Today

- Toda's Theorem
- Part 1: $PH \subseteq BP \cdot \bigoplus \cdot P$.
- Part 2: $BP \cdot \bigoplus \cdot P \subseteq P^{\#P}$

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

- Think of:
 - \exists operator as layer of OR gates.
 - \forall operator as layer of AND gates.
 - BP operator as approximate Majority gate.

Operators vs. Constant Depth Circuits

- ⊕ operator as a parity gate.
- Complexity classes become constant depth circuit.
- Part 1 of Toda's theorem says constant depth AND-OR circuit can be replaced by a depth two circuit circuit with parity gates at bottom level and an approximate majority at top level, uniformly.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Breakdown of Part 1

$$\exists \cdot BP \cdot \bigoplus \cdot P$$

$$\subseteq BP \cdot \bigoplus \cdot BP \cdot \bigoplus \cdot P$$

$$\subseteq BP \cdot BP \cdot \bigoplus \cdot \bigoplus \cdot P$$

$$\subseteq BP \cdot BP \cdot \bigoplus \cdot P$$

 \subseteq BP $\cdot \bigoplus \cdot P$

Rest follows by closure under complementation and induction.

Part 1, Step 1

Write $\exists \cdot BP \cdot \bigoplus \cdot P$

as

 $\exists x, \text{BP } y, \bigoplus z, M(w, x, y, z)$

or as

 $\exists x, N(w, x)$ where $N \in \mathrm{BP} \cdot \bigoplus \cdot P$.

By Valiant-Vazirani & amplification, we note this condition can be written as

$$BP_{\mathbf{h}} \bigoplus_{\mathbf{x},\mathbf{b},c} N_1(w,\mathbf{h},\mathbf{x},\mathbf{b},c)$$

where \mathbf{h} is a sequence of m hash functions, \mathbf{x} is m non-det. choices for N, \mathbf{b} is m bits, and c is a bit.

 $N_1(w, \mathbf{h}, \mathbf{x}, \mathbf{b}, c)$ accepts if the input is all 0s or if c=1 and for all i, $N_2(w, h_i, x_i, b_i)$ accepts.

 $N_2(w, h_i, x_i, b_i)$ accepts if the input is all 0s or if $b_i = 1$ and $h_i(x_i) = 1$ and $N(w, x_i)$.

To conclude, suffices to observe that N_1 's computation is in $\mathrm{BP} \cdot \bigoplus \cdot P$.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Overview

- Concludes Part 1 of Toda's Theorem.
- For Part 2, need to understand some arithmetic games one can play with # accepting paths.

Part 1, Steps 2, 3 & 4

Nothing special: Just do blind actions and for various choice of parameters, things work.

Step 2 Switch 2^a -ary parity gate with 2^b -ary BP gates of error 2^{-c} and get a BP gate that errs with probability 2^{b-c} .

Step 3 Collapse parity gates and it just works $\bigoplus_y \bigoplus_z f(y,z) = \bigoplus_{y,z} f(y,z)$.

Step 4 Collapse BP gates: $BP_y BP_z f(y,z)$ vs. $BP_{y,z} f(y,z)$? If BP_y errs with probability ϵ and BP_z errs with probability δ then $BP_{y,z}$ errs with probability at most $\epsilon + \delta$.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Arithmetic games

- If non-deterministic machine M_1 on input w_1 has n_1 accepting paths, and M_2 on input w_2 has n_2 accepting paths, then can create machines + inputs that have n_1+n_2 , or $n_1 \times n_2$ accepting paths.
- W.l.o.g. consider circuits. Have circuits C_1 , C_2 $(C_i(\cdot) = M_i(w_i, \cdot))$ taking n-bit inputs and accepting n_1 and n_2 inputs respectively.
- Then, circuit C_3 given by $C_3(x,y) = C_1(x) \wedge C_2(x)$ accepts $n_1 n_2$ inputs.
- And, C_4 given by $C_4(x,b) = (b \wedge C_1(x)) \vee (\overline{b} \wedge C_2(x))$ has $n_1 + n_2$ accepting inputs.

More arithmetic

- Can also construction circuits with any fixed number of accepting inputs.
- So given any polynomial p with positive coefficients, and circuit C with N accepting inputs, can construct C' with p(N) accepting inputs. Furthermore size of $C' = O(|p| \cdot |C|)$.
- If p is a constant degree polynomial with constant coefficients, can apply this process $O(\log n)$ times.

Will use the last parts later, but first show how to amplify.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Polynomial magic=?

How would we come up with the polynomial h?

- Requirements:
 - $-h(a) = b \pmod{2^{2^{c+1}}} \text{ for } b \in \{0, -1\}.$
 - Coefficients of h non-negative.
- First condition says $a^2|h(a)$ and $(a+1)^2|h(a)+1$. Natural choice (to make coeff. of a^1 disappear), $h_1(a)+1=(a+1)^2(a-1)^2=a^4-2a^2+1$. Now have $h_2(a)=a^4-2a^2$. Satisfies first condition, but violates second.
- To make coefficients positive, add a (large multiple of) polynomial with +ve

"Boosting" modular counts

- Suppose $a = b \pmod{2^{2^c}}$ for $b \in \{0, -1\}$.
- Then for $h(a) = 3a^4 + 4a^3$ have $h(a) = b \pmod{2^{2^{c+1}}}$.
- Let $h^{(i)}(a) = h(h^{(i-1)}(a)$, where $h^{(0)}(a) = a$.
- Let $t = O(\log m)$. Let C' be the circuit with $h^{(t)}(\#_x C(x,y))$ accepting inputs. (Can construct such C' in polynomial time.).
- ullet C' is what we need.

QED. (Done with Toda's theorem.)

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

coefficients that is 0 on a^2 and $(a+1)^2$. Simple choice $= a^2(a+1)^2$.

• New candidate $h_2(a) = h_1(a) + 2 \cdot a^2(a + 1)^2 = 3a^4 + 4a^3$.