Today

- \(\#P \subseteq \text{IP} \).
- Polynomial straightline programs and interactive proofs.
- Straightline programs for \(\text{PSPACE} \).

Recall \(\#P, \text{IP} \)

- \(\#P \) is the class of counting functions. Prototypical example: \(\#\text{SAT} \) - \(\# \) of satisfying assignments of a 3CNF formula.
- \(\text{IP} \) is the class of languages with interactive proofs. So far know that \(\text{IP} \) contains \(\text{NP} \) and \(\text{GNI} \) (graph nonisomorphism).
- Anything else? Today will show \(\#P \) has interactive proofs. Also try showing \(\text{PSPACE} \) has \(\text{IP} \).
- Remarks:
 - Need to use multiple rounds of interaction (so not an “AM” proof system.).

- \(\text{PSPACE} \) is closed under complement. Any reason to believe \(\text{IP} \) is?

Basic Idea

- Suppose Prover wishes to prove \(\phi \) has \(A \) satisfying assignments.
- Can use self-reducibility:
 - Can prove \(\phi_{x_1=0} \) has \(A_0 \) assignments and \(\phi_{x_1=1} \) has \(A_1 \) assignments, and that \(A_0 + A_1 = A \).
 - Unfortunately \(\# \) statements to be proved is growing exponentially.
 - Any way to commit to \(\#\phi_{x_1=0} \) and \(\#\phi_{x_1=1} \) jointly and then prove only one claim?
 - How does \(\#\phi_{x_1=\alpha} \) behave as a function of \(\alpha \) - naturally?
Arithmetizing SAT

Literal polynomials: $x \mapsto x$, $\overline{x} \mapsto (1 - x)$.

Clause polynomial: $C(x, y, z)$ converted to $P(x, y, z); x \lor y \lor z \mapsto 1 - (1 - x)(1 - y)(1 - z)$.

SAT polynomial: $\phi(x_1, \ldots, x_n) \mapsto Q(x_1, \ldots, x_n)$ where $Q(x) = \prod_{i=1}^{m} P_i(x)$ if $\phi = \land_{i=1}^{m} C_i$.

Property $Q(x_1, \ldots, x_n)$: for $a \in \{0, 1\}^n$, $Q(a) = 1$ if a satisfies ϕ and 0 otherwise.

Q is a polynomial of degree m in each variable.

$\#\phi = \sum_{a \in \{0, 1\}^n} Q(a)$.

#SAT tree & Q-tree

Draw tree of Q-values:

Root = value of $\sum_{a \in \{0, 1\}^n} Q(a)$.

Node = value of sum on suffix, with prefix set to some fixed value.

$Q_b = \sum_{c \in \{0, 1\}^n} Q(b, c)$.

Verifier verifies $Q_b = Q_{b0} + Q_{b1}$.

Now need to to verify Q_{b0} and Q_{b1}.

Can’t afford to do this!

#SAT in IP

Will arbitrarily consider Q_b for every $b \in \mathbb{Z}_p^2$ for some prime p.

What meaning does it have? None seemingly, but Q_b is well defined!

Suppose prover claims $Q_\lambda = \#\phi = N$. Will ask prover to prove $Q_\lambda = N (\text{ mod } p)$.

IP protocol for #SAT

Recursively Arthur is verifying: $Q_b = K (\text{ mod } p)$.

Consider the function $p_b(x) = \sum_{c \in \{0, 1\}^n} Q(b, x, c)$ p_b is a univariate polynomial of degree m.

Arthur asks Merlin for $p_b(x)$.

Merlin responds with $h(x)$.

Arthur verifies $h(0) + h(1) = K$.

Arthur picks random $\alpha \in \mathbb{Z}_p$ and sends to Merlin,

Now recursively verify $Q_{b\alpha} = h(\alpha)$.

At end Arthur can compute verify $Q_b = K$, since $Q_b = Q(b)$.
Soundness

Completeness obvious.

For soundness, will claim:

Claim: If $Q_b \neq K$, then $\Pr_{\alpha}[Q_{b\alpha} = h(0) + h(1) = K] \leq m/p$.

Proof: CRT to get initialization right over p. Schwartz Lemma for inductive step.

Theorem follows (modulo details).

Abstracting the proof

- Proof uses very little specific to $\#P$.
- More about “downward self-reducibility and polynomials”.
- Specifically, downward self-reducibility leads to the tree.
- Algebra compresses questions down to one question.
- In fact, don’t need any structure on the questions!

Extending compression: Low-degree curves

Suppose computing $Q_b(x)$ involves computing $Q_c(y)$ and $Q_c(z)$, where y and z are not related. Can we extend our idea to this case?

Lines in \mathbb{F}^n: $\ell : \mathbb{F} \to \mathbb{F}^n$.

Geometrically - a line is a line.

Algebraically: it is a collection of n functions, each of which is a degree 1 polynomial.

For any two points y and z, there is a line ℓ s.t. $\ell(0) = y$ and $\ell(1) = z$. Specifically $\ell(t) = (1 - t)y + tz$.

Why are lines nice?

\[Q \circ \ell : \mathbb{F} \to \mathbb{F} \text{ is a polynomial of (at most) same degree as } Q. \]
Extending the protocol’s capabilities

- At ith level, to verify $Q(x) = a$, the verifier generates y and z and ℓ containing y and z. Asks prover for $Q \circ \ell$.

- Prover responds with degree d univariate polynomial h.

- Verifier verifies consistency assuming h is right, and then verifies $h(\alpha)$ is correct for random α.

Straightline program of polynomials

Defn: p_0, \ldots, p_L is an (n, d, L, w)-straightline program of polynomials if

- Every p_i is on at most n variables.

- Every p_i is of degree at most d.

- p_i is constructed from p_{i-1} in a simple form. (Formally, there is a polynomial time algorithm A that, given i, x and an oracle for p_{i-1} can compute $p_i(x)$ making at most w non-adaptive queries to p_i.)

- p_0 is computable in polynomial time.

Polynomial program satisfiability

Defn: Polynomial straightline program polynomial satisfaction is the language whose instances are $(x, a, \langle p_0, \ldots, p_L \rangle)$ such that $p_L(x) = a$, where $x \in \mathbb{Z}^n$, $a \in \mathbb{Z}$ and p_0, \ldots, p_L is an (n, d, L, w)-straightline program of polynomials.

Polynomial program is in IP for $w = 2$

Verifier runs in time $\text{poly}(n, d, L, \log ||x||)$.

- Verifier picks random prime $p \approx \text{poly}(n, d, L, \log ||x||)$ and sends to prover. Sets $a_L \leftarrow a$, and $x_L \leftarrow x$.

- For $i = L - 1$ downto 0 do:
 - Let y_i and z_i be queries of A on input $i + 1$, x_{i+1}. Let ℓ_i be line thru y_i and z_i. Verifier asks prover for $p_i \circ \ell_i$. Prover responds with h_i.
 - Verifier verifies that A’s answer on oracle values $h(0)$ and $h(1)$ is a_{i+1}.
 - Verifier picks random $\alpha \in \mathbb{Z}_p$ and sets $x_i \leftarrow \ell_i(\alpha)$ and $a_i \leftarrow h_i(\alpha)$.
- At end verifier verifies \(h_0(\alpha) = p_0(\ell_0(\alpha)) \).

Completeness = 1.

Soundness \(\leq \ell d/p + \text{CRT} \).

PSPACE-completeness

Define longer sequence:

- \(g_i = g_{i,s} = f_i \).
- \(g_i(a, b, c) = g_{i-1,s}(a, c) \cdot g_{i-1,s}(c, b) \).
- \(g_{ij}(a, b, c) = g_{i,j-1}(a, b, c0) + g_{i,j-1}(a, b, c1) \), where \(c \in \mathbb{Z}_p^{s-j} \).

- \(g \) has degree at most \(C' \) in the variables of \(a, b \), and at most \(2C' \) in the variables of \(c \).

- \(g_0, g_{10}, g_{11}, \ldots, g_{1s}, g_{20}, \ldots, g_{ss} \) is a sequence of width \(w = 2 \).

- PSPACE completeness follows.

Poly program sat. is PSPACE complete

- Basic idea: \(f_i(a, b) \) has configurations \(a \) and \(b \) as inputs (if from \(\{0, 1\}^s \)), and \(f_i(a, b) = 1 \) if get from \(a \) to \(b \) in exactly \(2^i \) steps.

- \(f_0 \) is a constant-degree polynomial, of degree \(C' \) in each variable.

- \(f_{i+1}(a, b) = \sum_{c \in \{0, 1\}^s} f_i(a, c) f_i(c, b) \) is also a polynomial of degree \(C' \) in each variable.

- Unfortunately \(w \neq 2 \).

- Can fix easily: Will do summation slowly.

Conclusion

- PSPACE complete problem (Poly. program sat.) has an IP.

- PSPACE \(\subseteq \text{IP} \).

- Can generalize lines argument even “wider”, for \(w > 2 \).

- Exercise: Do this, and thus give direct proof that the permanent has an interactive proof, where the prover only needs to be able to compute permanent.