Today

Last lecture

- IP = PSPACE.
 - IP for straightline programs.
 - Straightline program for PSPACE.
- Other Proof systems and known results.
 - Multiprover IP (MIP): MIP = NEXP
 - Prob. checkable proof: PCP = NP.
- PCP and consequence to inapproximability.

- Showed #P has IP proofs.
- abstracted to "sequences of polynomials".
- today: will recall abstraction in simpler form.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Straightline program of polynomials

- L, n, d, w straightline program of polynomials is a sequence of polynomials P_0, P_1, \ldots, P_L each on n variables of degree at most d, with P_i being polytime computable by making w calls to oracle for P_{i-1} .
- For simplicity, assume $P_i(x)$ computed by adding/multiplying value of $P_{i-1}(f_i(x))$ $P_{i-1}(g_i(x))$, where f_i 's and g_i 's are polynomial time computable (so w=2).

Lines in \mathbb{Z}_p^n

A line $\ell_{x,y}$ through $x,y\in\mathbb{Z}_p^n$ is the set of points $\{\ell_{x,y}(t)|t\in\mathbb{Z}_p\}$ where $\ell_{x,y}(t)=(1-t)x+t\cdot y$.

Function P restricted to line ℓ is the function $P|_{\ell}(t) = P(\ell(t))$.

If P has degree d, then $P|_{\ell}$ has degree d.

IP for straightline program value

Given straightline program $\{P_0, \{f_i\}_i, \{g_i\}_i, \{\sigma_i\}_i\}$, where $\sigma_i \in \{+, *\}$, here's how to prove $P_L(z) = a$.

- Iteration L-i: Claiming $P_i(z_i)=a_i$.
- Let $\ell_i = \ell_{f_i(z_i), q_i(z_i)}$.
- $P \to V$: h_i , a univariate polynomial of degree $\leq d$ (supposedly $h_i = P_{i-1}|_{\ell_i}$).
- V: If $h_i(0)\sigma_i h_i(1) \neq a_i$, REJECT, else pick $t_i \in \mathbb{Z}_p$ at random and set $z_{i-1} = \ell_i(t_i)$ and $a_{i-1} = h_i(t_i)$ and send z_{i-1}, a_{i-1} to Prover.
- ullet Final iteration: Compute $P_0(z_0)$ on one's own.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Analysis

- Completeness: Prover just sends $h_i = P_i|_{\ell_i}$ in each iteration and will be accepted w.p. 1.
- Soundness: As in previous proof: If $P_i(z_i) \neq a_i$, and verifier does not REJECT, then w.p. 1 d/p $P_{i-1}(z_{i-1}) \neq a_{i-1}$.
- Conclude: Have IP for straightline program value.

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Straightline program for PSPACE

- Idea: Let x, y be binary strings denoting configuration of PSPACE machine M.
- $P_i(x,y) = 1$ iff go from config. x to y in 2^i steps.
- So $P_n(x_0, x_{acc}) = 1$ is PSPACE-complete.
- $P_i(x,y) = \sum_z P_{i-1}(x,z) \cdot P_{i-1}(z,y)$. Almost works, except sums of exponentially many terms. So break sum down.
 - Let $Q_{i,n}(x,y,z) = P_{i-1}(x,z)P_{i-1}(z,y)$
 - $Q_{i,j}(x, y, z_1, \dots, z_j) = Q_{i,j+1}(x, y, z_1, \dots, z_j)$ $Q_{i,j+1}(x, y, z_1, \dots, z_j, 1)$
 - $P_i(x,y) = Q_{i0}(x,y).$

• Conclude: PSPACE has IP.

Other models of proof systems

- Multiprover proofs: What if there are two non-interacting provers that verifier can quiz?
 - Potentially more powerful.
 - Indeed a priori can only show MIP in NEXPTIME.
- Oracle interactive proof: Oracle fixed what can you prove.
 - Simulates MIP, but can be simulated by two provers.
- Probabilistically Checkable Proof
 - Usual proof string, with random access.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Verifier randomized, but restricted # of

probes/queries into proof.How powerful? PCP = OIP!

Some results

- MIP = 2IP = NEXPTIME. Inspired by IP=PSPACE. Indeed can describe NEXP as $\exists P_0$ s.t. $P_L(z) = a$.
- Let PCP[r,q] be things you can proof with prob. polytime verifier tossing r(n) coins and querying proof q(n) times with completeness 1 and soundness 1/2.
- MIP = NEXPTIME implies NP ⊆ PCP[polylog, polylog].
- But with lots of more work NP = PCP[O(log), 3].

Consequence to inapproximability