now start building cryptographic primitives based on this assumption.

Issues

Many leaps of faith:
- Specific problem has changed.
- The inputs have to be generated randomly.
- They have to have known “satisfiability”.
- etc. etc.

Initial big worry: The map $(\phi, a) \mapsto \phi$ loses information, while $(p, q) \mapsto p \cdot q$ does not. And NP-hardness requires “loss of information”.
Worry goes away, if we know ϕ has only one satisfying assignment. But then is problem as hard?

Formalizing the problem

Promise Problems: Generalize languages L.
$\Pi = (\Pi_{YES}, \Pi_{NO})$, $\Pi_{YES}, \Pi_{NO} \subseteq \{0, 1\}^*$, $\Pi_{YES} \cap \Pi_{NO} = \emptyset$.
Algorithm A solves problem Π, if:
(Completeness): $x \in \Pi_{YES} \Rightarrow A(x)$ accepts.
(Soundness): $x \in \Pi_{NO} \Rightarrow A(x)$ rejects.
(Can extend to probabilistic algorithms naturally.)

Unique SAT: $USAT = (USAT_{YES}, USAT_{NO})$:
$\Pi_{YES} = \{\phi|\phi$ has exactly one sat. assgmt.\}$.
$\Pi_{NO} = \{\phi|\phi$ has no sat. assgmnts.\}$.
Formal question: Is $USAT \in P$? (Does there
exist a polytime algorithm \(A \) solving \(\text{USAT} \)?)

\[\text{Valiant-Vazirani theorem} \]

Theorem: \(\text{USAT} \in P \) implies \(\text{NP} = \text{RP} \).

Proved via the following lemma.

Lemma: There exists a randomized reduction from \(\text{SAT} \) to \(\text{USAT} \).

\[\phi \mapsto \psi \text{ such that } \phi \not\in \text{SAT} \text{ implies } \psi \in \text{USAT}_{\text{NO}}. \phi \in \text{SAT} \text{ implies } \psi \in \text{USAT}_{\text{YES}} \text{ with probability } 1/\text{poly}(n). \]

Again: Question stated without randomness, but answer mentions it! (Can also mention answer without randomness: \(\text{NP} \subseteq \text{P}/\text{poly} \) or \(\text{PH} \) collapses etc.)

\[\text{Proof Idea} \]

\[\psi \] will have as its clauses, all clauses of \(\phi \) and some more. \(\psi(x) = \phi(x) \land \rho(x) \).

So hopefully, will reduce \# sat. assignts to one.

Furthermore, can put any polynomial time decidable constraint \(\rho(x) \) (Since every computation can be transformed into \(\text{SAT} \). Exercise coming up.)

So what is \(\rho(x) \) going to be?

\[\text{Proof Idea} \]

Suppose we know there exist \(M \) sat. assignts to \(\phi \).

Will pick a random function \(h: \{0, 1\}^n \rightarrow \{0, \ldots, M - 1\} \).

Hopefully this distinguished satisfying assignments, and we can let \(\rho(x) \) be the condition \(h(x) = 0 \).

Calculations imply this works out with constant probability.
Caveats in the solution

- How to do this reduction in polytime? Not enough time to represent h!
- Don’t know M!

Amendments:

- Will pick pairwise independent hash function.
- Will guess M approximately (to within a factor of 2).

Things will work out!

Pairwise independent hash families

Defn: $H \subseteq \{f : \{0,1\}^n \rightarrow \{0,1\}^m\}$ is pairwise independent family if for all $a \neq b \in \{0,1\}^n$ and $c, d \in \{0,1\}^m$

$$\Pr_{h \in H}[h(a) = c \text{ AND } h(b) = d] = (1/2^m)^2.$$

H is nice if $h \in H$ can be efficiently sampled and efficiently computed.

Example: Pick $A \in \{0,1\}^{m \times n}$ and $b \in \{0,1\}^m$ at random. Let $h_{A,b}(x) = Ax + b$. Then $H = \{h_{A,b}\}_{A,b}$ is a nice, pairwise independent family.

Proof: Exercise.

Randomized reduction from SAT to USAT

Given ϕ:

- Pick $m \in \{2, \ldots, n+1\}$ at random (and hope that # satisfying assignments is between 2^{m-2} and 2^{m-1}.)
- Pick h at random from nice p.w.i. family H.
- Let $\psi(x) = \phi(x) \land (h(x) = 0)$.
- Output ψ.

Analysis

Let $S = \{x | \phi(x)\}$.

Hope: $2^{m-2} \leq |S| \leq 2^{m-1}$.

Claim: $\Pr_m[\text{Hope is realized}] \geq 1/n$.

Proof: Claim is true for some $m \in \{2, \ldots, n+1\}$. Prob. we pick that m is $1/n$.
Analysis (contd.)

Claim: \(\Pr_h[\text{Exactly one } x \in S \text{ maps to 0 — Hope}] \geq 1/8. \)

Define \(G_x \): Event that \(x \) maps to 0 and no other \(y \in S \) maps to 0.

Prob. we wish to lower bound is (conditioned on Hope):

\[
\Pr_h[\bigcup_{x \in S} G_x] = \sum_x \Pr_h[G_x]
\]

(since \(G_x \)'s are mutually exclusive).

\(\Pr_h[h(x) = 0] = 1/2^m. \)

\(\Pr_h[h(x) = 0 \text{ and } h(y) = 0] = 1/4^m. \)

\(\Pr_h[h(x) = 0 \text{ and } \exists y \in S - \{x\}, s.t.h(y) = 0] \leq |S|/4^m. \)

Concluding the analysis

With probability \(1/8n \) reduction produces \(\psi \) with exactly one satisfying assignment. If you can decide satisfiability in such cases then can decide satisfiability probabilistically in all cases.

New topic: Counting classes

Given NP machine, how many accepting paths does it have?

\(\#P \) is class of functions \(f : \{0,1\}^* \rightarrow \mathbb{Z}^{\geq 0} \) such that there exists a machine \(M(\cdot,\cdot) \) running in polytime in first input such that for every \(x, f(x) = \{y|M(x,y)\}. \)

\(\text{P}'\#P \) is class of languages decidable with oracle access to \(\#P \) functions.

Very important class: Has usual complete functions \(\#\text{SAT}, \# \text{ Hamiltonian cycles}, \) and also \(\# \) cycles in digraph.

Most novel: \(\# \) matchings in bipartite graph; also permanent of non-negative matrix.
How powerful is $\text{P}^\#\text{P}$?

- $\text{P}^\#\text{P} \subseteq \text{PSPACE}$.
- $\text{BPP} \subseteq \text{P}^\#\text{P}$.
- $\text{NP} \subseteq \text{P}^\#\text{P}$.
- $\text{co-NP} \subseteq \text{P}^\#\text{P}$.

What about $\Sigma^\#_2$? Open till Toda’s theorem.

Thm [Toda]: $\text{PH} \subseteq \text{P}^\#\text{P}$.

No known reasons to believe $\text{P}^\#\text{P} \neq \text{PSPACE}$. (Can you prove anything?)

Operators on complexity classes

An “operator” maps a complexity class into a related one.

A short list: $\exists, \forall, \text{BP}, \bigoplus$.

$\mathcal{C} \mapsto \mathcal{O} \cdot \mathcal{C}$.

$\cdot \mathcal{C}$ is simple: complements of languages in \mathcal{C}.

In all other cases, think of machines in \mathcal{C} as two input machines and operator shows how to quantify over second input.

- \exists, does there exist second input?
- \forall, for every second input.
- \bigoplus: for odd # of second inputs,

- BP, for at least $c(n)$ fraction of second input if $x \in L$ versus at most $s(n)$ if $x \notin L$, where $c(n) - s(n) \geq 1/\text{poly}(n)$.

(Sample) definition:

$L \in \bigoplus \mathcal{C}$ if there exists a machine $M(\cdot, \cdot) \in \mathcal{C}$ (whose second input should be polynomial-length in the first input) such that $w \in L \iff |\{x|M(w, x)\}|$ is odd.

Example operations:

- $\exists \cdot \text{P} = \text{NP}$.
- $\forall \cdot \text{P} = \text{co-NP}$.
- $\exists \cdot \Sigma^P_3 = \Sigma^P_3$.
- $\forall \cdot \Sigma^P_3 = \Pi^P_4$.
- $\text{BP} \cdot \text{P} = \text{BPP}$.

Proof of Toda’s Theorem

Main ingredients:

- Operators on complexity classes.
- Closure properties.
- Randomness
- Algebra
- Blah Blah Blah
Toda's theorem steps

1. $\Sigma_i^P \subseteq \text{BP} \cdot \bigoplus P_{k-1}^P$.
 $\Pi_i^P \subseteq \text{BP} \cdot \bigoplus \Pi_{k-1}^P$.
 (Extends Valiant-Vazirani.)

2. $\text{BP} \cdot \bigoplus P$ amplifies error.
 (Subtle.)

3. $\bigoplus \cdot \text{BP} \cdot \bigoplus P \subseteq \text{BP} \cdot \bigoplus \cdot \bigoplus P \subseteq \text{BP} \cdot \bigoplus P$.
 (Surprising, but straightforward.)

4. $\text{BP} \cdot \text{BP} \cdot \bigoplus P \subseteq \text{BP} \cdot \bigoplus P$.
 (Not surprising. Straightforward.)

After all the above:

Theorem: $\text{PH} \subseteq \text{BP} \cdot \bigoplus P$.

Completely separate theorem:

Theorem: $\text{BP} \cdot \bigoplus P \subseteq \text{P}^\#P$.

Details tomorrow.